
HUBBLE TENSION WITH AN EXTRA RADIATION AND NEUTRINO DEGENERACY YO TODA HOKKAIDO UNIVERSITY

Osamu Seto, Yo Toda

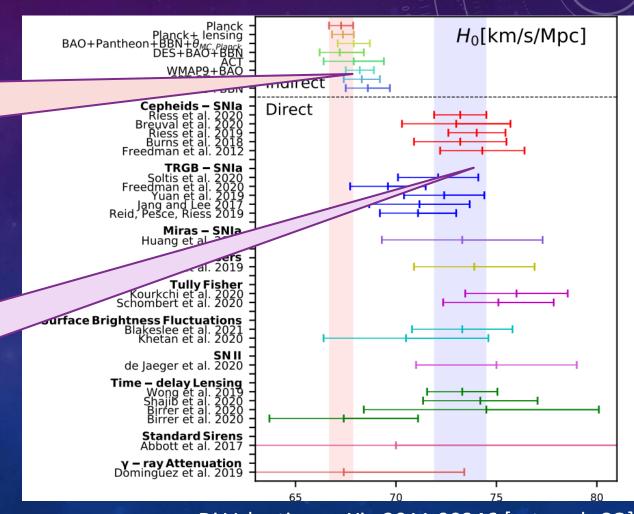
arXiv:2104.04381 [astro-ph.CO]

The Λ CDM model goes well in explaining the evolution of our Universe.

But Hubble Tension

TODAY I WILL

Focus on the Extra radiation and neutrino degeneracy to solve the Hubble tension


Treat extra radiation parameter $N_{\rm eff}$ as independent of degeneracy ξ because we consider the sterile neutrinos or axions under the degeneracy

Conclude that the combination of extra radiation and neutrino degeneracy is the promising solutions

WHAT IS HUBBLE TENSION?

Distant observations suggest $H_0 = 67 \text{ km/s/Mpc}$

Local observations suggest $H_0 = 74 \text{ km/s/Mpc}$

Di Valentino, arXiv:2011.00246 [astro-ph.CO]

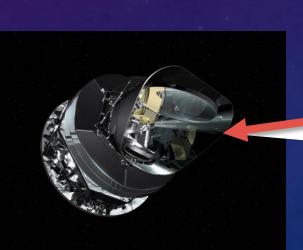
WHAT IS HUBBLE TENSION?

How is this derived?

Distant observations suggest $H_0 = 67 \text{ km/s/Mpc}$

Local observations suggest $H_0 = 74 \text{ km/s/Mpc}$

This tension may indicate
Beyond ACDM Physics


ANGULAR SIZE OF THE SOUND HORIZON

Directly Measured

Angular Size :
$$\theta_* = \frac{r_*}{D_{M*}} = (1.0411 \pm 0.0003) \times 10^{-2}$$

 $r_* = \int_0^{t_*} \frac{c_s d\tilde{t}}{a(\tilde{t})}$: comoving sound horizon at the recombination

$$D_{M*} = \int_{t_*}^{t_0} \frac{d\tilde{t}}{a(\tilde{t})}$$
: comoving angular diameter distance

M* θ

ANGULAR SIZE OF THE SOUND HORIZON

Directly Measured

Angular Size :
$$\theta_* = \frac{r_*}{D_{M*}} = (1.0411 \pm 0.0003) \times 10^{-2}$$

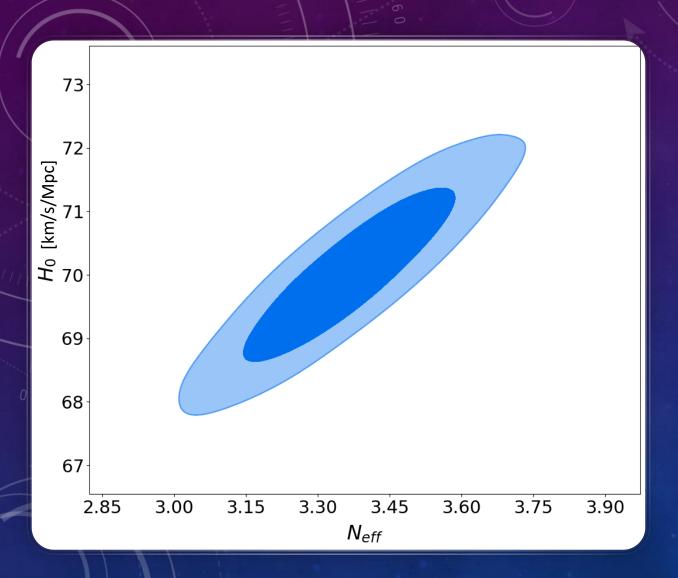
$$\propto H_0 \frac{1}{\sqrt{\rho} \text{ in the early universe}}$$

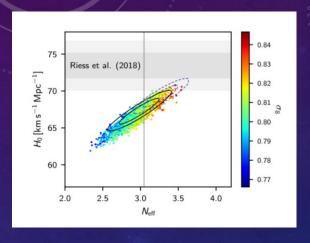
$$\because \frac{dt}{a(t)} = \frac{dz}{H_0 \sqrt{\rho(z)/\rho_0}}$$

ho : energy density

TO INCREASE H_0 ...

Increase ρ in the early universe


EXTRA RADIATION


The relativistic degrees of freedom $N_{\rm eff}$ (increased by dark radiation, axion, sterile neutrino ...)

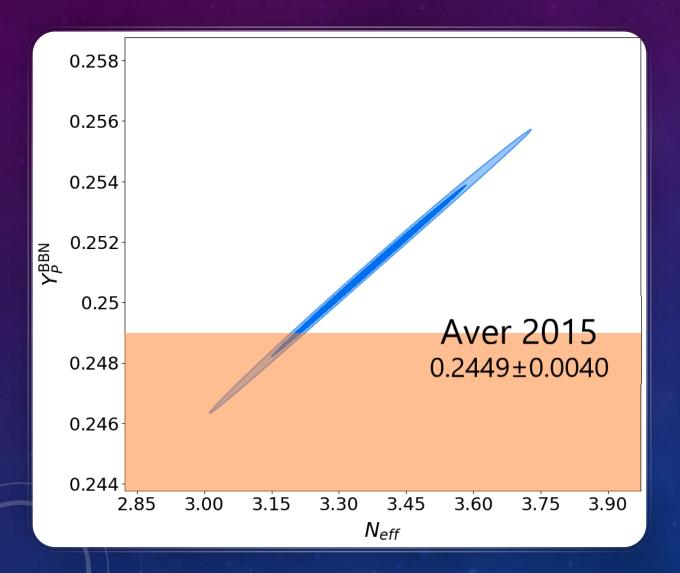
$$\rho_{\text{radiation}} = \left(1 + \frac{7}{8} \left(\frac{4}{11}\right)^{\frac{4}{3}} N_{\text{eff}}\right) * \rho_{\text{photon}}$$
photon Neutrino + \alpha

$$N_{\text{eff}} = 3 + 0.046 + \text{(Extra contribution)}$$

neutrino e⁺e⁻ annihilation

EXTRA RADIATION RELIVE THE HUBBLE TENSION

Planck 2018 results VI arxiv:1807.06209


CMB only

Higher N_{eff} increase H_0

 $N_{\rm eff} = 3.046 + (Extra contribution)$

Planck + Pantheon + BAO + R19

$N_{ m eff}$ VS. HELIUM MASS FRACTION Y_P MEASUREMENT

Larger N_{eff} increase Y_P

 $N_{\rm eff} = 3.046 + (Extra contribution)$

Planck + Pantheon + BAO + R19

NEUTRINO DEGENERACY

The degeneracy parameter $\xi_i = \frac{\mu_{\nu_i}}{T_{\nu}} \; (i = e, \mu, \tau)$

 μ_{ν_i} : chemical potential for neutrino ν_i

 T_{ν} : temperature of neutrinos

Number Densities of neutrinos and antineutrinos

Distribution functions

$$f_{\nu} = \frac{1}{\exp(p/T_{\nu} - \xi_i) + 1}$$

$$f_{\overline{\nu}} = \frac{1}{\exp(p/T_{\nu} + \xi_i) + 1}$$

$$n_{\nu_i} + n_{\overline{\nu}_i} \propto T_{\nu_i}^3 (2(\xi_i/\pi)^2 + (\xi_i/\pi)^4) \to N_{\text{eff}}$$

 $n_{\nu_i} - n_{\overline{\nu}_i} \propto T_{\nu_i}^3 (\pi^2 \xi_i + \xi_i^3) \to \text{BBN}$

Positive electron neutrino degeneracy

More neutrinos than antineutrinos

The process $p + \bar{\nu}_e \rightarrow n + e^+$ is suppressed than $n + \nu_e \rightarrow p + e^-$

Neutron-to-proton ratio decrease

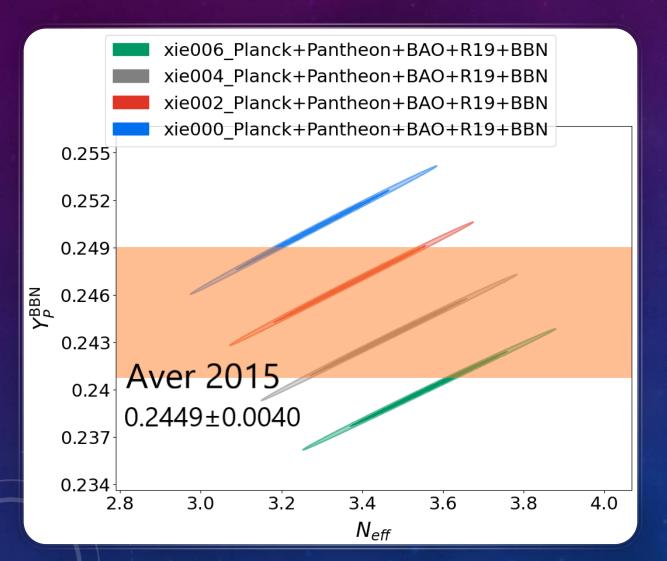
Helium mass fraction Y_P Decrease

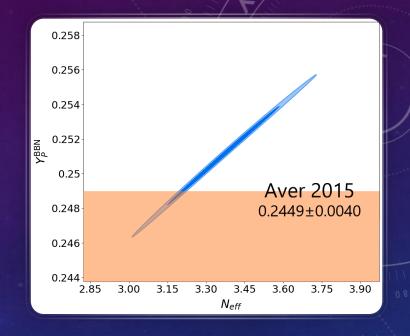
Number Densities of neutrinos and antineutrinos

$$n_{\nu_i} + n_{\overline{\nu}_i} \propto T_{\nu_i}^3 (2(\xi_i/\pi)^2 + (\xi_i/\pi)^4)$$

$$\rightarrow \Delta N_{\text{eff}} = \frac{15}{7} \sum_{i} \left(2 \left(\frac{\xi_i}{\pi} \right)^2 + \left(\frac{\xi_i}{\pi} \right)^4 \right)$$

We consider


$$|\xi_i| \leq 0.06 \rightarrow |\varDelta N_{\rm eff}| < 0.01$$
 Neglegeble and


Extra radiation $\Delta N_{\rm eff} \sim 0.5$

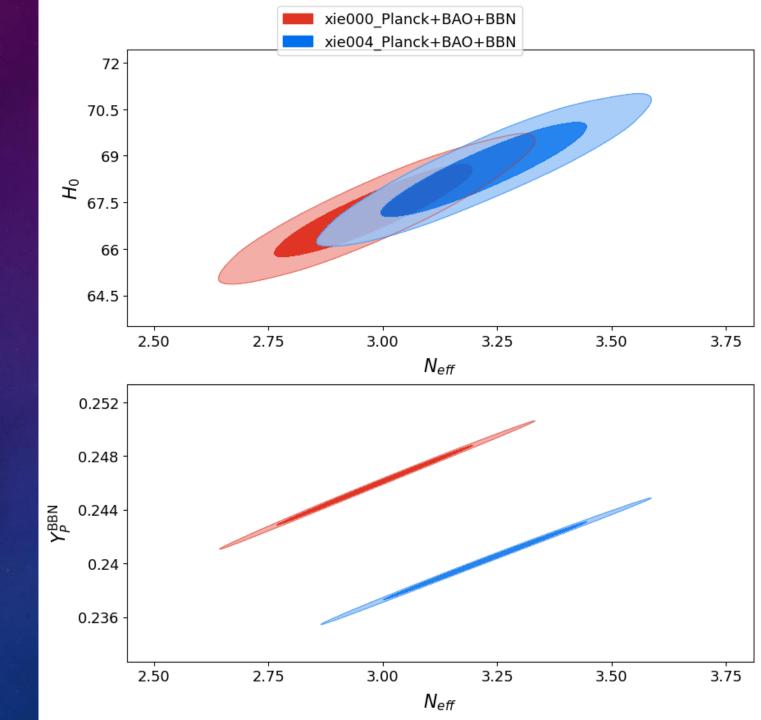
Next, I will show the results of analysis of

EXTRA RADIATION $\Delta N_{ m eff}$ AND ELECTRON NEUTRINO DEGENERACY ξ_e

Y_P VS. $N_{ m eff}$ WITH THE DEGENERACY ξ_e

Larger N_{eff} increase Y_P

Larger ξ_e decrease Y_P


BEST-FIT

 Y_P measurement

Local (direct) H_0 measurement

Parameter	$\Lambda { m CDM}$	$\xi_e{=}0$	$\xi_e{=}0.02$	ξ_e =0.04	$\xi_e{=}0.06$
$\overline{N_{ m eff}}$	3.046	3.243	3.31264	3.45451	3.63353
H_0	68.218	69.632	69.7162	70.2582	71.701
Y_P	0.2468	0.2497	0.2460	0.2432	0.2410
$\chi^2_{ m Cooke17}$	0.2977	0.1036	0.0611	0.0015	6.62848e-06
χ^2_{Aver15}	0.2161	1.4540	0.0753	0.1725	0.9673
$\chi^2_{\rm H074p03}$	16.7501	9.5927	9.2288	7.0555	2.6900
$\chi^2_{ m JLA}$	1034.77	1034.74	1034.74	1034.75	1034.81
$\chi^2_{ m prior}$	4.5083	4.3142	2.3132	3.1993	7.2315
$\chi^2_{ m CMB}$	2779.73	2781.6	2783.9	2782.84	2783.71
$\chi^2_{ m BAO}$	5.2445	5.8010	5.4053	5.3761	6.5744
$\frac{\chi^2_{\rm todal}}{\chi^2_{\rm todal}}$	3841.52	3837.61	3835.72	3833.39	3836.22

No Local Measurements w/ and w/o degeneracy ξ_e

TAKE-HOME MESSAGE

 The combination of Extra radiation and Neutrino degeneracy are the promising solution of the Hubble tension

• Non-zero degenerate $\xi_e=0.04$ and extra radiation $N_{\rm eff}=3.45$ is the best-fit at the combination of CMB, BBN, BAO and the local measurements

The model of particle physics
 which takes large neutrino degenerate and extra radiation
 is worth constructing

Thank you for your kind attention!

Osamu Seto, Yo Toda arXiv:2104.04381 [astro-ph.CO]

y-toda@particle.sci.hokudai.ac.jp