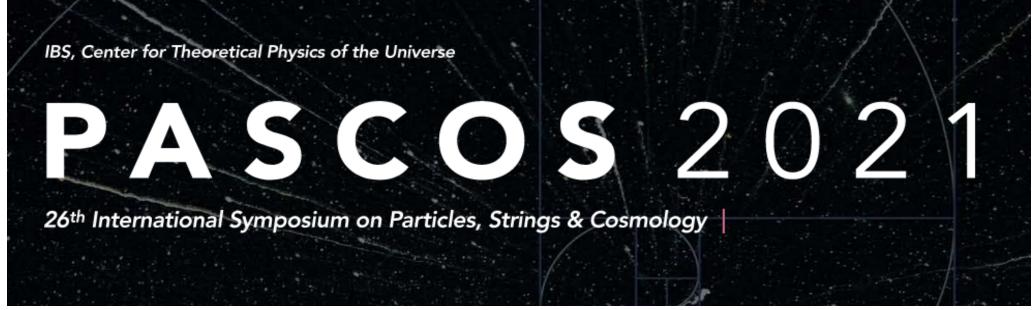

Searches for BSM Higgs at CMS



Prasant Kumar Rout
On behalf of CMS collaboration

Saha Institute Of Nuclear Physics, Kolkata, India Homi Bhaba National Institute, Mumbai, India

Motivation: BSM Higgs searches

Observed Standard model Higgs boson at a mass of 125 GeV may not be the only one in nature.

Extended Higgs sector is strongly motivated (Hierarchy problem, neutrino oscillation, baryon asymmetry, nature of dark matter/energy)

Additional Higgs bosons are predicted by BSM theories: 2HDM, NMSSM

Neutral Higgs (h/H/A) and charged Higgs bosons $(H^{\pm}/H^{\pm\pm})$.

Many searches for BSM higgs at LHC with full Run-II dataset with a wide mass range.

Some latest BSM Higgs searches at CMS

Heavy neutral Higgs boson searches:

```
Decays to observed SM Higgs boson and another higgs boson:

H \rightarrow h(125)h \rightarrow bb\tau\tau [CMS-PAS-HIG-20-014]
```

Charged Higgs boson searches:

```
Single charged Higgs boson : H^{\pm} \rightarrow cs [CMS Phy.Rev.D 102 072001]
```

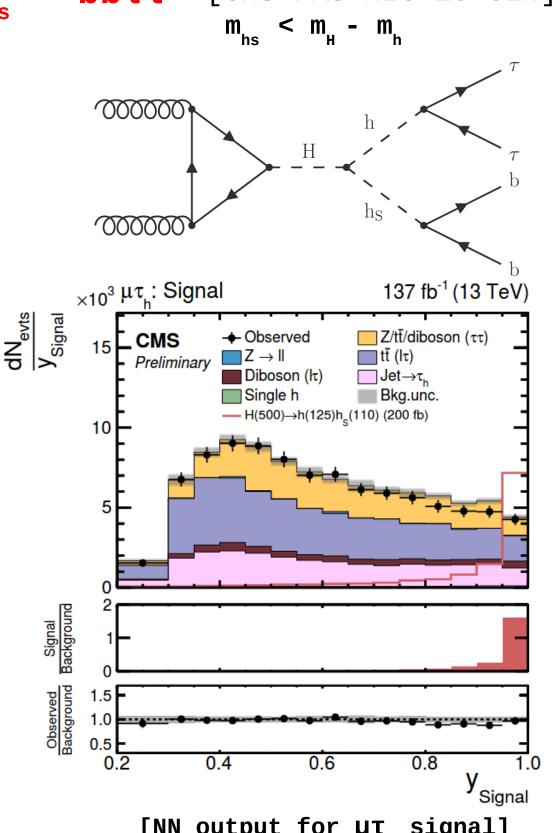
Single and double charged Higgs bosons:

```
H^{\pm} \rightarrow W^{\pm}Z and H^{\pm\pm} \rightarrow W^{\pm}W^{\pm} [CMS arxiv:2104.04762]
```

Heavy neutral Higgs boson: $H \rightarrow h(125)h_s \rightarrow bb\tau\tau$ [CMS-PAS-HIG-20-014]

First BSM search for a heavy neutral Higgs boson decaying to a standard model Higgs boson and a neutral Higgs boson.

Analysed full Run-II data sample : 137 fb⁻¹ For τ pairing: $e\tau_h, \mu\tau_h, \tau_h\tau_h$ final states. 1 or 2 b-jets are considered.

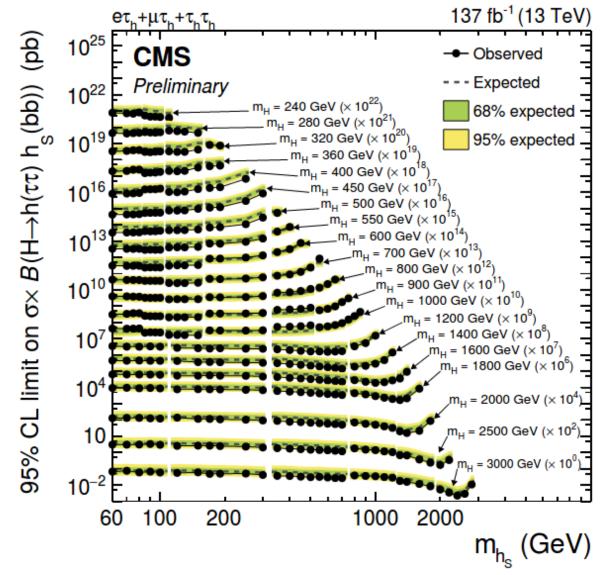

Event selection:

-		-
Final state	Electron/Muon	$ au_{ m h}$
$e\tau_h$	$p_{\rm T} > 25(26, 28, 33) {\rm GeV}$	$p_{\rm T} > 35(30) {\rm GeV}$
	$ \eta < 2.1$	$ \eta < 2.3$
	$I_{\rm rel}^{\rm e} < 0.15$	$D_{\rm jet}(70\%)$, $D_{\rm e}(10^{-4})$, $D_{\mu}(10^{-3})$
$\mu au_{ m h}$	$p_{\rm T} > 20(23, 25) {\rm GeV}$	$p_{\rm T} > 35(30) {\rm GeV}$
	$ \eta < 2.1$	$ \eta < 2.3$
	$I_{\mathrm{rel}}^{\mu} < 0.15$	$D_{ m jet}(70\%)$, $D_{ m e}(10^{-2})$, $D_{\mu}(10^{-4})$
$ au_{ m h} au_{ m h}$	_	$p_{\mathrm{T}} > 40\mathrm{GeV}$
		$ \eta < 2.1$
		$D_{\rm jet}(70\%)$, $D_{\rm e}(10^{-2})$, $D_{\mu}(10^{-3})$

Event Classification:

Event categorisation and signal extraction is based on Neural Network (NN) based multi classification.

5 event categories by choosing $M_{\parallel} = 500$ GeV and **PASCOS - 2021** $100 < m_{hs} < 150 \text{ GeV}$

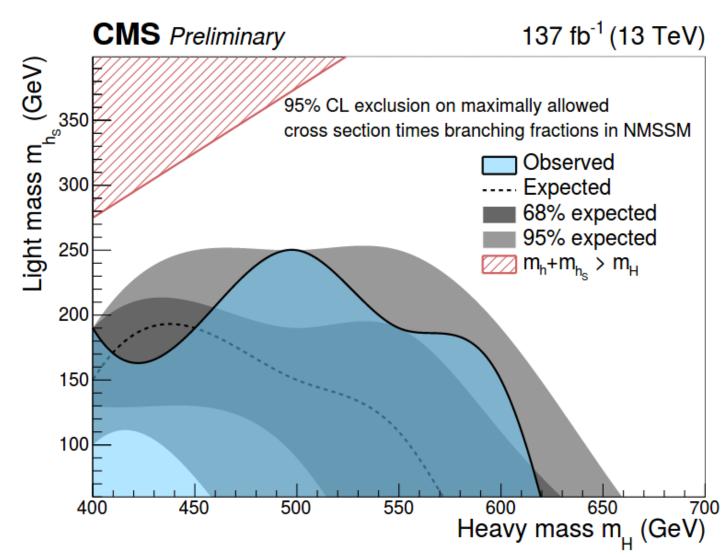


[NN output for $\mu\tau_{h}$ signal]

Heavy neutral Higgs boson : $H \rightarrow h(125)h_s \rightarrow bb\tau\tau$ (Cont.)

Search range explored:

$$M_{H}$$
: 240 - 3000 GeV, M_{hs} : 60 - 2800 GeV



No signal has been observed. 95% confidence level upper limit on σ x BR:

125 fb at
$$m_{H} = 240 \text{ GeV}$$

2.7 fb at $m_{_{\rm H}} = 3000 \text{ GeV}$

Interpretation in NMSSM

Exclusion on the maximally allowed ranges for σ x BR (H \rightarrow h(tt)h $_{\rm s}$ (bb)) : Constrained for masses of m $_{\rm H} \sim 400$ – 620 GeV and m $_{\rm hs} \sim 60$ – 250 GeV

Single charged Higgs boson : H[±] → cs

First Search at LHC performed in the process of top quark pair Production.

 $t \rightarrow H^{\pm} b, t \rightarrow bw$

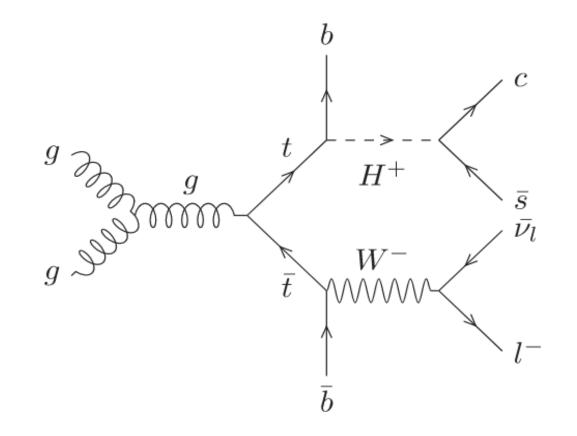
Event selection:

Final state contains: charged lepton + MET (p_{τ}^{miss}) + at least 4 jets

2 bjets, one c jet and one light-flavor jet

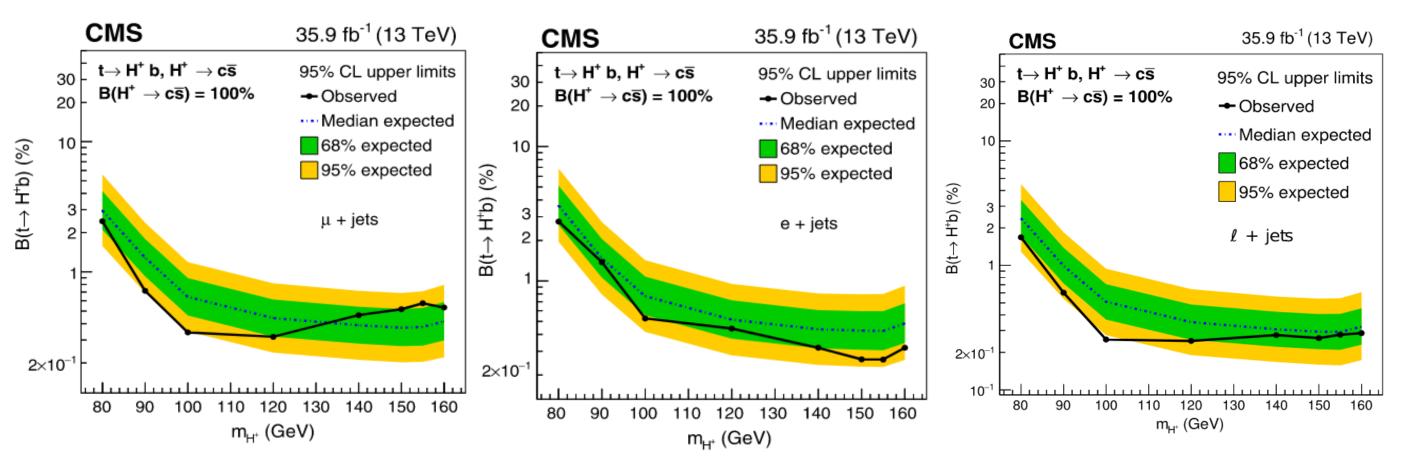
Search sensitivity is enhanced by choosing one bjet tagged to charm quarks.

Muon (electron) with $p_{_{\!\scriptscriptstyle T}}$ > 26 (30) GeV and $|\eta|$ < 2.4 (2.5).


Muon isolation < 0.15.

Electron isolation < 0.08 (0.07) barrel(endcap) region.

For jets: $p_{\tau}^{\text{Jet}} > 25 \text{ GeV}, \eta^{\text{jet}} < 2.4.$


For MET: $p_{\tau}^{\text{miss}} > 20 \text{ GeV}$.

[CMS Phy.Rev.D 102 072001]

PASCOS - 2021

Single charged Higgs boson : $H^{\pm} \rightarrow cs$ (cont.)

Results:

No significant excess beyond standard model predictions is found.

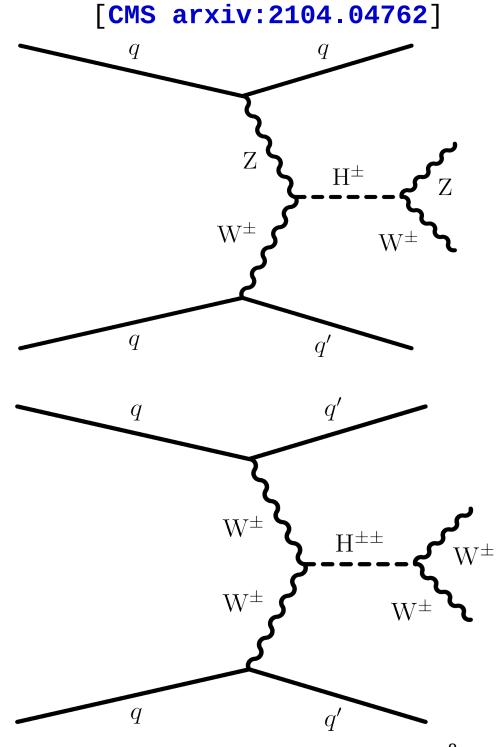
Exclusion limit at 95% confidence level on **B** ($t \rightarrow H^{\dagger} b$):

Assumption: $B (H^{\dagger} \rightarrow cs) = 100\%$

Charged Higgs boson mass (m_H) explored: **80 - 160 GeV**

Muon + jets : 2.44%-0.32%

Electron + jets : **2.77**%-**0.26**%


Combination (lepton + jets): 1.68%-0.25%

Single and double charged Higgs boson : $H^{\pm} \rightarrow W^{\pm}Z$, $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$

Charged Higgs boson production process: Vector Boson Fusion (VBF) Decay products: Vector bosons (WZ and W $^{\pm}$ W $^{\pm}$) Model interpretation: Georgi-Machacek model Full Run-II data sample: 137 fb $^{-1}$ Search performed in leptonic decay modes: W $^{\pm}$ Z \rightarrow 1 $^{\pm}$ v1 $^{\prime}$ t $^{\pm}$ 1, W $^{\pm}$ 4W $^{\pm}$ 5 \rightarrow 1 $^{\pm}$ v1 $^{\prime}$ t $^{\pm}$ v (1,1 $^{\prime}$ 5 = e, μ)

Event Selection requirements:

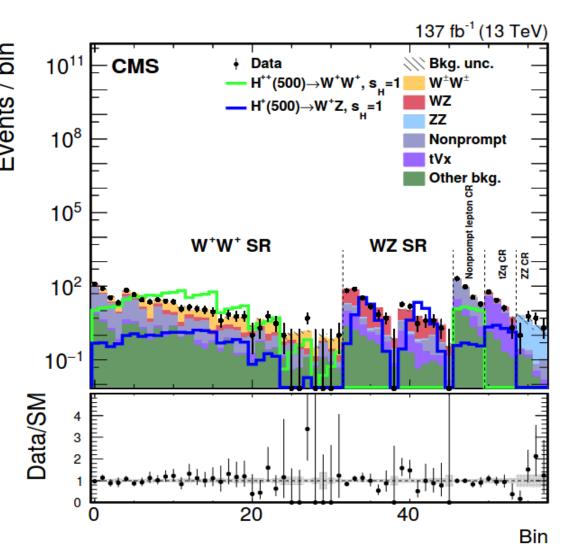
Variable	W^\pmW^\pm	WZ		
Leptons	2 leptons, $p_{\rm T} > 25/20{\rm GeV}$	3 leptons, $p_{\rm T} > 25/10/20 {\rm GeV}$		
$p_{ m T}^{ m j}$	> 50/30 GeV	>50/30 GeV		
$ \mathbf{m}_{\ell\ell} - m_{\mathbf{Z}} $	>15 GeV (ee)	<15 GeV		
$m_{\ell\ell}$	>20 GeV			
$m_{\ell\ell\ell}$	_	>100 GeV		
$p_{ m T}^{ m miss}$	>30 GeV	>30 GeV		
b jet veto	Required	Required		
$\tau_{\rm h}$ veto	Required	Required		
$\max(z_{\ell}^*)$	< 0.75	<1.0		
$m_{ m jj}$	>500 GeV	>500 GeV		
$ \Delta \eta_{ m jj} $	>2.5	>2.5		

Single and double charged Higgs boson : $H^{\pm} \rightarrow W^{\pm}Z$, $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$

Discrimant between resonant signal and non-resonant background processes:

Diboson transverse
$$m_{\mathrm{T}}^{\mathrm{VV}} = \sqrt{\left(\sum_{i} E_{i}\right)^{2} - \left(\sum_{i} p_{z,i}\right)^{2}}$$
 mass:

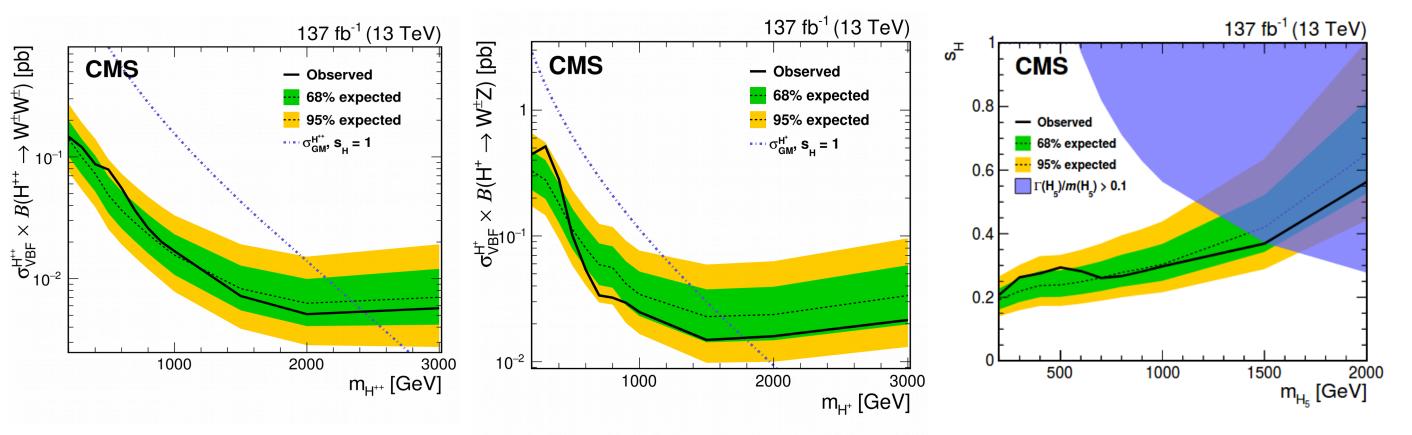
Final discriminant : Bins in $[\mathbf{m}_{i}\mathbf{x} \ \mathbf{m}_{\tau}^{VV}]$


A two dimensional distribution for $W^{\pm}W^{\pm}$ signal regions (SR) :

8 bins in $\mathbf{m_{\tau}^{vv}}$ [0, 250, 350, 450, 550, 650, 850,1050, ∞] GeV 4 bins in $\mathbf{m_{jj}}$ [500, 800, 1200, 1800, ∞] GeV

A 2D discriminant for WZ SR:

7 bins in $\mathbf{m_{\tau}^{vv}}$ [0, 325, 450, 550, 650, 850, 1350, ∞] GeV 2 bins in $\mathbf{m_{jj}}$ [500, 1500, ∞] GeV


4 bins for Control Regions (**CR**) in m_{jj} [00, 800, 1200, 1800, ∞] GeV

[Distributions for signal, backgrounds, and data for the bins used in the simultaneousfit.]

PASCOS - 2021

Single and double charged Higgs boson : $H^{\pm} \rightarrow W^{\pm}Z$, $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$

Results:

No significant excess beyond standard model predictions is found. Charged Higgs boson mass $(m_{_H})$ explored: 200-3000 GeV Exclusion limits at 95% confidence level on $\sigma_{_{VBF}}x$ $B(H^{^{\pm\pm}})$ $(H^{^{\pm\pm}} \rightarrow W^{^{\pm}}W^{^{\pm}})$ and $\sigma_{_{VBF}}x$ $B(H^{^{\pm}})$ $(H^{^{\pm}} \rightarrow W^{^{\pm}}z)$ is shown.

The observed limit excludes $GM s_{H}$ values greater than 0.20 - 0.35 for the m_{H5} (= H^{\pm} , $H^{\pm\pm}$) range from 200 - 1500 GeV

Summary

Extended Higgs sectors in the BSM theories are well motivated to give additional Higgs bosons.

Presented some of the latest BSM Higgs searches using Run-II data at CMS.

More results will be available soon !!

Thank You !!!!

Back up

Single charged Higgs boson : $H^{\pm} \rightarrow cs$ (cont.)

	Loc	Loose		Medium		Tight	
Process	$\mu + \text{jets}$	e + jets	μ + jets	e + jets	μ + jets	e + jets	
$m_{H^{+}} = 80 \text{ GeV}$	7690 ± 550	5430 ± 380	6560 ± 490	4700 ± 370	2670 ± 270	1860 ± 180	
$m_{H^{+}} = 90 \text{ GeV}$	7710 ± 550	5620 ± 400	6770 ± 510	4860 ± 380	2630 ± 260	1870 ± 190	
$m_{H^{+}} = 100 \text{ GeV}$	7950 ± 590	5550 ± 400	7070 ± 540	4950 ± 360	2770 ± 270	2000 ± 200	
$m_{H^+} = 120 \text{ GeV}$	7620 ± 570	5360 ± 400	6870 ± 510	4780 ± 360	2650 ± 260	1960 ± 190	
$m_{H^+} = 140 \text{ GeV}$	6160 ± 500	4370 ± 360	5420 ± 420	3840 ± 310	2010 ± 210	1500 ± 150	
$m_{H^+} = 150 \text{ GeV}$	4530 ± 390	3230 ± 280	3850 ± 330	2800 ± 250	1340 ± 140	1030 ± 120	
$m_{H^+} = 155 \text{ GeV}$	3700 ± 340	2560 ± 250	2980 ± 270	2230 ± 220	1020 ± 120	766 ± 86	
$m_{H^+} = 160 \text{ GeV}$	2780 ± 270	2080 ± 200	2370 ± 230	1710 ± 180	728 ± 83	510 ± 59	
$t\bar{t}$	100540 ± 410	71800 ± 470	73210 ± 320	52340 ± 290	18760 ± 130	13380 ± 130	
Single t quark	2750 ± 220	1970 ± 160	1940 ± 160	1400 ± 110	421 ± 35	302 ± 26	
QCD multijet	520 ± 130	2120 ± 470	498 ± 98	1460 ± 210	88 ± 28	346 ± 39	
W + jets	1360 ± 140	1061 ± 90	950 ± 110	681 ± 58	127 ± 23	102 ± 9	
Z/γ + jets	189 ± 18	240 ± 25	132 ± 13	132 ± 14	56 ± 7	31 ± 4	
VV	61 ± 9	43 ± 6	56 ± 8	11 ± 4	15 ± 5	3 ± 1	
All background	105410 ± 500	77240 ± 690	76780 ± 390	56020 ± 380	19470 ± 140	14160 ± 140	
Data	105474	77244	76807	56051	19437	14179	

[Expected event yields for different signal mass scenarios and backgrounds in each of the channels and event categories. The number of events is shown along with its uncertainty, including statistical and systematic effects. The yields of the backgroundprocesses are obtained after a background-only fit to the data.]