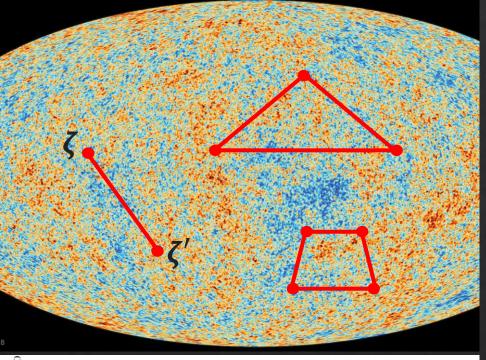


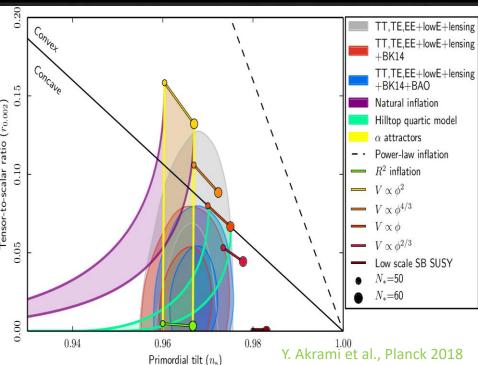
Disentangling mass spectra of multiple fields in cosmological collider

Shuntaro Aoki

(Chung-Ang University)

Based on JHEP 04 (2021) 127 with Masahide Yamaguchi





Inflationary observables : Correlation functions of ζ , γ_{ij}

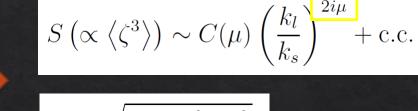
Strong restrictions on inflation models (high energy physics)

- * 2 pt. correlation & tilt
- e.g., Inflaton potential
- * 3 or higher pt. correlations
- e.g., multi field inflation scenario, higher derivative couplings,

Cosmological collider

* Higher pt. functions contain robust information (mass & spin) of heavy $(m_{\sigma} \sim H)$ particles σ

e.g., a scalar σ



oscillation

$$\mu \equiv \sqrt{\left(\frac{m_{\sigma}}{H}\right)^2 - \frac{9}{4}}$$

squeezed limit $(k_l \equiv k_3 \ll k_{1,2} \equiv k_s)$

Cosmological collider

* Higher pt. functions contain robust information (mass & spin) of heavy $(m_{\sigma} \sim H)$ particles σ

e.g., a scalar σ

$$S\left(\propto \left\langle \zeta^3 \right\rangle\right) \sim C(\mu) \left(\frac{k_l}{k_s}\right)^{2i\mu} + \text{c.c.}$$

$$\mu \equiv \sqrt{\left(\frac{m_{\sigma}}{H}\right)^2 - \frac{9}{4}}$$

* Explore very high scale : $m_{\sigma} \sim H \sim 10^{13} (\text{GeV}) \gg \text{energy scale of terrestrial experiment}$

Many works

- * Quasi single field inflation (Chen, Wang, '10)
- * Signature of SUSY (Baumann, Green, '12)
- * General int. by EFT approach (Noumi, Yamaguchi, Yokoyama, '13)
- * Spinning particle (Arkani-Hamed, Maldacena, '15)
- * Standard model particles, Neutrino (Chen, Wang, Xianyu, '16)

• • •

✓ single particle with a definite mass and spin

Q. What about multiple particles case?

✓ single particle with a definite mass and spin

Q. What about multiple particles case?

Natural setup in realistic situation

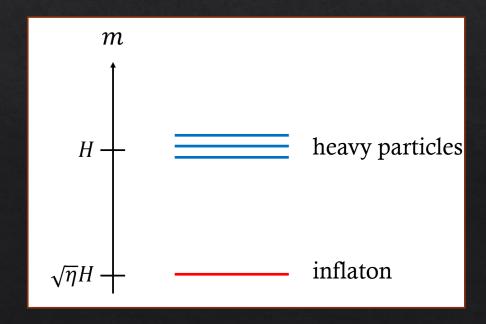
- * SM particles acquire masses~H by loop effects Chen, Wang, Xianyu, '16
- * Supergravity

Hubble induced masses for scalar particles at tree level

Stewart '95

✓ single particle with a definite mass and spin

Q. What about multiple particles case?



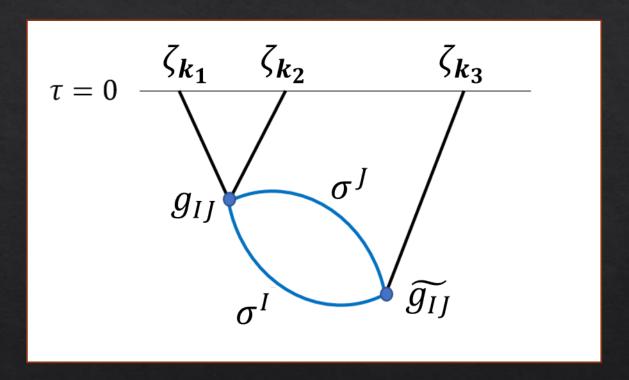
✓ single particle with a definite mass and spin

Q. What about multiple particles case?

More specifically,

- Q. Can we distinguish single and multi cases? (specific signal in multi case?)
- Q. How to disentangle degenerate mass spectra?

Setup



massive scalars : σ^{I} (I = 1, ..., n) g_{IJ} , \widetilde{g}_{IJ} : non-diagonal in general $g_{IJ} = \widetilde{g}_{IJ}$ for simplicity

Result (in squeezed limit)

$$S = \sum_{I,J} S_{IJ}$$

$$I = J$$
 $S_{II} \propto g_{II}^2 C(\mu_I, \mu_I) \left(\frac{k_l}{k_s}\right)^{2i\mu_I} + \text{const.} + \text{c.c.}$ \leftarrow same as single but superposed

$$I \neq J$$
 $S_{IJ} \propto g_{IJ}^2 C(\mu_I, \mu_J) \left(\frac{k_l}{k_s}\right)^{i(\mu_I + \mu_J)} + g_{IJ}^2 C(\mu_I, -\mu_J) \left(\frac{k_l}{k_s}\right)^{i(\mu_I - \mu_J)} + \text{c.c.}$

 \leftarrow mixing (new effect)

Result (in squeezed limit)

$$S = \sum_{I,J} S_{IJ}$$

$$I = J \qquad S_{II} \propto g_{II}^2 C(\mu_I, \mu_I) \left(\frac{k_l}{k_s}\right)^{2i\mu_I} + \text{const.} + \text{c.c.}$$

$$\text{High frequency} \qquad \mu^I \equiv \sqrt{\left(\frac{m^I}{H}\right)^2 - \frac{9}{4}}$$

$$I \neq J \qquad S_{IJ} \propto g_{IJ}^2 C(\mu_I, \mu_J) \left(\frac{k_l}{k_s}\right)^{i(\mu_I + \mu_J)} + g_{IJ}^2 C(\mu_I, -\mu_J) \left(\frac{k_l}{k_s}\right)^{i(\mu_I - \mu_J)} + \text{c.c.}$$

High frequency low frequency (modulation)

- * easily distinguished
- * specific to multi particles

Example: n=2 (two fields)

$$S = S_{11} + S_{22} + S_{12}$$

Case (i): without mixing $(g_{12} = 0)$ Case (ii): with mixing $(g_{12} \neq 0)$

Note:

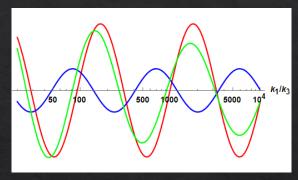
- * Boltzmann suppression factor in $C(\mu^I, \mu^J)$
- * When $\mu^1 \ll \mu^2 \to |S_{22}| \ll |S_{12}| \ll |S_{11}|$

Case (i): Without mixing
$$(g_{12} = 0 \& g_{11} = g_{22})$$

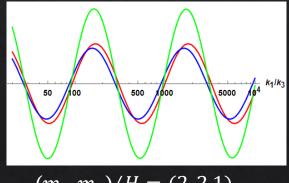
 $S = S_{11} + S_{22}$: just superposition of two independent modes with μ^I

- $\bigcirc m_1 \ll m_2$
- \rightarrow light mode dominates
- $\rightarrow S_{\text{total}} \sim S_{11}$

- $2 m_1 \sim m_2$
- $\rightarrow S_{11} \sim S_{22}$
- $\rightarrow S_{\text{total}} \sim 2 \times S_{11}$



$$(m_1, m_2)/H = (2, 2.5)$$

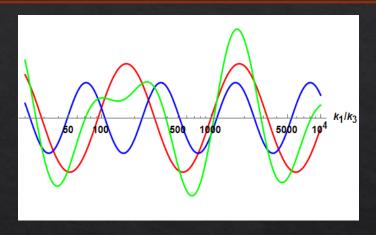


 $\overline{(m_1, m_2)}/H = (2, 2.1)$

Nothing interesting happens though a slight difference appears

Case (i): Without mixing $(g_{12} = 0 \& g_{11} \ll g_{22})$

(3) $m_1 \ll m_2$, but $g_{11} \ll g_{22}$ $\rightarrow g_{22}$ compensates suppression



$$(m_1, m_2)/H = (2, 2.5)$$
 and $g_{11}/g_{22} = 0.1$

- * Nontrivial superposition
 - = proof of multi particles with <u>hierarchical couplings</u>
- * However, such hierarchy seems to be unnatural.

Case (ii): With mixing
$$(g_{11} = g_{22} = g_{12})$$

$$S = S_{11} + S_{22} + S_{12}$$

① when
$$\mu^1 \ll \mu^2 \to |S_{22}| \ll |S_{12}| \ll |S_{11}|$$

 $(S_{\text{total}} \sim S_{11})$

 $2 \mu^1 \sim \mu^2$ degenerate case

Case (ii) : With mixing $(g_{11} = g_{22} = g_{12})$

$$S_{12} \propto g_{12}^2 C(\mu_1, \mu_2) \left(\frac{k_l}{k_s}\right)^{i(\mu_1 + \mu_2)} + g_{12}^2 C(\mu_1, -\mu_2) \left(\frac{k_l}{k_s}\right)^{i(\mu_1 - \mu_2)} + \text{c.c.}$$
High frequency low frequency (modulation)

Case (ii): With mixing $(g_{11} = g_{22} = g_{12})$

$$S_{12} \propto g_{12}^2 C(\mu_1, \mu_2) \left(\frac{k_l}{k_s}\right)^{i(\mu_1 + \mu_2)} + g_{12}^2 C(\mu_1, -\mu_2) \left(\frac{k_l}{k_s}\right)^{i(\mu_1 - \mu_2)} + \text{c.c.}$$
High frequency

(modulation)

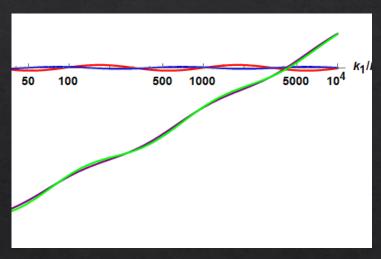
In degenerate limit ($\mu_1 \sim \mu_2 = \mu$)

$$|C(\mu_1, \mu_2)/C(\mu_1, -\mu_2)| \sim 2 \times 10^{-2} \times \mu^{-5/2} \ll 1$$

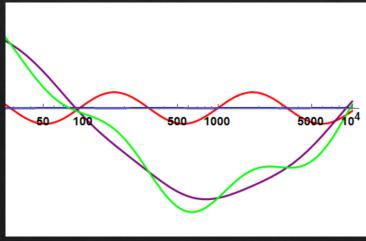
The total signal

~ characterized by the low frequency mode (large wavelength)

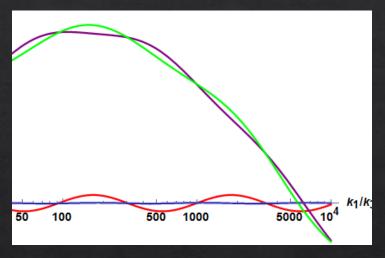
Case (ii): With mixing $(g_{11} = g_{22} = g_{12})$



$$(m_1, m_2)/H = (2, 2.1)$$



 $(m_1, m_2)/H=(2, 2.5)$



 $(m_1, m_2)/H = (2, 2.3)$

- * $S_{\text{total}} \sim S_{12} !!$
- * large wavelength
- * disentangle the spectra

Summary

Multi particles effects on cosmological collider

- ✓ Superposition
 - * Nontrivial waveforms appear when there exists a hierarchy in m^I and g_{IJ} (rare case)

✓ Mixing effect

- * Exists in general
- * S is characterized by wavelength with $1/|\mu^1 \mu^2|$, when $\mu^1 \sim \mu^2$
- * Easily specified → existence of degenerate particles
- * Depends on details of interaction (e.g., does not exist in derivative interactions)

Appendix

Interaction

$$\mathcal{L}_{\text{int}}(\phi, \sigma) = f(\phi, X)g_{IJ}\sigma^{I}\sigma^{J}$$

 $X \equiv (\partial \phi)^2$, neglect it just for simplicity g_{IJ} : real and symmetric const.

$$\mathcal{L}_{\text{int}}^{3} = a^{3} c_{3} \delta \phi g_{IJ} \sigma^{I} \sigma^{J}$$
$$\mathcal{L}_{\text{int}}^{4} = a^{3} c_{4} (\delta \phi)^{2} g_{IJ} \sigma^{I} \sigma^{J}$$

$$c_3 \equiv f_{\phi}$$
$$c_4 \equiv f_{\phi\phi}/2$$

Assume they are slowly varying ~ const.