QCD axion from aligned axions and Diphoton excess

Kwang Sik JEONG
Pusan National University

Overview on the recent diphoton excess at LHC Run 2
CTPU
8 Jan 2016
Diphoton excess around 750 GeV
 - Reported both by ATLAS and CMS with 2-3σ significance
 - Need more data to confirm

How to interpret the LHC diphoton excess
 - New physics beyond the SM?
 - A new resonance?
A possible (and simple) theoretical interpretation

- Axion decaying into two photons: $pp \rightarrow \text{axion} \rightarrow \gamma\gamma$
- Effective axion interactions

$$k_S \frac{g_3^2}{32\pi^2} \frac{a_{\text{hid}}}{f_{\text{hid}}} GG + k \frac{g_1^2}{32\pi^2} \frac{a_{\text{hid}}}{f_{\text{hid}}} BB$$

G and B: $SU(3)_C$ and $U(1)_Y$ field strength

- Production via gluon-gluon fusion = constant $\times (k_S/f_{\text{hid}})^2$
- Branching ratio into photons = $0.001 \times (k/k_S)^2$
How to generate the axion couplings

- New vector-like heavy quarks (and/or leptons)
- Effective axion couplings to SM gauge bosons from heavy quark loops

The excess can be explained if

- \((\text{mass of hidden axion}) \sim 750 \text{ GeV}\)
- \((\text{decay constant of hidden axion}) \sim k \times 100 \text{ GeV}\)

\(\rightarrow (\text{heavy quark mass})\)

- Many papers: Harigaya, Nomura / Mambriri, Arcadi, Djouadi / Backovic, Mariotti, Redigolo / Angelescu, Djouadi, Moreau / Nakai, Sato, Tobioka / Knapen, Melia, Papucci, Zurek / Buttazzo, Greljo, Marzocca / Pilaftsis / Franceschini et al / Chiara, Marzola, Raida / Falkowski, Slone, Volansky / ...
Why such weak-scale axion exists in nature?

- Related with Strong CP Problem?
• Strong CP Problem

Why QCD almost preserves CP differently from EW interactions?

• Natural solution by QCD axion- NG boson of $U(1)_{PQ}$

\[
\frac{\Theta}{32\pi^2} G\tilde{G} \quad \text{where} \quad \Theta = \theta_{\text{bare}} + \arg(\det Y_{\text{quark}})
\]

\[
\frac{1}{32\pi^2} \frac{a_{\text{QCD}}}{f_{\text{QCD}}} G\tilde{G} \rightarrow \Theta = \left\langle \frac{a_{\text{QCD}}}{f_{\text{QCD}}} \right\rangle
\]

• Conventional axion window

\[10^9 \text{ GeV} < f_{\text{QCD}} < 10^{12} \text{ GeV}\]

• QCD axion: dark matter for f_{QCD} in or above the window
Theoretical questions on QCD axion

- Which physics determines the QCD axion scale?
- How to protect $U(1)_{PQ}$ from quantum gravity effects?

Explicit PQ breaking in quantum gravity

- Additional axion potential

$$\Phi^{4+n} \frac{M^n}{M_{Pl}} + \text{h.c.} \rightarrow \Delta V = \left(\text{PQ breaking scale}\right)^{4+n} \cos \left(c_1 \frac{a_{QCD}}{f_{QCD}} + c_2 \right)$$

- For $f_{QCD} \sim \text{(PQ breaking scale)}$, $n \leq 10$ spoil the axion solution
- **QCD axion from aligned axions**
 - \(f_{\text{QCD}} \gg (\text{PQ breaking scale}) \) via Alignment Mechanism

- **Alignment Mechanism (multi axions)**
 - Hidden sector with \(N \) periodic axions: \(\phi_i \equiv \phi_i + 2\pi f_i \)
 - Decay constants \(f_i \sim f = \mathcal{O}(100) \) GeV – 1 TeV
 - Alignment by explicit breaking of \((N-1)\) shift symmetries
 → one axion with effective decay constant = \(e^{\mathcal{O}(1)} \times N \times f \gg f \)
 but without hierarchy among involved model parameters

Choi, Kim, Yun 2014
Choi, Im 2015
Kaplan, Rattazzi 2015
(see also Kim, Nilles, Peloso 2005)
- **QCD axion from aligned axions**
 - Identify the axion having an exponentially enhanced decay constant with the QCD axion
 \[f_{\text{QCD}} = 10^{9-12} \text{ GeV} \] is obtained from \(N \geq 10 \) axions with \(f \sim 1\text{TeV} \)
 - Identify one of \((N-1)\) heavy axions with the hidden axion responsible for the diphoton excess
Model for QCD axion from aligned axions
Simple model

- N axions with

\[\Delta L = -\sum_{i=1}^{N-1} \Lambda_i^4 \cos \left(\frac{\phi_i}{f_i} + n_i \frac{\phi_{i+1}}{f_{i+1}} \right) + k_S \frac{g_3^2}{32\pi^2} \frac{\phi_N}{f_N} G\tilde{G} + k \frac{g_1^2}{32\pi^2} \frac{\phi_N}{f_N} B\tilde{B} \]

alignment potential from loops of heavy PQ quarks (assumed to be SU(2)_L singlet)

- QCD axion composed of N axions

\[f_{QCD} = \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N-1} n_j f_i^2} \approx e^{O(1) \times N} f \]

mass from the QCD instanton effects

From NP dynamics: Choi, Kim, Yun 2014, Choi, Im 2015
From clockwork potential: Kaplan, Rattazzi 2015

Kwang Sik Jeong (PNU)
- **Diphoton excess**

 - Identify one of \((N-1)\) heavy axions with \(a_{\text{hid}}\) around 750 GeV

 \[
 L_{\text{eff}} = k_S \frac{g_3^2}{32\pi^2} \frac{a_{\text{hid}}}{f_{\text{hid}}} G\tilde{G} + k \frac{g_1^2}{32\pi^2} \frac{a_{\text{hid}}}{f_{\text{hid}}} B\tilde{B} + m_{\text{hid}}^2 \left(\frac{a_{\text{hid}}}{f_{\text{hid}}} \right) \cos \left(\frac{a_{\text{hid}}}{f_{\text{hid}}} \right)
 \]

 - Decay into SM gauge bosons

 \[
 \Gamma_{a_{\text{hid}} \rightarrow \gamma\gamma} : \Gamma_{a_{\text{hid}} \rightarrow Z\gamma} : \Gamma_{a_{\text{hid}} \rightarrow ZZ} : \Gamma_{a_{\text{hid}} \rightarrow WW} = 1 : 2 \tan^2 \theta_W : \tan^4 \theta_W : 0 = 1 : 0.6 : 0.08 : 0
 \]

 \(\rightarrow\) mild tension with constraint on \(Z\gamma\) mode at 8TeV run

 \[
 \Gamma_{a_{\text{hid}} \rightarrow gg} = 0.4\text{GeV} \left(\frac{f_{\text{hid}} / k_S}{100\text{GeV}} \right)^2 \quad \text{and} \quad \text{Br}(a_{\text{hid}} \rightarrow \gamma\gamma) \approx \frac{\Gamma_{a_{\text{hid}} \rightarrow \gamma\gamma}}{\Gamma_{a_{\text{hid}} \rightarrow gg}} = 0.001 \left(\frac{k}{k_S} \right)^2
 \]

 \(\rightarrow\) narrow width resonance

 - **Reported diphoton excess: explained for** \(f_{\text{hid}} \sim k \times 100\) GeV
• **Interesting and distinctive features**
 - **Broad width (not significant yet) due to multiple peaks?**
 - Some of heavy axions may have masses close to each other
 - In UV completion, saxion for each axion
 - Coupling to GG and BB, a saxion can also explain the excess
 - Invisible decay of axion/saxion into hidden sector
 - **Multiple axions and saxions**
 - Many signals around or above TeV
Possible UV completion
Clockwork axion

- N complex scalar with

$$L = -\sum_{i=1}^{N} (\frac{m^{2}}{2} |\Phi_{i}|^{2} + \lambda |\Phi_{i}|^{4}) + \sum_{i=1}^{N-1} (\varepsilon \Phi_{i}^{*}\Phi_{i+1}^{3} + \text{h.c.}) + y_{q} \Phi_{N} \sum_{\alpha=1}^{n_{q}} \bar{Q}_{\alpha} Q_{\alpha} + y_{\ell} \Phi_{N} \sum_{\alpha=1}^{n_{l}} \bar{L}_{\alpha} L_{\alpha}$$

- Coupling to gluons: $k_{S} = n_{q}$
- Coupling to photons: $k = 3a^{2}n_{q} + b^{2}n_{l}$

(a, b: hypercharge of Q and L)
- $f_{hid} \sim k \times 100 \text{ GeV}$ is around or above TeV for $k \sim 10$
- High quality of PQ symmetry
 - \textbf{Z}_2 \text{ parity} (remnant of some gauge symmetry): \(\Phi_i \rightarrow -\Phi_i \)
 - Forbids odd power potential terms
 - Most dangerous PQ breaking term
 \[
 \frac{\lambda}{6! M_{Pl}^2} \Phi_1^6 + \text{h.c.} \rightarrow \text{shift of the minimum of QCD axion potential}
 \]
 \[
 \Delta m_{a_{\text{QCD}}} = 4 \times 10^{-5} \text{eV} \sqrt{\text{Re} \lambda} \left(\frac{f_1}{1 \text{TeV}} \right)^2
 \]
 \[
 \bar{\theta} = 10^{-10} \left(\text{Im} \lambda \right) \left(\frac{f_1}{1 \text{TeV}} \right)^5 \left(\frac{f_{\text{QCD}}}{10^{10} \text{GeV}} \right)
 \]
 - Testable CP violation!
 - Small (but not negligible) extra axion mass
Discussion (work in progress)

- Why f is around TeV?
 - Due to saxion cosmology?
 - Connection to supersymmetry breaking scale?
- Effect of explicit PQ breaking in quantum gravity?
 - Testable CP violation in QCD
 - Different cosmology from the conventional axion model
 - Supersymmetric set-up:
 holomorphicity and Z_3 can explain high quality of $U(1)_{\text{PQ}}$
Summary
• The reported diphoton excess may be the signal of BSM physics

• Model with QCD axion from aligned axions
 • Can explain the excess while solving Strong CP Problem and Dark Matter Problem
 • Can lead to non-trivial peak structure
 • May answer the theoretical questions on QCD axion

• Need more data to confirm the excess and validate the model

Thank you!