Possible implications of 750 GeV diphoton excess on BSM

Pyungwon Ko (KIAS)

Based on arXiv:1601.00586 with Yuji Omura (Nogoya) and Chaehyun Yu (Academia Sinica)

Data

ATLAS: $M_X = 750 \text{ GeV}$, $\sigma_{\text{fit}}(pp \to X \to \gamma\gamma) \approx 10 \pm 3 \text{ fb}$; (95% CL), $\Gamma_X \approx 45 \text{ GeV}$

CMS: $M_X = 760 \,\text{GeV}$, $\sigma_{\text{fit}}(pp \to X \to \gamma\gamma) \approx 9 \pm 7 \,\text{fb}$; (95% CL)

What would be this resonance if the excess is confirmed?

Let us consider a scalar case

Composite scenarios: not discussed here

Basic Ingredients

- New vectorlike fermions which are chiral under new U(1)': non-decoupling effects on X->gg, gam gam
- Diphoton at 750 GeV = Higgs boson from U(1)' symbreaking, mostly a SM singlet scalar
- All the masses from dynamical (Higgs) mechanism
- New decay modes to enhance the total decay rate

Type-II 2HDM with U(1)H gauge symmetry

Ko, Omura, Yu: arXiv:1204.4588 [hep-ph]

Table 1: Matter contents in U(1)' model inspired by E_6 GUTs. Here, i denotes the generation index: i = 1, 2, 3.

Fields	SU(3)	SU(2)	$\mathrm{U}(1)_Y$	U(1)'	$Z_2^{ m ex}$
Q^i	3	2	1/6	-1/3	
u_R^i	3	1	2/3	2/3	
d_R^i	3	1	-1/3	-1/3	
L_i	1	2	-1/2	0	+
e_R^i	1	1	-1	0	
n_R^i	1	1	0	1	
H_2	1	2	-1/2	0	
H_1	1	2	-1/2	-1	+
Φ	1	1	0	-1	
D_L^i	3	1	-1/3	2/3	
D_R^i	3	1	-1/3	-1/3	
\widetilde{H}_L^i	1	2	-1/2	0	_
\widetilde{H}_R^i	1	2	-1/2	-1	
N_L^i	1	1	0	-1	

2HDM with U(1) Higgs

- 2HDM: one of the popular extensions of the SM Higgs sector
- Yukawa's and mass matrices cannot be diagonalized simultaneously —> neutral Higgs mediated FCNC prob.
- Natural Flavor Conservation: usually in terms of Z2

$$Z_2: (H_1, H_2) \to (+H_1, -H_2).$$

TABLE I: Assignment of Z_2 parities to the SM fermions and Higgs doublets.

Type	H_1	H_2	U_R	D_R	E_R	N_R	Q_L, L
I	+	_	+	+	+	+	+
II	+	_	+	_	_	+	+
III	+	_	+	+	_	_	+
IV	+		+		+		+

$$V(H_1, H_2) = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 + \frac{\lambda_1}{2} (H_1^{\dagger} H_1)^2 \qquad \Delta V = m_{\Phi}^2 \Phi^{\dagger} \Phi + \frac{\lambda_{\Phi}}{2} (\Phi^{\dagger} \Phi)^2 + (\mu H_1^{\dagger} H_2 \Phi) + \text{h.c.})$$

$$+ \frac{\lambda_2}{2} (H_2^{\dagger} H_2)^2 + \lambda_3 H_1^{\dagger} H_1 H_2^{\dagger} H_2 + \lambda_4 H_1^{\dagger} H_2 H_2^{\dagger} H_1. (4) \qquad + \mu_1 H_1^{\dagger} H_1 \Phi^{\dagger} \Phi + \mu_2 H_2^{\dagger} H_2 \Phi^{\dagger} \Phi, \qquad (5)$$

Soft Z2 breaking is replaced by gauge sym breaking

Type-I extensions

Models are anomaly free without extra chiral fermions

TABLE II: Charge assignments of an anomaly-free $U(1)_H$ in the Type-I 2HDM.

Type	U_R	D_R	Q_L	L	E_R	N_R	H_1
$U(1)_H$ charge	u	d	$\frac{(u+d)}{2}$	$\frac{-3(u+d)}{2}$	-(2u+d)	-(u+2d)	$\frac{(u-d)}{2}$
$h_2 \neq 0$	0	0	0	0	0	0	0
$U(1)_{B-L}$	1/3	1/3	1/3	-1	-1	-1	0
$U(1)_R$	1	-1	0	0	-1	1	1
$U(1)_Y$	2/3	-1/3	1/6	-1/2	-1	0	1/2

See arXiv:1309.7256 for Higgs data analysis, arXiv:1405.2138 for DM (Ko,Omura,Yu)

A type-II extension has all the necessary ingredients

Table 1: Matter contents in U(1)' model inspired by E_6 GUTs. Here, i denotes the generation index: i = 1, 2, 3.

Fields	SU(3)	SU(2)	$\mathrm{U}(1)_Y$	U(1)'	$Z_2^{ m ex}$
Q^i	3	2	1/6	-1/3	
u_R^i	3	1	2/3	2/3	
d_R^i	3	1	-1/3	-1/3	
L_i	1	2	-1/2	0	+
e_R^i	1	1	-1	0	
n_R^i	1	1	0	1	
H_2	1	2	-1/2	0	
H_1	1	2	-1/2	-1	+
Φ	1	1	0	-1	
D_L^i	3	1	-1/3	2/3	
D_R^i	3	1	-1/3	-1/3	
\widetilde{H}_L^i	1	2	-1/2	0	_
\widetilde{H}_R^i	1	2	-1/2	-1	
N_L^i	1	1	0	-1	

Fermions: 27 of E6 (!!!)

Scalar Bosons : 2 Doublets + 1 Singlet

Yukawa couplings

The U(1)'-symmetric Yukawa couplings in our model are given by

$$V_y = y_{ij}^u \overline{u_R^j} H_1^{\dagger} i \sigma_2 Q^i + y_{ij}^d \overline{d_R^j} H_2 Q^i + y_{ij}^e \overline{e_R^j} H_2 L^i + y_{ij}^n \overline{n_R^j} H_1^{\dagger} i \sigma_2 L^i + H.c., \tag{16}$$

where σ_2 is the Pauli matrix. The Yukawa couplings to generate the mass terms for the extra particles are

$$V^{\text{ex}} = y_{ij}^{D} \overline{D_R^j} \Phi D_L^i + y_{ij}^{H} \overline{\widetilde{H}_R^j} \Phi \widetilde{H}_L^i + y_{IJ}^{N} \overline{N_L^c} H_1^{\dagger} i \sigma_2 \widetilde{H}_L^i + y_{IJ}^{\prime N} \overline{\widetilde{H}_R^i} H_2 N_L^j + H.c. . \qquad (17)$$

Complex Scalar DM

One can introduce new Z_2^{ex} -odd scalar field X with the $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_H$ quantum numbers equal to (1, 1, 0; -1). Then the gauge-invariant Lagrangian involving X is given by

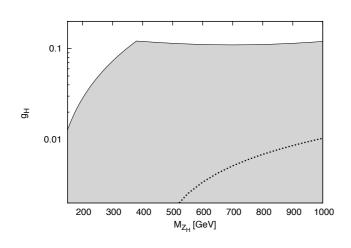
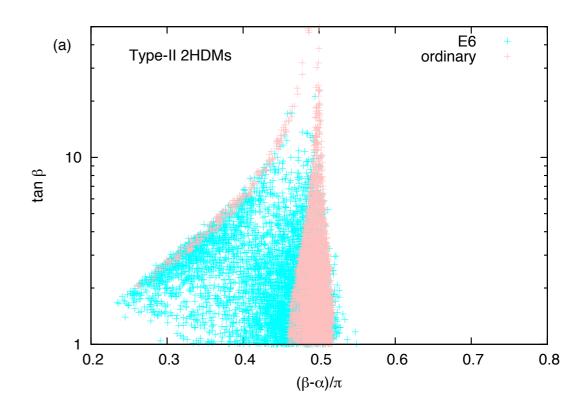
$$\mathcal{L}_{X} = D_{\mu}X^{\dagger}D^{\mu}X - (m_{X0}^{2} + \lambda_{H_{1}X}H_{1}^{\dagger}H_{1} + \lambda_{H_{2}X}H_{2}^{\dagger}H_{2})X^{\dagger}X - \lambda_{X}(X^{\dagger}X)^{2}$$

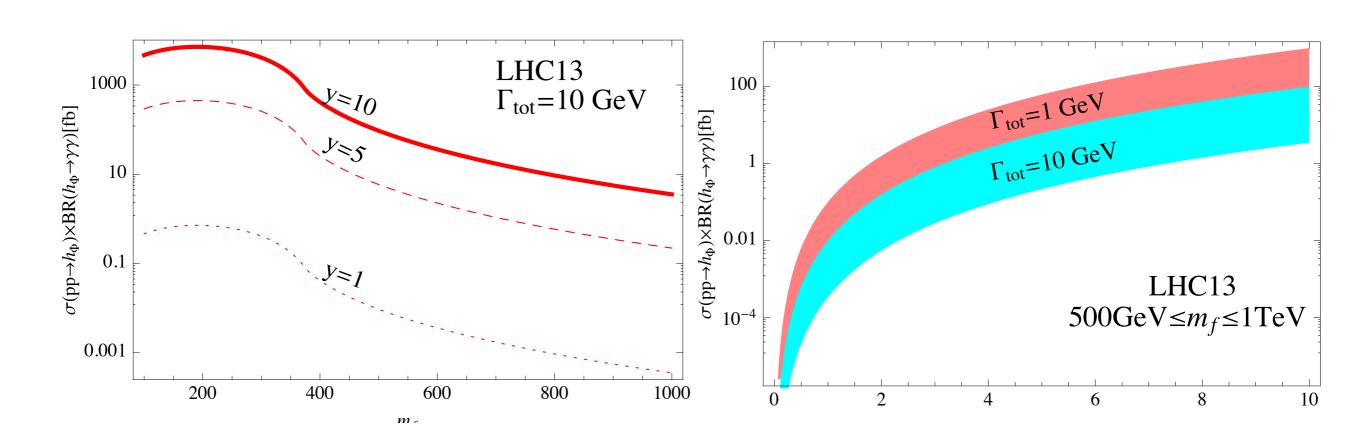
$$- \left(\lambda_{\Phi X}^{"}(\Phi^{\dagger}X)^{2} + H.c.\right) - \lambda_{\Phi X}\Phi^{\dagger}\Phi X^{\dagger}X - \lambda_{\Phi X}^{'}|\Phi^{\dagger}X|^{2}$$

$$- \left(y_{dX}^{D}\overline{d_{R}}D_{L}X + y_{LX}^{\tilde{H}}\overline{L}\widetilde{H}_{R}X^{\dagger} + H.c.\right)$$

$$(18)$$

125 GeV Higgs Data


FIG. 1. M_{Z_H} and g_H in the type-II $2\mathrm{HDM}_{U(1)}$. The dot line is the upper bound on the $U(1)_{\psi}$ gauge boson, and the gray region is allowed for the $U(1)_H (\equiv U(1)_b)$ gauge boson.

Qualtatively different from the ordinary Type-II 2HDM arXiv:1502.00262 (Ko, Omura, Yu)

750 GeV Diphoton Excess

Ko, Omura, Yu, arXiv:1601.00586

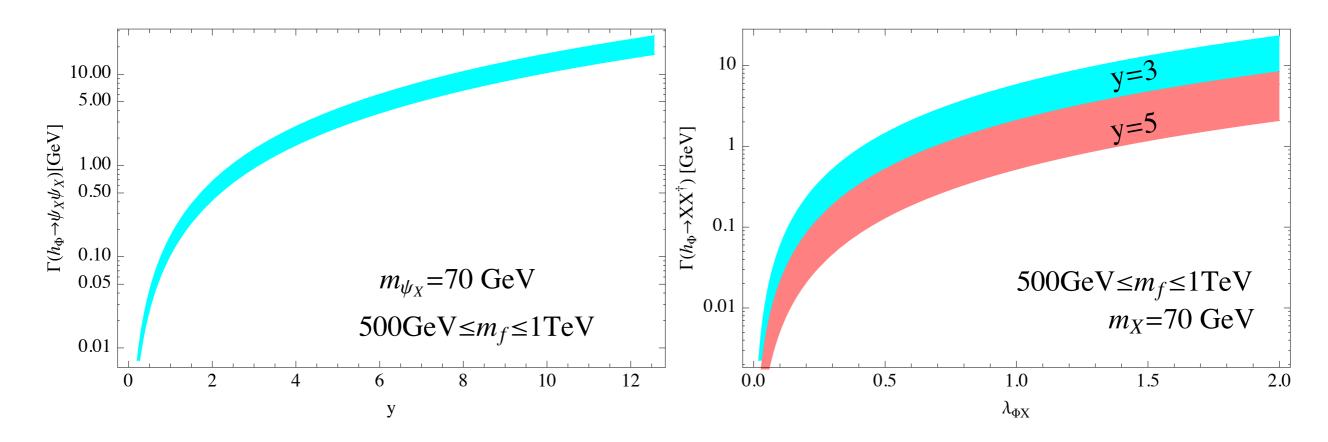


Figure 2: y vs. invisible decay width of h_{Φ} (GeV) in the fermionic DM scenario (left) and scalar DM scenario (right). The vector-like fermion mass is between 500 GeV and 1 TeV on the cyan and pink bands. The dark matter masses are 70 GeV in the both cases.

Constraints

final	σ at $\sqrt{s} = 8 \text{ TeV}$			implied bound on
state f	observed	expected	ref.	$\Gamma(S \to f)/\Gamma(S \to \gamma \gamma)_{\rm obs}$
$\gamma\gamma$	< 1.5 fb	< 1.1 fb	[6, 7]	$< 0.8 \ (r/5)$
$e^{+}e^{-} + \mu^{+}\mu^{-}$	< 1.2 fb	< 1.2 fb	[8]	$< 0.6 \ (r/5)$
$\tau^+\tau^-$	< 12 fb	15 fb	[9]	$< 6 \ (r/5)$
$Z\gamma$	< 4.0 fb	$< 3.4 \; {\rm fb}$	[10]	< 2 (r/5)
ZZ	< 12 fb	< 20 fb	[11]	$< 6 \ (r/5)$
Zh	< 19 fb	< 28 fb	[12]	$< 10 \ (r/5)$
hh	< 39 fb	< 42 fb	[13]	$< 20 \ (r/5)$
W^+W^-	< 40 fb	< 70 fb	[14, 15]	$< 20 \ (r/5)$
$t ar{t}$	$< 550 \; { m fb}$	-	[16]	$< 300 \ (r/5)$
invisible	< 0.8 pb	-	[17]	$< 400 \ (r/5)$
$b\bar{b}$	$\lesssim 1 \mathrm{pb}$	$\lesssim 1 \mathrm{pb}$	[18]	$< 500 \ (r/5)$
jj	$\lesssim 2.5 \text{ pb}$	-	[5]	$< 1300 \ (r/5)$

Rescaled Run I limits

[Franceschini et al, 1512.04933]

- Most can be evaded
- Monojet + missing ET ??

Conclusion

- Type II 2HDM + U(1) Higgs gauge symmetry:
 leptophobic U(1)' derived from E6
- Can accommodate the 750 GeV diphoton excess at qualitative level. Quantitatively ?? (Work in progress)
- A few more different models within the same ingredients are being studied now: Stay tuned
- A new playground for new gauge models (including DM)