Discrete Symmetries, Weak Coupling Conjecture and Scale Separation in AdS Vacua

Ginevra Buratti, José Calderón, Alessandro Mininno, Ángel M. Uranga Instituto de Física Teórica IFT-UAM/CSIC C/ Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid, Spain arXiv: 2003.09740 (hep-th) (2020) Instituto de Teórica Dark World to Swampland "la Caixa" Foundation IAM-CSIC The 5th IBS-IFT-MultiDark Workshop 15th October 2020 Universidad Autónoma de Madrid

A.M. received funding from "Ia Caixa" Foundation (ID) 100010434) with fellowship code LCF/BQ/IN18/11660045 and from the European Union's Horizon 2020 research and innovation programme

under the Marie Skłodowska-Curie grant agreement No. 713673

G. B., J. C., A. Mininno, A. U.

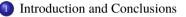
Background

- We have a considerable amount of swampland conjectures constraining effective field theories to be compatible with Quantum Gravity.¹
- In Most of them focus on the properties of continuous gauge symmetries.
- Solution Few of them have obtained constraints for discrete symmetries.²

¹T. D. Brennan *et al.*, arXiv: 1711.00864 (hep-th); E. Palti, arXiv: 1903.06239 (hep-th).

²T. Banks, N. Seiberg, arXiv: 1011.5120 (hep-th); D. Harlow, H. Ooguri, arXiv: 1810.05337 (hep-th) (2018); D. Harlow, H. Ooguri, arXiv: 1810.05338 (hep-th) (2018); N. Craig et al., JHEP 05, 140, arXiv: 1812.08181 (hep-th) (2019).

Contents



- 2 Abelian Discrete Symmetries
- \bigcirc **Z**_k Weak Coupling Conjecture
- **4** \mathbf{Z}_k Refined Strong AdS Distance Conjecture

Contents

0

Introduction and Conclusions

2 Abelian Discrete Symmetries

3 \mathbf{Z}_k Weak Coupling Conjecture

4) \mathbf{Z}_k Refined Strong AdS Distance Conjecture

- We uncovered interesting **quantitative** links among both discrete and continuous gauge symmetries.
- It is an important step in understanding the nature of discrete gauge symmetries in quantum gravity.
- We propose the Z_k Weak Coupling Conjecture (WCC) that we tested in concrete string theory examples.
- We argued that discrete symmetries for 3–**forms** play an important role in the problem of **scale separation**.
- Solution We propose the Z_k Refined Strong AdS Distance Conjecture that we tested in type IIA AdS₄ vacua obtained in CY orientifold compactification with NSNS and RR fluxes.

Conjectures

Conjectures

 Z_k Weak Coupling Conjecture: In a quantum gravity theory with a discrete Z_k gauge symmetry and a U(1) gauge symmetry with coupling g, the gauge coupling scales as $g \sim k^{-\alpha}$ for large k, with α a positive order 1 coefficient.

 \mathbf{Z}_k Refined Strong AdS Distance Conjecture: Consider quantum gravity on an AdS vacuum with a \mathbf{Z}_k discrete symmetry for domain walls (with k large). In the flat-space limit $\Lambda \to 0$ (with $\Lambda k \to 0$ as well) there exists an infinite tower of states at a scale M_{cutoff} , with the relation $\Lambda \sim \frac{M_{\text{cutoff}}^2}{k}.$

Contents

2 Abelian Discrete Symmetries

3 \mathbf{Z}_k Weak Coupling Conjecture

4) \mathbf{Z}_k Refined Strong AdS Distance Conjecture

Higgs model

We consider a continuous U(1) broken by a charge-k scalar VEV

 $\Phi = |\Phi| e^{i\phi}$

- **2** We focus on the physics of ϕ :
 - Action: $|\partial_{\mu}\phi kA_{\mu}|^2$.
 - Gauge invariance: $A_{\mu} \longrightarrow A_{\mu} + \partial_{\mu}\Lambda$ and $\phi \longrightarrow \phi + k\Lambda$.

There is also the dual description in the usual BF coupling theory³

- Defining $H_3 = dB_2 = \star d\phi$ and $F_2 = dA_1$.
- Action: $|H_3|^2 + kB_2 \wedge F_2 + |F_2|^2$.
- Dual action: $|H_3|^2 + |d\tilde{A}_1 kB_2|^2$.
- Gauge invariance: $B_2 \longrightarrow B_2 + d\Lambda_1$ and $\tilde{A}_1 \longrightarrow \tilde{A}_1 + k\Lambda_1$.

³T. Banks, N. Seiberg, arXiv: 1011.5120 (hep-th).

Charged objects

• There are \mathbf{Z}_k charged particles and \mathbf{Z}_k charged strings

 $O_p \sim e^{2\pi i n \int_C A_1}$ and $O_s \sim e^{2\pi i m \int_\Sigma B_2}$

- Integauge invariance means that
 - *k* particles annihilate into instanton.
 - *k* strings annihilate into a monopole line.
- There a no long range fields, but they are detectable because a particle O_p with charge *n* will pick up an Aharonov-Bohm phase when moved around a charge *m* string O_s .
- **9 Remark**: It is not always obvious identify the underlying U(1) from which the Z_k symmetry derive.

Generalization

It is possible to define higher p-forms in n-dimensions⁴

- (p+1)-form eating up a p-form
- Dual (n-p-2)-form eating a dual (n-p-3)-form
- BF coupling given by a (p+1)- and (n-p-2)-forms

In particular we can introduce in 4d, the Dvali-Kaloper-Sorbo axion monodromy⁵

- Action: $|F_4|^2 + k\phi F_4 + |d\phi|^2$
- Dual action: $|F_4|^2 + |dB_2 kC_3|^2$
- Gauge invariance: $C_3 \longrightarrow C_3 + d\Lambda_2$ and $B_2 \longrightarrow B_2 + k\Lambda_2$
- Charged objects: k domain walls annihilate into string.
- Axion monodromy:⁶ $|d\phi|^2 + |\phi + kN|^2$.

⁴M. Berasaluce-Gonzalez et al., JHEP 09, 059, arXiv: 1206.2383 (hep-th) (2012).

⁵G. Dvali, arXiv: hep-th/0507215 (hep-th) (2005); N. Kaloper, L. Sorbo, *Phys. Rev. Lett.* 102, 121301, arXiv: 0811.1989 (hep-th) (2009); F. Marchesano *et al.*, *JHEP* 09, 184, arXiv: 1404.3040 (hep-th) (2014).

⁶E. Silverstein, A. Westphal, Phys. Rev. D78, 106003, arXiv: 0803.3085 (hep-th) (2008).

Contents

Introduction and Conclusions

2 Abelian Discrete Symmetries

\bigcirc **Z**_k Weak Coupling Conjecture

4) \mathbf{Z}_k Refined Strong AdS Distance Conjecture

 \mathbf{Z}_k Weak Coupling Conjecture

Conjecture

00000

\mathbf{Z}_k Weak Coupling Conjecture

In a quantum gravity theory with a discrete \mathbb{Z}_k gauge symmetry and a U(1) gauge symmetry with coupling g, the gauge coupling scales as $g \sim k^{-\alpha}$ for large k, with α a positive order 1 coefficient.

$AdS_5 \times S^5$ orbifolds - generalities

We consider type IIB string theory on $AdS_5 \times S^5/\mathbb{Z}_k$ with *N* units of 5-form flux.

• There are continuous U(1)'s: "mesonic" U(1)'s and the R-symmetry.

2 Discrete gauge symmetry:⁷ Heisenberg group \mathbf{H}_k

AB = CBA with $A^k = 1$, $B^k = 1$ and C is central.

So The charged particles under it are D3-branes wrapped on torsion 3-cycles carrying non-trivial flat gauge bundles. The minimally charged particle is obtained by wrapping the D3-brane on a maximal S^3/Z_k .⁸

⁷S. Gukov et al., arXiv: hep-th/9811048 (hep-th); B. A. Burrington et al., arXiv: hep-th/0602094 (hep-th); E. Garcia-Valdecasas et al., arXiv: 1907.06938 (hep-th).

⁸A. Mikhailov, JHEP 11, 027, arXiv: hep-th/0010206 (hep-th) (2000).

$AdS_5 \times S^5$ orbifolds - Z_k -WCC

Given

$$\begin{array}{l} R^4 = 4\pi (\alpha')^2 g_s Nk \\ M_{P,5}^3 = \frac{M_s^8 R^5}{g_s^2 k} \end{array} \implies M_s \sim M_{P,5} g_s^{1/4} N^{-5/12} k^{-1/12} \text{ and } R \sim M_{P,5}^{-1} N^{2/3} k^{1/3} \end{array}$$

• the mass m of the D3-brane particle in 5d is

$$m = \frac{M_s^4 R^3}{g_s k} \sim M_{P,5} N^{1/3} k^{-1/3} .$$

Prom KK reduction from 10d to 5d

$$g = \frac{g_s k^{1/2}}{M_s^4 R^{7/2}} \sim R^{-1} M_{P,5}^{-3/2} \Longrightarrow g M_{P,5}^{1/2} = N^{-2/3} k^{-1/3}, \quad \alpha = \frac{1}{3}.$$

Source Section 2017 Consistent with the WGC bound for BPS particles

$$m = (gM_{P,5}^{1/2})NM_{P,5}$$

Type IIA on $AdS_4 \times CP^3$ - generalities

- M-theory on $AdS_4 \times S^7/\mathbb{Z}_k$ with N units of 7-form flux \iff Type IIA on $AdS_4 \times \mathbb{CP}^3$ with N units of 6-form flux and k units of 2-form flux.⁹
- There are continuous U(1)'s: "mesonic" U(1)'s and the R-symmetry.
- Oiscrete symmetries:

• Stückelberg couplings of the form $NB_2 \wedge F_2 + kB_2 \wedge F'_2$, with $F'_2 = \int_{\mathbb{CP}^2} F_6$, leave a massless and a massive U(1) linear combinations

$$J = kQ_{D0} - NQ_{D4} \text{ and } Q_{\text{broken}} = NQ_{D0} + kQ_{D4}.$$

- The discrete symmetry is $\mathbf{Z}_{N^2+k^2}$.
- Meaning: *N* D0-branes (each of charge *N*) and *k* D4-branes (each of charge *k*) annihilate to the vacuum.

⁹O. Aharony et al., arXiv: 0806.1218 (hep-th).

Type IIA on $AdS_4 \times CP^3 - Z_k$ -WCC

Given

$$M_s \sim M_{P,4} N^{-1/2} k^{-1/2}$$
 and $R_s \sim M_{P,4}^{-1} N^{3/4} k^{1/4}$

• the mass
$$m_{D0}$$
 and m_{D4} are

$$m_{D0} \sim M_{P,4} N^{-3/4} k^{3/4}$$
 and $m_{D4} \sim M_{P,4} N^{1/4} k^{-1/4}$.

I From CS terms of the branes and charge normalization

$$g^{-2} = \frac{g_{D0}^{-2} \sim N^{3/2} k^{-3/2} \text{ and } g_{D4}^{-2} \sim N^{-1/2} k^{1/2}}{g_{D0}^{-2} + \frac{N^2}{g_{D4}^2} \sim N^{3/2} k^{1/2} \Longrightarrow g \sim N^{-3/4} k^{-1/4}}$$

Source Section 2012 Consistent with the WGC bound for BPS particles

$$m_{D0} = M_{P,4}gk$$
 and $m_{D4} = M_{P,4}gN$.

Type IIA on $AdS_4 \times CP^3$ - Remark

• In ABJM we have two different kind of states:

$$m_{D0} \sim M_{P,4} N^{-3/4} k^{3/4}$$
 and $m_{D4} \sim M_{P,4} N^{1/4} k^{-1/4}$.

Obtained under the $J = kQ_{D0} - NQ_{D4}$ unbroken U(1) respectively with charge k and charge N.

• They are consistent with the WGC bound for BPS particles with respect to $g \sim N^{-3/4} k^{-1/4}$, i.e.

$$m_{D0} = M_{P,4}gk$$
 and $m_{D4} = M_{P,4}gN$.

• The two gauge couplings g_{D4} and g_{D0} must scale in a specific way:

$$g_{D4} \sim Nk^{-1}g_{D0} \,.$$

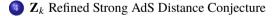
The ratio follows just from **symmetry** and the BPS condition. Without knowing the details of the compactification.

Contents

Introduction and Conclusions

2 Abelian Discrete Symmetries

3 \mathbf{Z}_k Weak Coupling Conjecture



Scale Separation

Scale Separation

AdS Distance Conjecture: Consider a quantum gravity on d-dimensional AdS space with cosmological constant Λ . There exists an infinite tower of states with mass scale *m* which, as $\Lambda \longrightarrow 0$, behaves as $m \sim |\Delta|^{\alpha}.$

where α is a positive order-one number.¹⁰

- Strong ADC: $\alpha = 1/2$ for SUSY theories.
- Many examples satisfy the conjecture, e.g. all the holographic cases satisfy it.
- In type IIA flux vacua there are examples that seem to violate the Strong ADC, e.g. DGKT-vacua.¹¹

Upshot: DGKT-vacua may suggest a refinement of the Strong ADC using Z_k discrete symmetries.

¹⁰D. Lüst et al., arXiv: 1906.05225 (hep-th) (2019).

¹¹O. DeWolfe et al., arXiv: hep-th/0505160 (2005).

DGKT-vacua

DGKT-vacua

• Compactification of type IIA on T^6/Z_3 orientifold with O6-planes and fluxes:

$$F_0 = m$$
, $\int_{\tilde{\Sigma}} F_4 = e_{\tilde{i}}$, $\int_{\alpha_a} H_3 = p_a$.

- **2** F_0 and H_3 contribute to the tadpole, bounded and order 1.
- The F_4 flux is unbounded.
- In DGKT, $e_{\tilde{i}} \sim \overline{e}_{\tilde{i}}k$ with large k and we have the following scalings:

$$v_i, b_i \sim k^{1/2}\,, \quad e^{-D}, \xi \sim k^{3/2}\,, \quad M_s^2 \sim k^{-3} M_{P,4}^2$$

Scale separation:

$$\Lambda \sim k^{-9/2}$$
, $m_{KK} \sim k^{-7/4} M_{P,4} \Longrightarrow m_{KK}^2 \sim \Lambda^{7/9}$

Let us rewrite the expression as

$$\Lambda \sim k^{-9/2}, \quad m_{KK} \sim k^{-7/4} \Longrightarrow \Lambda = \frac{m_{KK}^2}{k}.$$

Solution From the 10d CS $F_4 \wedge F_4 \wedge B_2$ we obtain the 4d coupling

$$k\left(\sum_{i} \bar{e}_{\bar{i}}\phi_{i}\right)F_{4} = k\phi'F_{4}.$$

Solution From the 10d CS $mB_{2} \wedge F_{8}$ defining $F_{4,\bar{i}} = \int_{\bar{\Sigma}_{i}} F_{8}$, we obtain $m\sum_{i} \phi_{i}F_{4,\bar{i}} + k\phi'F_{4}$
Take $Q' = \sum_{i} \bar{e}_{\bar{i}}Q_{i} \implies m\left(\sum_{i} \bar{e}_{\bar{i}}\phi_{i}\right)F_{4}' = m\phi'F_{4}'$

We finally obtain

$$\phi'\left(mF_4'+kF_4\right)\ .$$

• As in ABJM we have:

• Massless 3-form symmetry:

$$Q_{\mathrm{U}(1)} = k \sum_{i} \bar{e}_{\tilde{i}} Q_{\tilde{i}} - mQ \,.$$

• Approximate **Z**_k symmetry:

$$Q_{\perp} = m \sum_{i} \bar{e}_{\tilde{i}} Q_{\tilde{i}} + kQ.$$

- We can look at the gauge coupling of the domain walls charged under the massless U(1), i.e. D2-branes and D6-branes on combination of 4-cycles.
- We compute the gauge coupling:

$$\frac{1}{g^2} = k^2 \sum_{i} \left(\overline{e}_{\tilde{i}}\right)^2 \frac{1}{g_{D6,\tilde{i}}^2} + m^2 \frac{1}{g_{D2}^2}$$

If you compute the gauge couplings of the domain walls in general toroidal compactifications¹². Using just the relation derived between g_{D6} and g_{D2}, we can derive:

$$v_i \sim k^{1/2}$$
, $\overline{\mathcal{V}} \sim k^{3/2}$.

Using **flux monodromy**:

$$N + k\overline{e}_{\tilde{i}}\phi_i + m\kappa_{ijk}\phi_i\phi_j\phi_k + p_a\xi_a$$

you can obtain the scaling of

$$\phi_i \sim k^{1/2}$$
 and $e^{-D}, \xi \sim k^{3/2}$

Using this information we can compute

$$m_{KK} \sim k^{-7/4}$$

¹²A. Font et al., JHEP 08, 044, arXiv: 1904.05379 (hep-th) (2019).

- We use the tensions of the domain walls to compute the vacuum energy.
- ^(a) Using D4-branes domain walls, that are responsible for changing the value of $k:^{12}$ $\frac{1}{g_{4,i}^2} \sim k^{13/2} \Longrightarrow T_{D4} \sim k^{-13/4} \Longrightarrow e^{\mathcal{K}/2} W \sim k^{-9/4} \Longrightarrow \Lambda \sim k^{-9/2}.$
- We have recovered the scale separation:

$$\Lambda = \frac{m_{KK}^2}{k}$$

¹²L. Randall, R. Sundrum, arXiv: hep-ph/9905221 (hep-ph); L. Randall, R. Sundrum, arXiv: hep-th/9906064 (hep-th).

Conjecture

\mathbf{Z}_k Refined Strong AdS Distance Conjecture

Consider quantum gravity on an AdS vacuum with a \mathbb{Z}_k discrete symmetry for domain walls (with *k* large). In the flat-space limit $\Lambda \to 0$ (with $\Lambda k \to 0$ as well) there exists an infinite tower of states at a scale M_{cutoff} , with the relation

$$\Lambda \sim \frac{M_{\rm cutoff}^2}{k}$$

٠

Conjectures

Conjectures

 Z_k Weak Coupling Conjecture: In a quantum gravity theory with a discrete Z_k gauge symmetry and a U(1) gauge symmetry with coupling g, the gauge coupling scales as $g \sim k^{-\alpha}$ for large k, with α a positive order 1 coefficient.

 \mathbf{Z}_k Refined Strong AdS Distance Conjecture: Consider quantum gravity on an AdS vacuum with a \mathbf{Z}_k discrete symmetry for domain walls (with k large). In the flat-space limit $\Lambda \to 0$ (with $\Lambda k \to 0$ as well) there exists an infinite tower of states at a scale M_{cutoff} , with the relation $\Lambda \sim \frac{M_{\text{cutoff}}^2}{k}.$

Thank you!