Gauginos on D7-branes: from 10d to 4d

Pablo Soler - IBS-CTPU

with Y. Hamada, A. Hebecker & G. Shiu -1812.06097, 1902.01410 + (to appear)

Motivation

- Non-perturbative effects (e.g. gaugino condensation) are crucial ingredients in string phenomenology, in particular for moduli stabilization and construction of AdS/dS vacua (e.g. KKLT and LVS)
- Gaugino condensation is an IR effect which is typically understood in the 4d EFT
 - Its description in the UV 10d theory is somewhat obscure.
- However, the 10d perspective can provide insights difficult to observe directly on the 4d EFT: e.g. no-go theorems a la Maldacena-Nunez.
- Our goal is to understand these effects from the 10d perspective (setup: type IIB orientifold compactifications with D7-branes).

Motivation

Consider a minimal KKLT setup: D7-brane stacks and 3-form fluxes on a CY orientifold with Kahler modulus T

• N=1 SYM with
$$K=-3\log(T+\bar{T})+\ldots$$
 and $W_0=\int G\wedge\Omega$

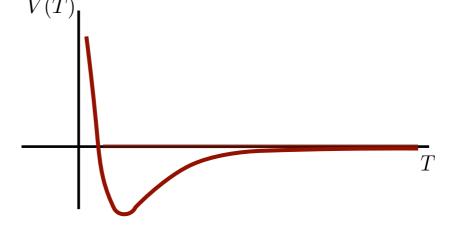
$$\mathcal{L} = -\operatorname{Re}\left(T\right)\left(\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + i\bar{\lambda}\bar{\sigma}^{\mu}\partial_{\mu}\lambda\right) - \lambda\lambda\,e^{K/2}K^{T\bar{T}}\,D_{T}\overline{W_{0}} + \text{c.c.} - \frac{1}{16}\lambda\lambda\,\overline{\lambda\lambda}\,K^{T\bar{T}} + \dots$$

• Gaugino condensation occurs in the **4d EFT**: $\langle \lambda \lambda \rangle \sim e^{K/2} \, e^{-aT}$

$$\mathcal{L}(\langle \lambda \lambda \rangle) \sim -e^K K^{T\bar{T}} \left(K_T \overline{W_0} e^{-aT} + \text{c.c.} - \frac{1}{16} e^{-2aT} \right) \sim \frac{1}{T^2} W_0 e^{-aT} - \frac{a}{T} e^{-2aT}$$

These are the leading terms (in 1/T) of the F-term potential with $W=W_0+Ae^{-a\,T}$

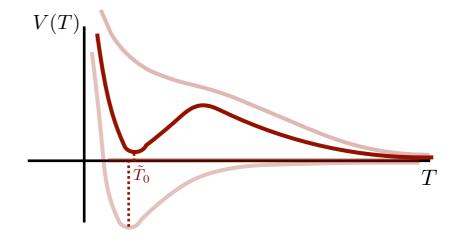
$$V(T) = -e^K \left(K^{T\bar{T}} D_T W D_{\bar{T}} \overline{W} - 3W \overline{W} \right)$$



Motivation

 Upon inclusion of a mild SUSY-breaking ingredient (e.g. anti D3-branes down a warped throat), this may be lifted to a dS vacuum

$$V(T) = -e^K \left(K^{T\bar{T}} D_T W D_{\bar{T}} \overline{W} - 3W \overline{W} \right) + \frac{\mu_3}{T^2}$$



- Uplift to dS require a fine balance between W_0 and the warped anti-D3 tension μ_3
- Here I will only discuss how, under the assumptions made, the KKLT vacua can be described directly in the 10d theory.
- Studying whether the underlying assumptions are valid and an uplift to dS is possible or not is the subject of the swampland program
 - The 10d perspective should help in this task

Outline

- Localized gaugino interactions in 10d
 - Gauginos on co-dimension one branes (Horava-Witten)
 - Gauginos on co-dimension two (D7-) branes
- KKLT vacua from 10d
 - The AdS KKLT vacuum
 - Anti-branes and dS uplift
- Conclusions

Localized gaugino interactions

Hamada, Hebecker, Shiu, PS '18 + (to appear)

Gauginos on co-dimension one

 Consider a 5d toy-model on M₄xS¹ with localized 3-branes and one-form flux G₁=dφ

We typically know the action up to quadratic gaugino order

$$S \sim \int \left(G_1 \wedge *G_1 - 2 G_1 \wedge *\lambda\lambda \, \delta(y) dy \right)$$

Solving for G₁ one obtains a **divergent** action (quartic in gauginos)

$$G_1 = \lambda \lambda \, \delta(y) \, dy + G_1^{(0)} \implies S \sim \langle \lambda \lambda \rangle^2 \delta(0)$$

Resolution (required by SUSY): complete to perfect-square form

$$S \sim \int \left(G_1 - \lambda \lambda \, \delta(y) dy \right) \wedge * \left(G_1 - \lambda \lambda \, \delta(y) dy \right)$$

$$\implies G_1 = \lambda \lambda \, \delta(y) dy + G_1^{(0)} \implies S \sim \int G_1^{(0)} \wedge * G_1^{(0)}$$

Perfectly finite G⁽⁰⁾ subject to flux quantization

Gauginos on co-dimension two

The case of D7-branes is similar, but much more subtle: the
 quadratic action is
 Camara, Ibanez, Uranga '04
 c.f. Grana, Kovensky, Retolaza '20

$$S_{\lambda\lambda} \sim \int \left(G_3 \wedge * \overline{G_3} - G_3 \wedge \overline{\lambda\lambda} \delta_{D7} * \Omega_3 + \text{c.c.} \right)$$

Again, solving for G3 leads to a divergence: $S\sim |\lambda\lambda|^2\delta(0)$

Completing squares looks good but there is a problem:

$$S_{|\lambda\lambda|^2} \stackrel{?}{\longrightarrow} \int \left|G_3 - \lambda\lambda\,\delta_{D7}\,\overline{\Omega}_3\right|^2$$
 Solving for $G_3 \stackrel{?}{=} \lambda\lambda\,\delta_{D7} * \overline{\Omega}_3 \implies dG_3 \neq 0$ Bianchi identity

The action is still divergent. We need another way to regularize the quartic action

Gauginos on co-dimension two

Our original proposal: project the source onto the subspace of closed forms (drop its co-exact component), with projector \mathcal{P}

$$S \sim \int \left| G_3 - \lambda \lambda \, \delta_{D7} \, \overline{\Omega}_3 \right|^2 \longrightarrow \int \left| G_3 - \mathcal{P} \left(\lambda \lambda \, \delta_{D7} \, \overline{\Omega}_3 \right) \right|^2$$

• G₃ equations and solution unmodified

- Hamada, Hebecker, Shiu, PS '18
- Upon integrating out G₃: $S \sim \int \left|G_3^{(0)} \frac{\lambda\lambda}{A_\perp}\overline{\Omega}_3\right|^2$

Reproduces parametrically 4d SUGRA gaugino terms (including GVW superpotential).

BUT!! The projector \mathcal{P} is a **non-local** operator: $\Delta S \stackrel{?}{\sim} \frac{1}{\mathbf{A}_{\perp}} \int_{\mathcal{D}_{2}} |\lambda \lambda|^{2}$

$$\Delta S \stackrel{?}{\sim} \frac{1}{\mathbf{A}_{\perp}} \int_{D7} |\lambda \lambda|^2$$

Same problem afflicts a subsequent proposal by Kachru, Kim, McAllister, Zimet '19 based on T-duality (D7 branes are "smeared")

A finite, local gaugino action

• Take the quadratic action including the Chern-Simons contribution and an arbitrary number of D7-brane stacks $(*G_{\pm} = \pm iG_{\pm})$

$$\mathcal{L}_{\lambda\lambda} = -\frac{1}{2}G_3 \wedge *\overline{G_3} + \left(\sum_{i \in D7} G_3 \wedge \overline{\lambda\lambda_i} \, \delta_i * \Omega_3 + \text{c.c.}\right) - \frac{i}{2}G_3 \wedge \overline{G_3}$$
$$= -\left|G_+ - \sum_{i \in D7} \lambda\lambda_i \delta_i \overline{\Omega_3}\right|^2 + |G_-^{(0)}|^2 - |G_+^{(0)}|^2 + \sum_{ij} \delta_i \delta_j \, \lambda\lambda_i \overline{\lambda\lambda_j} |\Omega|^2$$

 Only the last term diverges (for i=j), but it also contains crucial finite contributions from (self) intersections of D7-stacks

$$\int \delta_i \delta_j \,\Omega * \overline{\Omega} = \int \delta_i \delta_j \,J \wedge J \wedge J = 3! \int \delta_i^{(2)} \wedge \delta_j^{(2)} \wedge J = 3! d_i^{\alpha} d_j^{\beta} \mathcal{K}_{\alpha\beta}$$

• Given a basis $\{\omega_{\alpha}\}$ of $H_{+}^{(1,1)}$, we expand $\delta_{i}^{(2)} = \sum_{\alpha} d_{i}^{\alpha} \omega_{\alpha}$

•
$$\mathcal{K}_{\alpha\beta}$$
 are CY intersection numbers: $\mathcal{K}_{\alpha\beta} = \int \omega_{\alpha} \wedge \omega_{\beta} \wedge J$

A finite, local gaugino action

With this insight, we can write the local finite action:

$$S = -\int_{10d} \left| G_{+} - \sum_{i} \lambda \lambda_{i} \delta_{i} \overline{\Omega}_{3} \right|^{2} + \int_{10d} |G_{-}^{(0)}|^{2} - \int_{10d} |G_{+}^{(0)}|^{2}$$

$$+ 3! \sum_{i \neq j} \underbrace{\int_{10d} \lambda \lambda_{i} \overline{\lambda \lambda}_{j} \, \delta_{i}^{(2)} \wedge \delta_{j}^{(2)} \wedge J}_{D7_{i} \text{ intersection}} + 3! \sum_{i} \underbrace{\int_{D7_{i}} |\lambda \lambda_{i}|^{2} \, c_{1}(N_{i}) \wedge J}_{D7_{i} \text{ self-intersection}}$$

- Upon solving for G, and dimensionally reducing, this can be matched in detail with the 4d gaugino SUGRA action
- This is quite non-trivial: intersection terms play an important role

KKLT vacua from 10d

Hamada, Hebecker, Shiu, PS '19

KKLT from 10d perspective

- Gaugino condensation (an IR effect) is treated by giving a vev to gaugino bilinears <λλ>~e^{-aT} in the 10d action
 - This approach is difficult to motivate microscopically but has been successfully used in several setups.

 Koerber, Martucci '07, '08; Baumann et al. '10; Heidenreich et al. '10; Dymarsky, Martucci '10;...
 - These long-distance effects induce an effective non-locality in the 10d action (different from 'smearing' previously discussed).

Hamada et al. '19; Gautason et al. '19

- Notice: backreaction of the metric to gaugino condensates requires going from CY into Generalized Complex Geometry (GCG)
 - We have not taken this backreaction into account (yet), but still reproduce the relevant features of KKLT vacua.

KKLT from 10d perspective

Consider Einstein equation in 10d and its trace over 4d indices:

$$\mathcal{R}_{MN} \, = \, T_{MN} \, - \, \frac{1}{8} \, g_{MN} \, T_L^L \, \Longrightarrow \, R_\mu^\mu = \frac{1}{2} \, \left(T_\mu^\mu - T_m^m \right) \equiv -2\Delta$$

• For a warped ansatz: $ds_{10}^2 = \Omega^2(y) \; (\eta_{\mu\nu} \, dx^\mu \, dx^\nu + g_{mn} \, dy^m \, dy^n)$

$$\mathcal{V}_6 \,\mathcal{R}(\eta) = \int d^6 y \,\sqrt{g} \,\,\Omega^8(y) \,\mathcal{R}(\eta) = -2 \int d^6 y \,\sqrt{g} \,\,\Omega^{10}(y) \Delta$$

Useful for no-go theorems: positivity arguments on Δ constrain compactifications with $\mathcal{R}(\eta) \geq 0$.

Maldacena, Nuñez '00; ...

• Starting point: GKP flux compactification $\Delta = \mathcal{R}(\eta) = 0$

KKLT from 10d revisited

10d KKLT AdS (single Kahler modulus T):

$$\mathcal{V}_6 \mathcal{R}(\eta) = -2 \int d^6 y \sqrt{g} \ \Omega^{10}(y) \Delta^{\langle \lambda \lambda \rangle}$$

Where
$$\Delta^{\langle\lambda\lambda\rangle} = \frac{1}{4} \left(-T_{\mu}^{\mu} + T_{m}^{m} \right)_{\langle\lambda\lambda\rangle} = \frac{1}{2} \left(\mathcal{L}_{\langle\lambda\lambda\rangle} - g^{mn} \frac{\delta \mathcal{L}_{\langle\lambda\lambda\rangle}}{\delta g^{mn}} \right)$$

Using our proposed 10d action and <λλ>~e-aT we obtain

$$\mathcal{V}_6 \mathcal{R}_{\eta} \sim -a T^2 \left(T e^{-2aT} - W_0 e^{-aT} \right) + \frac{1}{2} T^2 e^{-2aT} \stackrel{\text{on-shell}}{\longrightarrow} T_0^3 V_{\text{KKLT}}^{\langle \lambda \lambda \rangle}(T_0) < 0$$

On-shell, same as KKLT AdS result (up to small corrections):

KKLT from 10d revisited

10d KKLT dS (single Kahler modulus T):

$$\mathcal{V}_6\,\mathcal{R}(\eta) = -2\int d^6y\,\sqrt{g}\,\,\Omega^{10}(y)\left(\Delta^{\langle\lambda\lambda\rangle} + \Delta^{\overline{D3}}\right)$$
 Where
$$\Delta^{\overline{D3}} = \frac{1}{4}\left(-T_\mu^\mu + T_m^m\right)_{\overline{D3}} = \frac{1}{2}\left(\mathcal{L}_{\overline{D3}} - g^{mn}\frac{\delta\mathcal{L}_{\overline{D3}}}{\delta g^{mn}}\right)$$

• Down a highly warped throat, $0<\Omega^8(y_0)\Delta^{D3}<<1$

 $\Delta^{\overline{D3}}$ contribution is negligible. Uplift???

$$\mathcal{V}_6 \mathcal{R}_{\eta} \sim -a T^2 \left(T e^{-2aT} - W_0 e^{-aT} \right) + \frac{1}{2} T^2 e^{-2aT} \stackrel{\text{on-shell}}{\longrightarrow} \tilde{T}_0^3 V_{\text{KKLT}}^{\langle \lambda \lambda \rangle + \overline{D3}} (\tilde{T}_0) > 0$$

Small shift in minimum $T_0 \to \tilde{T}_0$ induced by $\overline{\text{D3}}$ backreacts on $\Delta^{<\lambda\lambda>}$ and generates **KKLT uplift**.

Conclusions

- The 10d perspective is crucial in understanding swampland constraints and no-go theorems in string compactifications
- We proposed a *local* λ⁴-action on D7-branes
 Avoid previous divergences and reproduce 4d SUGRA results

c.f. Kallosh '19; Kachru et al. '19; Graña et al. '20

Checked on-shell equivalence of 4d and 10d approaches to KKLT

4d Einstein + Kahler moduli e.o.m. ← 10d Einstein eq.

```
c.f. Giddings, Maharana '05;...
Moritz et al. '17, '18, '19; Gautason et al. '18; '19; Kachru et al. '19; Bena et al. '19
```

 We have not analysed the validity of assumptions underlying KKLT. Much recent work within the swampland program