Quantum Corrections for 4d N=1 Emergent Strings and the Weak Gravity Conjecture

Max Wiesner Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid

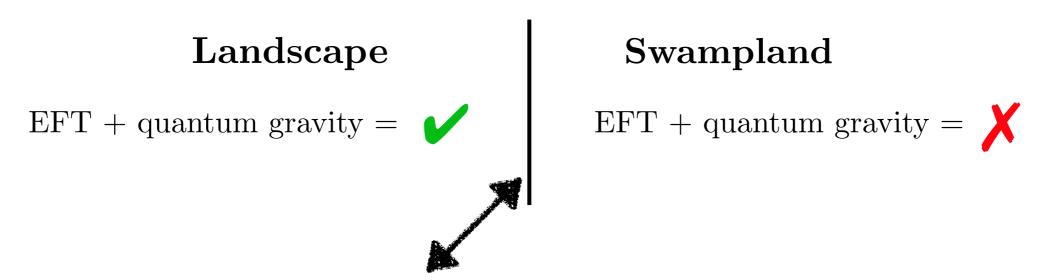
based on:

D. Kläwer, S.-J. Lee, T. Weigand, MW [2010.xxxxx]

5th IBS-IFT-MultiDark Workshop October 13, 2020

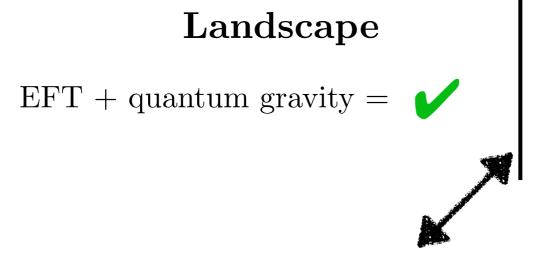
Funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 713673

Swampland Program: [Vafa '05]



Consistency conditions imposed by Quantum Gravity

Swampland Program: [Vafa '05]



Swampland

EFT + quantum gravity = X

Consistency conditions imposed by Quantum Gravity

Swampland Conjectures:

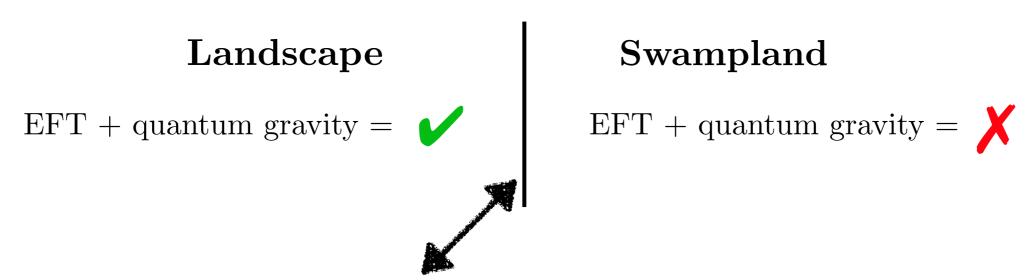
- No Global Symmtery

 [Banks, Dixon '88]
- Completeness Hypothesis
 [Polchinski '03]
- Weak Gravity Conjecture

 [Arkani-Hamed, Motl, Nicolis, Vafa '06]
- Swampland Distance Conjecture [Ooguri, Vafa '06]
- dS/AdS conjecture [Palti, Shiu, Ooguri, Vafa'18, Lüst, Palti, Vafa'19]
- . . .

[review: Palti '19]

Swampland Program: [Vafa '05]



Consistency conditions imposed by Quantum Gravity

Swampland Conjectures:

• No Global Symmtery

[Banks, Dixon '88]

• Completeness Hypothesis

[Polchinski '03]

• Weak Gravity Conjecture

[Arkani-Hamed, Motl, Nicolis, Vafa '06]

Swampland Distance Conjecture

[Ooguri, Vafa '06]

• dS/AdS conjecture

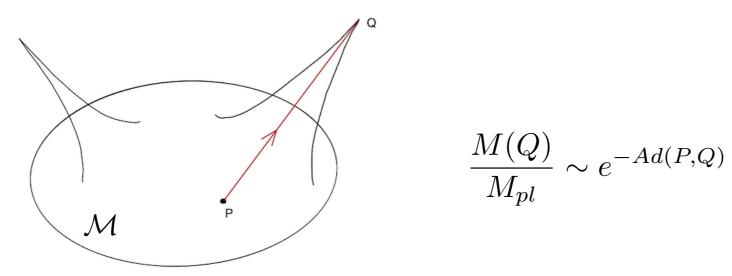
[Palti, Shiu, Ooguri, Vafa'18, Lüst, Palti, Vafa'19]

• . . .

[review: Palti '19]

Swampland Distance Conjecture [Ooguri, Vafa '06]

At infinite distance in moduli space an infinite tower of states becomes exponentially massless in Planck units.



Weak Gravity Conjecture [Arkani-Hamed, Motl, Nicolis, Vafa '06]

Decay of extremal black holes \Rightarrow Self-repulsive state:

$$|F_{\rm grav.}| \sim \frac{m^2}{M_P^2} \lesssim (gq)^2 \sim |F_{\rm gauge}|.$$

Test SDC and WGC in 4D $\mathcal{N} = 1$.

- Setup: F-theory on CY 4-folds.
- Look at **infinite distance** limits in *classical* Kähler moduli space: " $t \sim \lambda \to \infty$ " [cf. Lee, Lerche, Weigand '19]
- if \exists gauge theory with $g \sim e^{-a\lambda}$: [Heidenreich, Reece, Rudelius '15-'18; Kläwer, Palti '16] \Rightarrow WGC requires states with $m_n \lesssim q_n e^{-b\lambda} M_{pl}$

Test SDC and WGC in 4D $\mathcal{N} = 1$.

- Setup: F-theory on CY 4-folds.
- Look at **infinite distance** limits in *classical* Kähler moduli space: " $t \sim \lambda \rightarrow \infty$ " [cf. Lee, Lerche, Weigand '19]
- if \exists gauge theory with $g \sim e^{-a\lambda}$: [Heidenreich, Reece, Rudelius '15-'18; Kläwer, Palti '16] \Rightarrow WGC requires states with $m_n \lesssim q_n e^{-b\lambda} M_{pl}$
- What are these states?

KK-tower

$$m_n^2 \sim n^2 M_{KK}^2$$

(partial) decompactification!

String states

$$m_n^2 \sim n M_S^2$$

not necessarily decompactification:

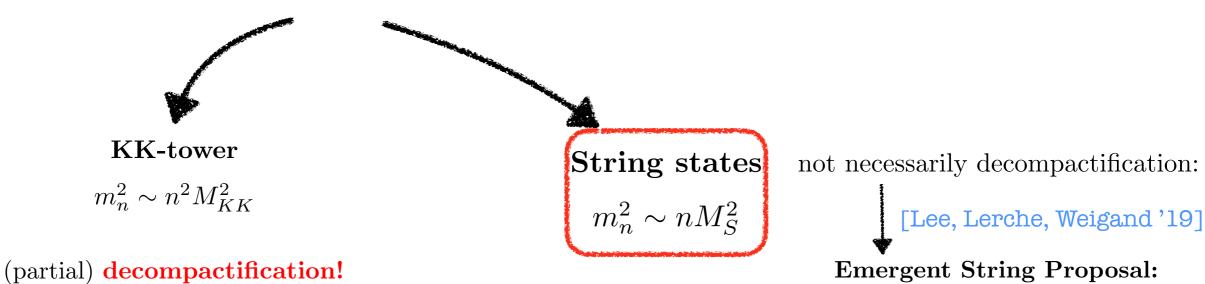
[Lee, Lerche, Weigand '19]

Emergent String Proposal:

Theory reduces to weakly coupled ST and massless states are excitations of weakly-coupled critical string.

Test SDC and WGC in 4D $\mathcal{N} = 1$.

- Setup: F-theory on CY 4-folds.
- Look at **infinite distance** limits in *classical* Kähler moduli space: " $t \sim \lambda \to \infty$ " [cf. Lee, Lerche, Weigand '19]
- if \exists gauge theory with $g \sim e^{-a\lambda}$: [Heidenreich, Reece, Rudelius '15-'18; Kläwer, Palti '16] \Rightarrow WGC requires states with $m_n \lesssim q_n e^{-b\lambda} M_{pl}$
- What are these states?



Theory reduces to weakly coupled ST and massless states are excitations of weakly-coupled critical string.

Uniqueness: For equi-dimensional infinite distance points the emergent tensionless and weakly-coupled string is *unique*.

Quantum Consistency: Leading perturbative corrections at $\mathcal{O}(\alpha'^2)$ ensure consistency of emergent string limits.

WGC: To leading order the WGC is *fulfilled* and *constraints* on the form of α' corrections can be deduced from heterotic/F-theory duality.

Setup

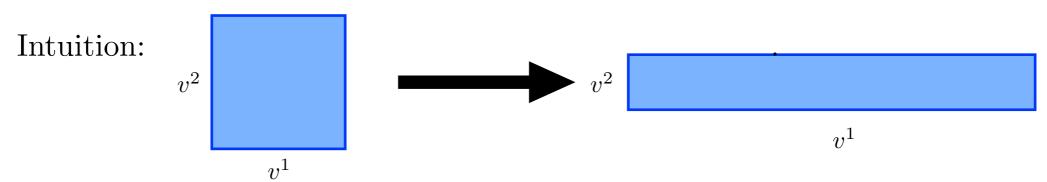
- F-theory on elliptic CY 4-fold: $E_{\tau} \to X_4 \to B_3$.
- Kähler moduli space spanned by $h^{1,1}(B_3)$ moduli v^{α} .

$$J = v^{\alpha} J_{\alpha}$$
 \Rightarrow $\mathcal{V}_{B_3} = \frac{1}{6} \int_{B_3} J^3 = \frac{1}{6} k_{\alpha\beta\gamma} v^{\alpha} v^{\beta} v^{\gamma}$.

• To avoid decompactification limit, cannot just take

$$v^{\alpha} \sim \mu \to \infty \qquad \forall \alpha .$$

• Have to take a non-trivial limit:

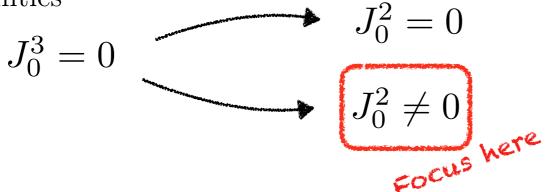


[Lee, Lerche, Weigand '19]

• possible if $J_0^3 = 0$ for some generator J_0 .

Setup

Two possibilities



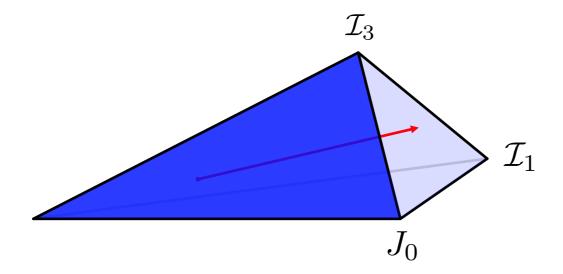
J-class B

J-class A

$$J = \lambda J_0 + \sum_{\mu \in \mathcal{I}_1} \frac{1}{\lambda^2} J_\mu + \sum_{r \in \mathcal{I}_3} v^r J_r ,$$

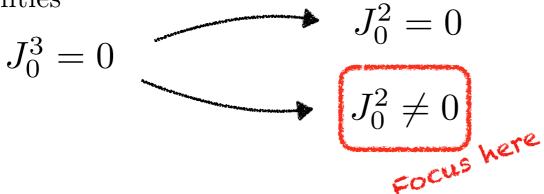
$$\mathcal{V}_{B_3} = \text{const. for } \lambda \to \infty$$

$$J_0^2.J_\mu \neq 0$$
 $\forall \mu \in \mathcal{I}_1$,
 $J_0^2.J_r = J_0.J_s.J_r = 0$ $\forall r, s \in \mathcal{I}_3$



Setup

Two possibilities



J-class B

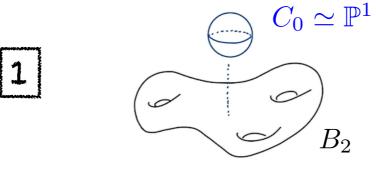
J-class A

$$J = \lambda J_0 + \sum_{\mu \in \mathcal{I}_1} \frac{1}{\lambda^2} J_\mu + \sum_{r \in \mathcal{I}_3} v^r J_r,$$

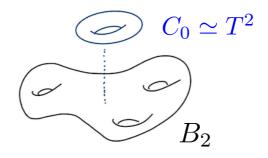
$$\mathcal{V}_{B_3} = \text{const. for } \lambda \to \infty$$

$$J_0^2.J_\mu \neq 0$$
 $\forall \mu \in \mathcal{I}_1$,
 $J_0^2.J_r = J_0.J_s.J_r = 0$ $\forall r, s \in \mathcal{I}_3$

- The curve $C_0 = J_0.J_0$ shrinks in the limit: $\mathcal{V}_{C_0} \sim \frac{1}{\lambda^2}$
- B_3 is fibration $C_0 \to B_2$:

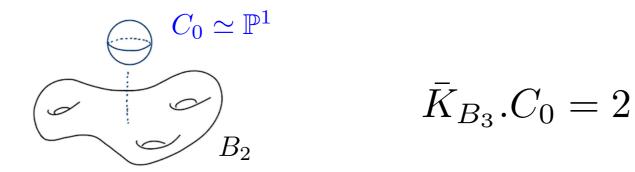


$$\bar{K}_{B_3}.C_0=2$$



$$\bar{K}_{B_3}.C_0 = 0$$

Emergent Strings



• D3-brane wrapped on C_0 gives rise to emergent heterotic string:

$$\frac{M_{\rm het}^2}{M_S^2} \sim \lambda^{-2}$$

• Gauge theory on divisor S with $S.C_0 \neq 0$ becomes weakly coupled:

$$\frac{1}{g_{YM}^2} = \mathcal{V}_{\mathcal{S}} \sim \lambda^2$$

• String excitation modes satisfy WGC! $M_k^2 \sim M_{\rm het}^2(n_k - 1)$ $\exists q_k : q_k^2 \geq 4mn_k$

Emergent Strings

• D3-brane wrapped on C_0 gives rise to emergent heterotic string:

$$\frac{M_{\rm het}^2}{M_S^2} \sim \lambda^{-2}$$

• Gauge theory on divisor S with $S.C_0 \neq 0$ becomes weakly coupled:

$$\frac{1}{g_{YM}^2} = \mathcal{V}_{\mathcal{S}} \sim \lambda^2$$

• String excitation modes satisfy WGC! $M_k^2 \sim M_{\rm het}^2(n_k - 1)$ $\exists q_k : q_k^2 \geq 4mn_k$

So everythings fine?

Open Problems

1 Can there be multiple strings that become tensionless at the same rate?

$$B_3 = \underbrace{\mathbb{P}^1}_{\sim \lambda^{-1/2}} \times \underbrace{\mathbb{P}^1}_{\sim \lambda^{-1/2}} \times \underbrace{\mathbb{P}^1}_{\sim \lambda^1}$$

Open Problems

1 Can there be multiple strings that become tensionless at the same rate?

$$B_3 = \underbrace{\mathbb{P}^1}_{\sim \lambda^{-1/2}} \times \underbrace{\mathbb{P}^1}_{\sim \lambda^{-1/2}} \times \underbrace{\mathbb{P}^1}_{\sim \lambda^1}$$

- 2 Analysis so far was purely classical!
 - $\mathcal{N} = 1$ moduli space is **not** classically exact.
 - Quantum Corrections can obstruct classical infinite distance limits!

Already observed in $\mathcal{N}=2$ setups:

1. Vector multiplet moduli space of IIA on CY_3 .

[Lee, Lerche, Weigand '19]

2. Hypermultiplet moduli space of IIB on CY_3 .

[Marchesano, MW '19]

• Shrinking of fibral curve can be problematic:

$$\mathcal{V}_{C_0} = \frac{M_{
m het}^2}{M_S^2} \lesssim \frac{M_{KK}^2}{M_S^2}$$
.

 \Rightarrow Critical 4D string theory?!

In type IIB hypermultiplet moduli space the quantum corrections precisely obstruct limits with classically intrinsically 4D strings! [Baume, Marchesano, MW '19]

Open Problems

1 Can there be multiple strings that become tensionless at the same rate?

$$B_3 = \underbrace{\mathbb{P}^1}_{\sim \lambda^{-1/2}} \times \underbrace{\mathbb{P}^1}_{\sim \lambda^{-1/2}} \times \underbrace{\mathbb{P}^1}_{\sim \lambda^1}$$

- 2 Analysis so far was purely classical!
 - $\mathcal{N} = 1$ moduli space is **not** classically exact.
 - Quantum Corrections can obstruct classical infinite distance limits!

Already observed in $\mathcal{N}=2$ setups:

1. Vector multiplet moduli space of IIA on CY_3 .

[Lee, Lerche, Weigand '19]

2. Hypermultiplet moduli space of IIB on CY_3 .

[Marchesano, MW '19]

• Shrinking of fibral curve can be problematic:

$$\mathcal{V}_{C_0} = \frac{M_{
m het}^2}{M_S^2} \lesssim \frac{M_{KK}^2}{M_S^2}$$
.

⇒ Critical 4D string theory?!

In type IIB hypermultiplet moduli space the quantum corrections precisely obstruct limits with classically intrinsically 4D strings! [Baume, Marchesano, MW '19]

3 Does the classical WGC relation also receive quantum corrections?

- 1 Uniqueness: For any J-class A or J-class B limit one of the following holds:
 - 1. B_3 has a unique \mathbb{P}^1 -fibration and the fiber shrinks at the fastest rate in the limit (unique emergent heterotic string).
 - 2. B_3 has a unique T^2 -fibration and the fiber shrinks at the fastest rate in the limit. (unique emergent type II string)
 - 3. No such unique fibration exists; $M_{KK}/M_S \rightarrow 0$ for any solitonic string (decompactification)

- 1 Uniqueness: For any J-class A or J-class B limit one of the following holds:
 - 1. B_3 has a unique \mathbb{P}^1 -fibration and the fiber shrinks at the fastest rate in the limit (unique emergent heterotic string).
 - 2. B_3 has a unique T^2 -fibration and the fiber shrinks at the fastest rate in the limit. (unique emergent type II string)
 - 3. No such unique fibration exists; $M_{KK}/M_S \rightarrow 0$ for any solitonic string (decompactification)

- 1 Uniqueness: For any J-class A or J-class B limit one of the following holds:
 - 1. B_3 has a unique \mathbb{P}^1 -fibration and the fiber shrinks at the fastest rate in the limit (unique emergent heterotic string).
 - 2. B_3 has a unique T^2 -fibration and the fiber shrinks at the fastest rate in the limit. (unique emergent type II string)
 - 3. No such unique fibration exists; $M_{KK}/M_S \to 0$ for any solitonic string (decompactification)
- 2 For T^2 -fibrations:
 - α' -corrections do **not** ostruct infinite distance limits with *finite* volume: \rightarrow Classical analysis goes through!
 - Reason: Winding modes along the torus fiber give the leading KK tower $\Rightarrow M_{IIB}^2/M_{KK}^2 \sim \mathcal{O}(1)$: Emergent string limit!

- **2** For \mathbb{P}^1 -fibrations:
 - α' -corrections obstruct infinite distance limits with *finite* volume:
 - → Perturbative control lost at finite distance in Kähler moduli space
 - \Rightarrow No emergent string limit!
 - Limit: $J = \tilde{\lambda} J_0 + \frac{1}{\tilde{\lambda}} J_{\mathcal{I}_1} + b J_{\mathcal{I}_3}$ marginally allowed with $M_{\text{het}}/M_{\text{KK}} \sim \mathcal{O}(1)$. \Rightarrow Emergent String Limit survives quantum corrections!

- For \mathbb{P}^1 -fibrations:
 - α' -corrections obstruct infinite distance limits with *finite* volume:
 - → Perturbative control lost at finite distance in Kähler moduli space
 - \Rightarrow No emergent string limit!
 - Limit: $J = \lambda J_0 + \frac{1}{\tilde{\lambda}} J_{\mathcal{I}_1} + b J_{\mathcal{I}_3}$ marginally allowed with $M_{\text{het}}/M_{\text{KK}} \sim \mathcal{O}(1)$. ⇒ Emergent String Limit survives quantum corrections!

- The WGC relation (only applies to \mathbb{P}^1 -fibrations):
 - Including α' -corrections to F-theory geometry, the WGC-relation is still fulfilled at leading order in the weak coupling limit.
 - ∃ sublattice of super-extremal states in all cases.

Quantum Corrections

[Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher '13-'19]

• The classical 4D effective theory has $h^{(1,1)}(B_3)$ chiral multiplets with saxionic component

$$\operatorname{Re} T_{\alpha}^{0} = \frac{1}{2} \int_{D_{\alpha}} J \wedge J = \frac{1}{2} k_{\alpha\beta\gamma} v^{\beta} v^{\gamma},$$

with Kähler potential and dual linear multiplets

$$K = -2\log \mathcal{V}_{B_3}^0 \,, \qquad L_0^{lpha} = -rac{\partial K}{\partial \mathrm{Re}\, T_{lpha}} = rac{v^{lpha}}{\mathcal{V}_{B_3}^0} \,.$$

• The classical 4D effective theory has $h^{(1,1)}(B_3)$ chiral multiplets with saxionic component

$$\operatorname{Re} T_{\alpha}^{0} = \frac{1}{2} \int_{D_{\alpha}} J \wedge J = \frac{1}{2} k_{\alpha\beta\gamma} v^{\beta} v^{\gamma},$$

with Kähler potential and dual linear multiplets

$$K = -2\log \mathcal{V}_{B_3}^0$$
, $L_0^{\alpha} = -\frac{\partial K}{\partial \operatorname{Re} T_{\alpha}} = \frac{v^{\alpha}}{\mathcal{V}_{B_3}^0}$.

• Higer derivative contributions to the 11D M-theory supergravity effective action give α' corrections to these quantities:

$$\operatorname{Re} T_{\alpha} = \operatorname{Re} T_{\alpha}^{0} + \alpha^{2} \left((\kappa_{3} + \kappa_{5}) \frac{\operatorname{Re} T_{\alpha}^{0} \mathcal{Z}}{\mathcal{V}_{B_{3}}^{0}} + \kappa_{5} \frac{\operatorname{Re} T_{\alpha}^{0} \mathcal{T}}{\mathcal{V}_{B_{3}}^{0}} + \kappa_{4} \mathcal{Z}_{\alpha} \log \mathcal{V}_{B_{3}}^{0} + \kappa_{6} \mathcal{T}_{\alpha} + \kappa_{7} \mathcal{Z}_{\alpha} \right) ,$$

$$e^{K/2} = \mathcal{V}_{B_{3}}^{0} + \alpha^{2} \left((\tilde{\kappa}_{1} + \tilde{\kappa}_{2}) \mathcal{Z} + \tilde{\kappa}_{2} \mathcal{T} \right) .$$

$$\mathcal{Z}_{\alpha} = \int_{Y_{4}} c_{3}(Y_{4}) \wedge \pi^{*}(J_{\alpha}) ,$$

$$\mathcal{T}_{\alpha} = -18(1 + \alpha_{2}) \frac{1}{\operatorname{Re} T_{\alpha}^{\text{cl.}}} \int_{D_{\alpha}} c_{1}(B_{3}) \wedge J \int_{D_{\alpha}} J_{\alpha} \wedge J ,$$

$$\mathcal{T} = \mathcal{T}_{\alpha} v^{\alpha} , \qquad \mathcal{Z} = \mathcal{Z}_{\alpha} v^{\alpha} ,$$

$$\operatorname{Re} T_{\alpha} = \operatorname{Re} T_{\alpha}^{0} + \alpha^{2} \left((\kappa_{3} + \kappa_{5}) \frac{\operatorname{Re} T_{\alpha}^{0} \mathcal{Z}}{\mathcal{V}_{B_{3}}^{0}} + \kappa_{5} \frac{\operatorname{Re} T_{\alpha}^{0} \mathcal{T}}{\mathcal{V}_{B_{3}}^{0}} + \kappa_{4} \mathcal{Z}_{\alpha} \log \mathcal{V}_{B_{3}}^{0} + \kappa_{6} \mathcal{T}_{\alpha} + \kappa_{7} \mathcal{Z}_{\alpha} \right).$$

- Recall the classical limit: $J = \lambda J_0 + \frac{1}{\lambda^2} \sum_{\mu \in \mathcal{I}_1} a^{\mu} J_{\mu} + \sum_{r \in \mathcal{I}_3} b^r J_3$.
- Perturbative control requires in particular:

$$\frac{\mathcal{Z}}{\mathcal{V}_{B_3}^0} \ll 1, \qquad \frac{\mathcal{T}}{\mathcal{V}_{B_3}^0} \ll 1.$$

$$\operatorname{Re} T_{\alpha} = \operatorname{Re} T_{\alpha}^{0} + \alpha^{2} \left((\kappa_{3} + \kappa_{5}) \frac{\operatorname{Re} T_{\alpha}^{0} \mathcal{Z}}{\mathcal{V}_{B_{3}}^{0}} + \kappa_{5} \frac{\operatorname{Re} T_{\alpha}^{0} \mathcal{T}}{\mathcal{V}_{B_{3}}^{0}} + \kappa_{4} \mathcal{Z}_{\alpha} \log \mathcal{V}_{B_{3}}^{0} + \kappa_{6} \mathcal{T}_{\alpha} + \kappa_{7} \mathcal{Z}_{\alpha} \right).$$

- Recall the classical limit: $J = \lambda J_0 + \frac{1}{\lambda^2} \sum_{\mu \in \mathcal{I}_1} a^{\mu} J_{\mu} + \sum_{r \in \mathcal{I}_3} b^r J_3$.
- Perturbative control requires in particular:

$$\frac{\mathcal{Z}}{\mathcal{V}_{B_3}^0} \ll 1, \qquad \frac{\mathcal{T}}{\mathcal{V}_{B_3}^0} \ll 1.$$

Perturbative control lost, if $\mathcal{Z}_0 \neq 0$ or $\mathcal{T}_0 \neq 0$!

$$\operatorname{Re} T_{\alpha} = \operatorname{Re} T_{\alpha}^{0} + \alpha^{2} \left((\kappa_{3} + \kappa_{5}) \frac{\operatorname{Re} T_{\alpha}^{0} \mathcal{Z}}{\mathcal{V}_{B_{3}}^{0}} + \kappa_{5} \frac{\operatorname{Re} T_{\alpha}^{0} \mathcal{T}}{\mathcal{V}_{B_{3}}^{0}} + \kappa_{4} \mathcal{Z}_{\alpha} \log \mathcal{V}_{B_{3}}^{0} + \kappa_{6} \mathcal{T}_{\alpha} + \kappa_{7} \mathcal{Z}_{\alpha} \right).$$

- Recall the classical limit: $J = \lambda J_0 + \frac{1}{\lambda^2} \sum_{\mu \in \mathcal{I}_1} a^{\mu} J_{\mu} + \sum_{r \in \mathcal{I}_3} b^r J_3$.
- Perturbative control requires in particular:

$$\frac{\mathcal{Z}}{\mathcal{V}_{B_3}^0} \ll 1, \qquad \frac{\mathcal{T}}{\mathcal{V}_{B_3}^0} \ll 1.$$

Condition violated for coefficient of \mathcal{Z}_0 and \mathcal{T}_0 : $\frac{v^0}{\mathcal{V}_{B_3}^0} \sim \lambda \gg 1$

Perturbative control lost, if $\mathcal{Z}_0 \neq 0$ or $\mathcal{T}_0 \neq 0$!

$B_3: \mathbb{P}^1 \to B_2:$

Max Wiesner

- In generic models: $\mathbb{Z}_0 \neq 0$ but precise value model dependent.
- $\bar{K}.C_0 = 2 \Rightarrow \mathcal{T}_0 = -36(1 + \alpha_2)$ independently of chosen model.
- ⇒ Classical limit leads out of perturbative F-theory regime!

$$\operatorname{Re} T_{\alpha} = \operatorname{Re} T_{\alpha}^{0} + \alpha^{2} \left((\kappa_{3} + \kappa_{5}) \frac{\operatorname{Re} T_{\alpha}^{0} \mathcal{Z}}{\mathcal{V}_{B_{3}}^{0}} + \kappa_{5} \frac{\operatorname{Re} T_{\alpha}^{0} \mathcal{T}}{\mathcal{V}_{B_{3}}^{0}} + \kappa_{4} \mathcal{Z}_{\alpha} \log \mathcal{V}_{B_{3}}^{0} + \kappa_{6} \mathcal{T}_{\alpha} + \kappa_{7} \mathcal{Z}_{\alpha} \right).$$

- Recall the classical limit: $J = \lambda J_0 + \frac{1}{\lambda^2} \sum_{\mu \in \mathcal{I}_1} a^{\mu} J_{\mu} + \sum_{r \in \mathcal{I}_3} b^r J_3$.
- Perturbative control requires in particular:

$$\frac{\mathcal{Z}}{\mathcal{V}_{B_3}^0} \ll 1, \qquad \frac{\mathcal{T}}{\mathcal{V}_{B_3}^0} \ll 1.$$

Condition violated for coefficient of \mathcal{Z}_0 and \mathcal{T}_0 : $\frac{v^0}{\mathcal{V}_{B_3}^0} \sim \lambda \gg 1$

Perturbative control lost, if $\mathcal{Z}_0 \neq 0$ or $\mathcal{T}_0 \neq 0$!

$$B_3: \mathbb{P}^1 \to B_2:$$

- In generic models: $\mathbb{Z}_0 \neq 0$ but precise value model dependent.
- $\bar{K}.C_0 = 2 \Rightarrow \mathcal{T}_0 = -36(1 + \alpha_2)$ independently of chosen model.
- ⇒ Classical limit leads out of perturbative F-theory regime!

$B_3: \mathbb{T}^2 \to B_2:$

- In generic models: $\mathcal{Z}_0 = 0$ independent of chosen model.
- $\bar{K}.C_0 = 0 \Rightarrow \mathcal{T}_0 = 0$ independently of chosen model.
- ⇒ Classical limit stays in perturbative F-theory regime!

Quantum Obstructions — Consequences

[Kläwer, Lee, Weigand, MW (to appear)]

 $\bar{K}.C_0 \neq 0$ vs. $\bar{K}.C_0 = 0$ a significantly different \leftrightarrow different emergent strings

- D3-brane on T^2 gives fundamental Type II string:
 - emergent string limit is protected from quantum corrections \leftrightarrow has enhanced $\mathcal{N}=(2,2)$ worldsheet supersymmetry.
 - string excitations are not charged under gauge symmetry.

Quantum Obstructions — Consequences

[Kläwer, Lee, Weigand, MW (to appear)]

 $\bar{K}.C_0 \neq 0$ vs. $\bar{K}.C_0 = 0$ a significantly different \leftrightarrow different emergent strings

- D3-brane on T^2 gives fundamental Type II string:
 - emergent string limit is protected from quantum corrections \leftrightarrow has enhanced $\mathcal{N}=(2,2)$ worldsheet supersymmetry.
 - string excitations are not charged under gauge symmetry.
- D3-brane on \mathbb{P}^1 gives fundamental Heterotc string:
 - classical emergent string limit obstructed.
 - quantum corrections in particular affect the gauge coupling for gauge theory along divisor S:

$$\frac{1}{g_{YM}^2} = \underbrace{\operatorname{Re} T_{\mathcal{S}}^0}_{=g_{YM,0}^{-2}} \left(1 + \alpha^2 \underbrace{\frac{\mathcal{Z} + \mathcal{T}}{\mathcal{V}_{B_3}^0}}_{\gg 1} \right)$$

- → Enter a non-perturbative phase also for the gauge theory: no weak-coupling limit anymore!
- Following this trajectory stability of heterotic string cannot be ensured!

Quantum Obstructions — Consequences

[Kläwer, Lee, Weigand, MW (to appear)]

To keep weakly-coupled, tensionless heterotic string limit have to rescale:

$$J \to J' = \mu J$$

- For $\mu = \lambda^{1/2}$ have $M_{\text{het}}/M_{KK} \sim \mathcal{O}(1)$ which is marginally allowed by the quantum corrections (only numerical suppression).
- No further obstruction due to non-perturbative superpotential.

Question: Is the WGC relation affected by the quantum corrections?

• The geometric part $\mathcal{V}_{C_0} \cdot \mathcal{V}_{S} = \mathcal{V}_{B_3}$ of the WGC relation receives α' -corrections:

$$\mathcal{V}_{C_0} = \mathcal{V}_{C_0}^{(0)} \left[1 + \alpha^2 \left((\tilde{\kappa}_1 + \tilde{\kappa}_2 - \kappa_3 - \kappa_5) \frac{\mathcal{Z}}{\mathcal{V}_{B_3}^{(0)}} + (\tilde{\kappa}_2 - \kappa_5) \frac{\mathcal{T}}{\mathcal{V}_{B_3}^{(0)}} - \delta_1 \right) \right],$$

$$\mathcal{V}_{S} = \mathcal{V}_{S}^{(0)} \left[1 + \alpha^2 \left((\kappa_3 + \kappa_5) \frac{\mathcal{Z}}{\mathcal{V}_{B_3}^{(0)}} + \kappa_5 \frac{\mathcal{T}}{\mathcal{V}_{B_3}^{(0)}} + \delta_2 \right) \right],$$

$$\mathcal{V}_{B_3} = \mathcal{V}_{B_3}^{(0)} \left[1 + \alpha^2 \left((\tilde{\kappa}_1 + \tilde{\kappa}_2) \frac{\mathcal{Z}}{\mathcal{V}_{B_2}^{(0)}} + \tilde{\kappa}_2 \frac{\mathcal{T}}{\mathcal{V}_{B_3}^{(0)}} \right) \right],$$

- **Expectation:** To leading order in λ the WGC relation should still hold.
- **Problem:** δ_2 is suppressed but δ_1 is not surpressed for $\lambda \to \infty$,

• The geometric part $\mathcal{V}_{C_0} \cdot \mathcal{V}_{S} = \mathcal{V}_{B_3}$ of the WGC relation receives α' -corrections:

$$\mathcal{V}_{C_0} = \mathcal{V}_{C_0}^{(0)} \left[1 + \alpha^2 \left((\tilde{\kappa}_1 + \tilde{\kappa}_2 - \kappa_3 - \kappa_5) \frac{\mathcal{Z}}{\mathcal{V}_{B_3}^{(0)}} + (\tilde{\kappa}_2 - \kappa_5) \frac{\mathcal{T}}{\mathcal{V}_{B_3}^{(0)}} - \delta_1 \right) \right],$$

$$\mathcal{V}_{S} = \mathcal{V}_{S}^{(0)} \left[1 + \alpha^2 \left((\kappa_3 + \kappa_5) \frac{\mathcal{Z}}{\mathcal{V}_{B_3}^{(0)}} + \kappa_5 \frac{\mathcal{T}}{\mathcal{V}_{B_3}^{(0)}} + \delta_2 \right) \right],$$

$$\mathcal{V}_{B_3} = \mathcal{V}_{B_3}^{(0)} \left[1 + \alpha^2 \left((\tilde{\kappa}_1 + \tilde{\kappa}_2) \frac{\mathcal{Z}}{\mathcal{V}_{B_3}^{(0)}} + \tilde{\kappa}_2 \frac{\mathcal{T}}{\mathcal{V}_{B_3}^{(0)}} \right) \right],$$

- Expectation: To leading order in λ the WGC relation should still hold.
- **Problem:** δ_2 is suppressed but δ_1 is not surpressed for $\lambda \to \infty$.
 - Solution: classical F-theory relation is equivalent to the expression for heterotic gauge kinetic function at tree-level:

$$\mathcal{V}_{\mathcal{S}} = \frac{\mathcal{V}_{B_3}}{\mathcal{V}_{C_0}} \qquad \leftrightarrow \qquad f_{\text{het.}} = S \qquad \text{(the heterotic 4d dilaton)}$$

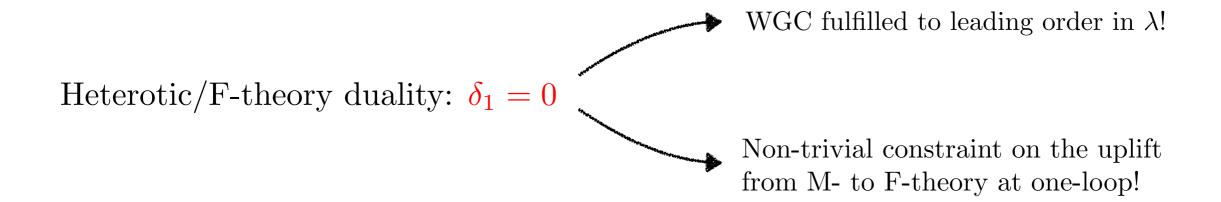
- The latter relation only receives corrections at 1-loop!
- $-\delta_1$ cannot be understood as 1-loop correction $\Rightarrow \delta_1 = 0$ by het./F-theory duality!

Is $\delta_1 = 0$ possible?

- Higher derivative contributions to M-theory on CY 4-fold yield $\delta_1 \neq 0$.
- But term δ_1 term can be seen as a 1-loop correction when comapctifying the 4d F-theory effective action on an additional S^1 . [Grimm, Mayer, Weissenbacher '17, '19]

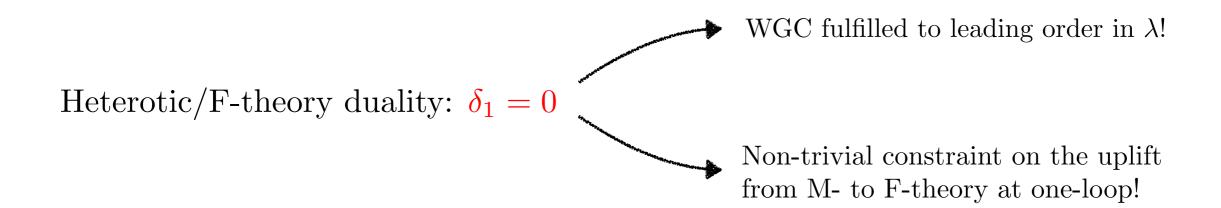
Is $\delta_1 = 0$ possible?

- Higher derivative contributions to M-theory on CY 4-fold yield $\delta_1 \neq 0$.
- But term δ_1 term can be seen as a 1-loop correction when comapctifying the 4d F-theory effective action on an additional S^1 . [Grimm, Mayer, Weissenbacher '17, '19]



Is $\delta_1 = 0$ possible?

- Higher derivative contributions to M-theory on CY 4-fold yield $\delta_1 \neq 0$.
- But term δ_1 term can be seen as a 1-loop correction when comapctifying the 4d F-theory effective action on an additional S^1 . [Grimm, Mayer, Weissenbacher '17, '19]



What about higher orders?

- F-theory α' -corrections induce $\mathcal{O}(g_{YM}^2)$ corrections to WGC relation.
- Also should take corrections to the mass of the string excitations into account.

Summary

- In equi-dimensional infinite distance limits in the Kähler moduli space of F-theory on CY_4 , there is always a **unique** emergent string.
- F-theory α' -corrections ensure that $M_{KK}^2 \lesssim M_{\text{string}}^2$ is always fulfilled.
- finite volume limits for rationally fibered B_3 are out of perturbative control but allowed for elliptically fibered B_3 .
- WGC relation still holds in the presence of α' -corrections.

Future Directions:

- Include corrections to mass of string excitations to compare with BH extremality bound!
- Better understand the regime away from the weak-coupling limit!

Thank you!