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What are higher p-form symmetries?

Symmetries under transformations of p-dim. extended objects

e.g. a transformation of a Wilson loop (red loop)

• In this talk, I would like to explain 1-form global symmetries in 4D Maxwell theory.

Why we consider such symmetries?
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Motivations

• Particle physics: based on symmetry for particles (local objects),

e.g. SU(3)× SU(2)× U(1) gauge symmetry

However, there can be extended objects in

• Cosmology: domain walls, cosmic strings,...

• String theory: fundamental strings, branes,...

• SUSY/SUGRA: BPS solitons,...

• Condensed matter: magnetic vortices, magnetic domain walls,...

• ...
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Motivations

We can classify phases of matter based on extended objects

E.g. A global symmetry for a Wilson loop W : W → eiαW

• Confinement phases 〈W 〉 → 0: Symmetric phase

• Deconfinement phases 〈W 〉 → 1: Symmetry broken phase

Charged object W develops VEV.

We can apply this classification to many systems admitting extended objects
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Why global symmetries?

• Global symmetries are physical.

They lead to degeneracy of energy states (as in QM).

• ’t Hooft anomalies for global symmetries constrain phase structures,

in particular forbidding non-degenerate gapped vacuum

• Gauge symmetries are introduced as local transformations of global ones.

• Quantum gravity may forbid global symmetries.

Higher-form symmetries may give us some constraints on effective theories

consistent with quantum gravity [Banks & Seiberg ’10; Montero et al., ’17].[2, 3]
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Purpose of this talk

Introducing higher-form symmetries in terms of field theories.

• I focus on the way to generalize ordinary symmetries to higher-form symmetries.

• I show how to derive higher-form symmetry transformations.

For concreteness, I only consider (3 + 1) D field theories.
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0-form symmetries

as ordinary symmetries



Message

Rephrasing ordinary symmetries in terms of topology.

Symmetry transformation

〈U(g,V)Φi(y)〉 = R(g)ij〈Φj(y)〉 (if linked)

1. Existence of symmetry → Existence of topological object U(g,V)

2. Symmetry generators are conserved/commute with Hamiltonian

→ U(g,V) is topological.

3. Symmetry transformation is generated by

commutator → link of U(g,V) and the charged object Φj(y)
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Noether’s theorem

Continuous symmetry → conserved current

Assumption

• Φi: fields (scalars or fermions, for simplicity)

• Action S[Φi] is invariant δS = 0 under δΦi = εM i
jΦ

j (ε: infinitesimal parameter)

M i
j : generator of symmetry group G

Existence of conserved current ∂µjµ = 0

• Position dependent transf. is given by

S[Φi + ε(x)M i
jΦ

j ]− S[Φi] = −
∫
ε(x)∂µj

µ

• The deviation should vanish by EOM
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In quantum theory, Noether theorem is generalized to

Ward-Takahashi identity

i〈∂µjµ(x)Φi(y)〉 = δ4(x− y)M i
j〈Φj(y)〉

〈...〉: VEV in the path integral formalism

• Physical meaning: charged object Φi(y) is a source of jµ.

Brief derivation: Use the reparameterization

Φ
i
(x)→ Φ

i
(x) + ε(x)M

i
jΦ
j
(x)

in the path integral [detail]
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By integrating the Ward-Takahashi identity,

we have

Symmetry transf. by conserved charge

i〈[Q,Φi(y)]〉cq. = M i
j〈Φj(y)〉cq..

〈〉cq: VEV in the canonical quantization formalism

Derivation

• Integrating both hand sides of i〈∂µjµ(x)Φi(y)〉 = δ4(x− y)Mi
j〈Φj(y)〉

over ΩV := [y0 + ε, y0 − ε]× R3

• Using Stokes theorem∫
ΩV

d4x∂µj
µ =

∫
d3xj0(y0 + ε,x)−

∫
d3xj0(y0 − ε,x) = Q(y0 + ε)−Q(y0 − ε)

• Explicitly writing the time-ordered product

〈(Q(y0 + ε)−Q(y0− ε))Φi(y)〉 = 〈T (Q(y0 + ε)−Q(y0− ε))Φi(y)〉cq = 〈[Q(y0),Φi(y)]〉cq 11 / 36



Some technical problems

If we consider transformations of extended objects,

it may be difficult to generalize the transf. directly.

It may be difficult (or not systematic) to formulate

• Decomposition of time ordering for temporally extended objects

• Symmetry transformation in terms of commutation relation

We would like to rewrite the symmetry transf. so that they are also suitable for

extended objects.
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Rewriting ordinary symmetry transf.

Symmetry transf. based on link

i〈Q(V)Φi(y)〉 = Link (V, y)M i
j〈Φj(y)〉

• Charge Q on a time slice → Charge Q(V) on 3D closed subspace V

Q(V) :=

∫
V

εµνρσ
3!

jµ(x)dV νρσ

(dV µνρ is a volume element)

• Commutation relation [, ] → link of Q(V) and Φi(y)

Q. How to derive this relation?
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Integrating the Ward-Takahashi identity

Integral over 4D subspace ΩV

i〈Q(V)Φi(y)〉 =

(∫
ΩV

d4xδ4(x− y)

)
M i

j〈Φj(y)〉

ΩV : 4D subspace whose boundary is 3D subspace V, ∂ΩV = V.

For the left-hand side, I have used/defined

• Stokes theorem ∫
ΩV

d
4
x∂µj

µ
(x) =

∫
V

εµνρσ
3!

j
µ

(x)dV
νρσ

• Charge on V (dV µνρ is a volume element)

Q(V) :=

∫
V

εµνρσ
3!

j
µ

(x)dV
νρσ

For the right-hand side, what is
∫
ΩV

d4xδ4(x− y)?
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∫
ΩV
d4xδ4(x− y): linking number of V and y

Linking number

∫
ΩV

d4xδ4(x− y) = Link (V, y)

• ∫
ΩV

d4xδ4(x− y) = intersection number of ΩV and y.

• It is equal to the linking number of V and y.
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Finally, we arrive at

Symmetry transf.

i〈Q(V)Φi(y)〉 = Link (V, y)M i
j〈Φj(y)〉

We remark that linking number in RHS is a topological invariant.

How about LHS?

• Is Q(V) in LHS topological? → Yes.

• What is the origin of the topological property? → Conservation law

This implies the following generalization:

Q is conserved → Q(V) is topological

Let us see it.
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Conservation → Topology

Rephrasing “conservation law”

Q is conserved → Q(V) is topological

Under a deformation, V → V ′ = V+∂Ω0, y 6∈ Ω

i〈Q(V)Φi(y)〉 = Link (V, y)M i
j〈Φj(y)〉 is invariant.

• LHS: conservation law Q(V′) = Q(V)+
∫
∂Ω0

εµνρσ
3!

jµdV νρσ = Q(V)+
∫
Ω0

d4x∂µj
µ = Q(V).

• RHS: topological invariance Link (V′, y) = Link (V, y)

We also have a finite symmetry transformation.
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Finite symmetry transformation

By the exponent of Q(V), we also have

Finite symmetry transformation

〈U(g,V)Φi(y)〉 = R(g)ij〈Φj(y)〉 (if linked)

U(g,V) is a topological unitary operator given by

• symmetry group g ∈ G

• 3D closed subspace V

Comments

• U satisfies d
dα
U(eiα,V)|α=0 = iQ(V)

R(g): representation matrix of g
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Summary (continuous symmetry)

Cont. symmetry under G → Conserved charge Q → Topological object U(g,V)

Finite symmetry transformation

〈U(g,V)Φi(y)〉 = R(g)ij〈Φj(y)〉 (if linked)

Some terminology

• U(g,V): symmetry generator, g ∈ G

• Φi(y) charged object

• This symmetry is called a G 0-form symmetry: the charged object is 0-dim.

Q: How about discrete symmetries?

There may be no conserved currents.

A: Topological objects exist even for the discrete ones.
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Review of discrete symmetry

We consider internal discrete symmetries given by

• g ∈ G: discrete group

• U(g): unitary operator commuting with Hamiltonian & momentum,

[U(g), Pµ] = 0

• Unitary transformation (in can. quant. formalism)

〈U(g)Φi(y)U(g)−1〉cq = R(g)ij〈Φj(y)〉cq,

R(g)ij : representation matrix

I would like to show that

Existence of U(g) → existence of topological operator U(g,V)
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Existence of topological objects for discrete symmetries

Discrete symmetry transf.

〈U(g,V)Φi(y)〉 = R(g)ij〈Φj(y)〉 (if linked)

• [U(g), Pµ] = 0 implies U(g) can continuously move.

→ U(g) is topological.

• By the topological deformation of 〈U(g)Φi(y)U(g)−1〉cq,

we have a symmetry generator U(g,V)

〈U(g)Φi(y)U(g)−1〉cq = 〈U(g,V)Φi(y)〉
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Summary (ordinary symmetry)

Existence of symmetry under g ∈ G → Existence of topological object U(g,V)

(rather than invariance of the action)

Symmetry transformation

〈U(g,V)Φi(y)〉 = R(g)ij〈Φj(y)〉 if linked

R(g)ij : representation matrix

• U(g,V): Symmetry generator

3D, topological object

• Φi(y) Charged object

0D (not necessarily topological)

• This symmetry is called G 0-form symmetry.

Finding symmetries → Finding topological objects
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1-form symmetries in Maxwell theory

Just conservation laws of electric & magnetic fluxes



Message

There are U(1) electric & magnetic 1-form symmetries.

• Symmetry generator: surface integrals of electric & magnetic fluxes

2D topological objects

• Charged objects: Wilson loop & ’t Hooft loop

1D objects (not necessarily topological)

• Symmetry groups: U(1) for electric & magnetic symmetries

due to Dirac quantization
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I begin with

Maxwell equations without matter

1

e2
∂µf

µν = 0, ∂µf̃
µν = 0.

fµν = ∂µaν − ∂νaµ: field strength of U(1) gauge field aµ

There are conserved quantities (S: 2D closed surface e.g., a sphere S2)

• Electric flux

QE(S) = 1
e2

∫
S

εµνρσ
2!2!

fµνdS
ρσ ∼

∫
S
E · dS,

• Magnetic flux

QM(S) = 1
2π

∫
S

1
2!
fµνdS

µν ∼
∫
S
B · dS,

We know that QE(S) & QM(S) are topological under deformation of S.

There are symmetries for electric/magnetic fluxes!
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Symmetry for fluxes...?

Symmetry generators are

UE(S) ∼ exp(iQE(S)) and UM(S) ∼ exp(iQM(S))

Two questions

1. What are charged objects (= source) for the symmetries?

For an ordinary symmetry, a charged object is Φi(y)

i〈∂µjµ(x)Φi(y)〉 = δ4(x− y)M i
j〈Φj(y)〉

2. What are groups parameterizing symmetries?

Answers

1. Charged objects are

a Wilson loop for the electric flux,

an ’t Hooft loop for the magnetic flux.

2. Symmetry groups are U(1) for electric/magnetic fluxes
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Wilson loop W (qE, C) = eiqE
∫
C aµdx

µ

Worldline of probe electric particle

• Probe electric particle = Source of electric flux

Electric Gauss law: 1
e2
∂µfµν(x) = qE

∫
C δ

4(x− y)dyν

• Worldline is closed: gauge invariance under aµ → aµ + ∂µλ

• qE ∈ Z: charge of the probe particle

The quantization is required if the gauge group is U(1) [detail]
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U(1) symmetry for electric flux

Symmetry transformation of Wilson loop

〈UE(eiαE ,S)eiqE
∫
C aµdx

µ
〉 = eiαEqE Link (S,C)〈eiqE

∫
C aµdx

µ
〉

• UE(eiαE ,S) = exp (iαEQE(S)): unitary operator of electric flux,

• Link (S, C): linking number of S and C

• Symmetry group is U(1), αE + 2π ∼ αE due to the quantization of qE.

How to derive it?

• Schwinger-Dyson equation (quantum version of EOM) for αE � 1

• Field redefinition (for finite αE) [derivation]
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Summary of U(1) symmetry for electric flux

Symmetry transformation of Wilson loop

〈UE(eiαE ,S)eiqE
∫
C aµdx

µ
〉 = eiαEqE Link (S,C)〈eiqE

∫
C aµdx

µ
〉

• Symmetry generator: UE(eiαE ,S) = exp (iαEQE(S))

2D topological object

• Charged object: eiqE
∫
C aµdx

µ

• Symmetry group: eiαE ∈ U(1)

This symmetry is called a electric U(1) 1-form symmetry, since the charged object is

1D.

How about magnetic flux?
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Charged object: ’t Hooft loop T (qM, C)

Worldline of probe magnetic monopole

• Probe magnetic particle = Source of magnetic flux

Magnetic Gauss law:
∫
S

1
2!
fµνdSµν = 2πqM

• Worldline is closed: gauge invariance of dual photon

• qM ∈ Z: charge of the monopole

A monopole with quantized charge can exist if gauge group is U(1) [detail]
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U(1) symmetry for conservation of magnetic flux

Symmetry transformation of ’t Hooft loop

〈UM(eiαM ,S)T (qM, C)〉 = eiαMqM Link (S,C)〈T (qM, C)〉

• UM(eiαM ,S) = exp (iαMQM(S)): unitary operator of magnetic flux

• eiαM : U(1) parameter, αM + 2π ∼ αM due to the quantization of qM.

• Link (S, C): linking number of S and C

How to derive it?

• Using QM(S) = qM in the presence of T (qM, C) if S and C are linked.

• Dualizing the theory to the Maxwell theory with the dual photon.
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Summary of U(1) symmetry for magnetic flux

Symmetry transformation of ’t Hooft loop

〈UE(eiαE ,S)T (qM, C)〉 = eiαEqE Link (S,C)〈T (qM, C)〉

• Symmetry generator: UM(eiαM ,S) = exp (iαMQM(S))

2D topological object

• Charged object: ’t Hooft loop T (qM, C)

• Symmetry group: eiαM ∈ U(1)

This symmetry is also called a U(1) 1-form symmetry, since the charged object is 1D.
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Summary of higher-form symmetries in Maxwell theory without matter

There are U(1) electric & magnetic 1-form symmetries.

• Symmetry generator: UE(eiαE ,S) & UM(eiαM ,S)

2D topological objects

• Charged objects: Wilson loop eiqE
∫
C aµdx

µ
& ’t Hooft loop T (qM, C),

1D objects (not necessarily topological)

• Symmetry groups: eiαE ∈ U(1) & eiαM ∈ U(1) due to Dirac quantization
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Generalization

G p-form symmetry in D dimensions is given by

• Symmetry generator U(g,ΣD−p−1): (D − p− 1)-dim. topological object

• Charged object W (q, Cp): p-dim. object

• Symmetry transformation

〈U(g,ΣD−p−1)W (q, Cp)〉 = R(g)q〈W (q, Cp)〉 if linked

33 / 36



Summary

Message

1. Existence of symmetry = Existence of topological objects

2. Symmetry transf. = link of symmetry generators & charged objects

I have reviewed

• Ordinary symmetry: 0-form symmetry

• Symmetry generator U(g,V): 3D topological object

• Charged object Φi(y): 0D object

• Electric & magnetic U(1) 1-form symmetries in Maxwell theory

• Symmetry generators UE(eiαE ,S) & UM(eiαM ,S): 2D topological objects

• Charged objects: Wilson & ’t Hooft loops
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Appendix



Derivation of 0-form symmetry transf. - I

I will show that

Ward-Takahashi identity

i〈∂µjµ(x)Φi(y)〉 = δ4(x− y)M i
j〈Φj(y)〉

Derivation: in the path integral formalism, 〈∂µjµ(x)Φi(y)〉 is given by

〈∂µjµ(x)Φi(y)〉 = N
∫
DΦ∂µj

µ(x)Φi(y)eiS[Φ].

∂µjµ(x) can be written as

∂µj
µ(x) = − δ

δε(x)
S[Φi + ε(x)M i

jΦ
j ]
∣∣∣
ε(x)=0

since jµ(x) is given by S[Φi + ε(x)M i
jΦ

j ]− S[Φi] = −
∫
d4xε(x)∂µjµ(x).



Derivation of 0-form symmetry transf. - II

〈∂µjµ(x)Φi(y)〉 is then rewritten as

〈∂µjµ(x)Φi(y)〉 =−N
∫
DΦ δ

δε(x)
S[Φi + ε(x)M i

jΦ
j ]Φi(y)eiS[Φ]

∣∣∣
ε(x)=0

=−
1

i
δ

δε(x)
N
∫
DΦΦi(y)eiS[Φi+ε(x)Mi

jΦ
j ]

∣∣∣∣
ε(x)=0

.

By redefinition Φi(x) + ε(x)M i
jΦ

j(x)→ Φi(x), we have

〈∂µjµ(x)Φi(y)〉 =−
1

i
δ

δε(x)
N
∫
DΦ(Φi(y)− ε(y)M i

jΦ
j(y))eiS[Φi]

∣∣∣∣
ε(x)=0

=
1

i
δ4(x− y)M i

jN
∫
DΦΦj(y)eiS[Φi].

(if there is an anomaly, redefinition of DΦ should also be considered)



Derivation of 0-form symmetry transf. - III

Therefore, we obtain

i〈∂µjµ(x)Φi(y)〉 = δ4(x− y)M i
j〈Φj(y)〉

[back]



Large gauge invariance of Wilson loop eiqE
∫
C aµdx

µ

qE ∈ Z is required for U(1) gauge theory.

If the gauge group is U(1),

• The gauge parameter λ in eiλ ∈ U(1) can be periodic, λ+ 2π ∼ λ.

(The gauge parameter and gauge field are normalized by the periodicity.)

• λ can have a winding number:
∫
C ∂µλdx

µ ∈ 2πZ.

• Wilson loop should be gauge invariant even for winding λ:

eiqE
∫
C aµdx

µ
→ eiqE

∫
C aµdx

µ
eiqE

∫
C ∂µλdx

µ

• Thus, we have eiqE
∫
C ∂µλdx

µ
= 1 implying qE ∈ Z.

Large gauge invariance → Dirac quantization



Dirac quantization

• By the Stokes theorem, we also have

eiqE
∫
C aµdx

µ
= e

iqE
∫
SC

1
2!
fµνdS

µν

= e
iqE

∫
S′
C

1
2!
fµνdS

µν

,

which implies

e
iqE

∫
SC∪S′

C

1
2!
fµνdS

µν

= eiqE
∫
S

1
2!
fµνdS

µν
= 1.

• For qE = 1, we have ∫
S

1

2!
fµνdS

µν ∈ 2πZ,

implying the existence of a magnetic monopole with a quantized charge inside S.

[back]



Derivation of 1-form transformation 0/4

We will evaluate

Correlation function

〈UE(eiαE ,S)eiqE
∫
C aµdx

µ
〉 =

∫
DaeiS+iαEQE(S)+iqE

∫
C aµdx

µ

where S[aµ] = − 1
4e2

∫
d4xfµνfµν .

The correlator can be evaluated by eliminating QE(S) = 1
e2

∫
S
εµνρσ
2!2!

fµνdSρσ

QE(S) can be absorbed to the action.



Derivation of 1-form transformation 1/4

1. Use of Stokes theorem

1st order derivative → 2nd order derivative

∫
S

εµνρσ

2!2!
fµνdSρσ =

∫
∂VS

εµνρσ

2!2!
fµνdSρσ =

∫
VS

ενρστ

3!
∂µf

µνdV ρστ

• VS is a 3d subspace satisfying ∂VS = S.

• dV ρστ is a volume element.



Derivation of 1-form transformation 2/4

2. Use of delta function

Volume integral → spacetime integral

∫
VS

ενρστ

3!
∂µf

µνdV ρστ =

∫
d4x∂µf

µνJν(VS)

• Jν(VS) is an abbreviation of delta function current

Jν(x;VS) =

∫
VS

ενρστ

3!
δ4(x− y)dV ρστ (y).

Jν(x;VS) is non-zero on VS .

Derivation ∫
VS

ενρστ

3!
∂µf

µν
(y)dV

ρστ
(y) =

∫
d
4
x

∫
VS

ενρστ

3!
∂µf

µν
(x)δ

4
(x− y)dV

ρστ

=

∫
d
4
x∂µf

µν
(x)

∫
VS

ενρστ

3!
δ
4
(x− y)dV

ρστ



Derivation of 1-form transformation 3/4

By the redefinition aµ(x)− αEJµ(x;VS)→ aµ, we can

Integrate out QE(S)

∫
DaeiS+iαEQE(S)+iqE

∫
C aµdx

µ
= eiqEαE

∫
C Jν(VS)dxµ 〈eiqE

∫
C aµdx

µ
〉

Derivation

S[aµ − αEJµ(VS)] = S[aµ] +
αE

e2

∫
d
4
xJν(VS)∂µf

µν
+
α2

E

4e2

∫
(∂µJν(VS)− ∂νJµ(VS))

2

= S[aµ] + αEQE(S)

The last term in the 1st line can be regularized by a local counter term.

What is
∫
C Jν(VS)dxµ ?



Derivation of 1-form transformation 4/4

Linking number

∫
C
Jν(VS)dxµ = Link (S, C) ∈ Z

• ∫
C Jν(VS)dxµ = intersection number of VS and C

• It is equal to the linking number of S and C



Therefore, we obtain

Correlation function

〈UE(eiαE ,S)eiqE
∫
C aµdx

µ
〉 = eiαEqE Link (S,C)〈eiqE

∫
C a〉

[back]
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