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What are higher p-form symmetries?

Symmetries under transformations of p-dim. extended objects
.
oA
=C
e.g. a transformation of a Wilson loop (red loop)

® |n this talk, | would like to explain 1-form global symmetries in 4D Maxwell theory.

Why we consider such symmetries?
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Motivations

® Particle physics: based on symmetry for particles (local objects),

e.g. SU(3) x SU(2) x U(1) gauge symmetry
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Motivations

® Particle physics: based on symmetry for particles (local objects),
e.g. SU(3) x SU(2) x U(1) gauge symmetry
However, there can be extended objects in
® Cosmology: domain walls, cosmic strings,...

® String theory: fundamental strings, branes,...

SUSY/SUGRA: BPS solitons,...

Condensed matter: magnetic vortices, magnetic domain walls,...
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Motivations

We can classify phases of matter based on extended objects

E.g. A global symmetry for a Wilson loop W: W — ei®W
\
1A

=€

® Confinement phases (W) — 0: Symmetric phase
® Deconfinement phases (W) — 1: Symmetry broken phase

Charged object W develops VEV.

We can apply this classification to many systems admitting extended objects
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Why global symmetries?

® Global symmetries are physical.
They lead to degeneracy of energy states (as in QM).
® 't Hooft anomalies for global symmetries constrain phase structures,
in particular forbidding non-degenerate gapped vacuum
® Gauge symmetries are introduced as local transformations of global ones.
® Quantum gravity may forbid global symmetries.

Higher-form symmetries may give us some constraints on effective theories

consistent with quantum gravity [Banks & Seiberg '10; Montero et al., '17].
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Purpose of this talk

Introducing higher-form symmetries in terms of field theories.

® | focus on the way to generalize ordinary symmetries to higher-form symmetries.
® | show how to derive higher-form symmetry transformations.

For concreteness, | only consider (3 + 1) D field theories.
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0-form symmetries

as ordinary symmetries



Message

Rephrasing ordinary symmetries in terms of topology.

[ Symmetry transformation

(U(g. V)@ (y)) = R(9)'j(®7(y)) (if linked)

1. Existence of symmetry — Existence of topological object U(g, V)

2. Symmetry generators are conserved /commute with Hamiltonian
— U(g,V) is topological.

3. Symmetry transformation is generated by

commutator — link of U(g, V) and the charged object ®7(y)
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Noether’s theorem

Continuous symmetry — conserved current

Assumption
® d: fields (scalars or fermions, for simplicity)
® Action S[®°] is invariant §S = 0 under §®° = eM*®;®J (c: infinitesimal parameter)
Mi]-: generator of symmetry group G
Existence of conserved current 9,,j# = 0
® Position dependent transf. is given by
S[® + e(x) M?;@7] — S[®?] = —/e(:c)auj“

® The deviation should vanish by EOM
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In quantum theory, Noether theorem is generalized to

[ Ward-Takahashi identity ]

{0 (@)@ (y)) = 8 (x — y) M (P (1))

(...): VEV in the path integral formalism

® Physical meaning: charged object ®*(y) is a source of jH.
Brief derivation: Use the reparameterization

@' (2) = @' (2) + e(a)M" ;87 (2)

in the path integral [detail]
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By integrating the Ward-Takahashi identity,

we have
[ Symmetry transf. by conserved charge ]
i([Q, * (W) eq. = M* (P (y))ca.-
()cq: VEV in the canonical quantization formalism
Derivation

® Integrating both hand sides of i(c’)uj“(z)@i(y)) =%z — y)Mij<<I>j (y))

over Qy = [y° + ¢, y0 — €] x R®

® Using Stokes theorem
Ja, d'2ouit = [ @200 + e, @) = [ @200 — @) = QWO + o) — QW — €
® Explicitly writing the time-ordered product

(RO +6) = Q% — NP (1)) = (TR  +€) — Q° — )P (Y))eq = {[QW?), 2 (Y)])eq
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Some technical problems

If we consider transformations of extended objects,

it may be difficult to generalize the transf. directly.

~° 7

) X3

It may be difficult (or not systematic) to formulate
® Decomposition of time ordering for temporally extended objects
® Symmetry transformation in terms of commutation relation

We would like to rewrite the symmetry transf. so that they are also suitable for

extended objects.
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Rewriting ordinary symmetry transf.

[ Symmetry transf. based on link

{Q(V)®'(y)) = Link (V,y)M"; (D (y))

3(0
V)

0 >) oc's /3

® Charge Q on a time slice — Charge Q(V) on 3D closed subspace V
Q(V) = / Eu3+poju(x)dvupa
%

(dVH¥P is a volume element)

® Commutation relation [,] — link of Q(V) and ®(y)

Q. How to derive this relation?
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Integrating the Ward-Takahashi identity

[ Integral over 4D subspace 2y,

{QW)®'(y) = ( 't (z — y)) M (7 (y))

Qy

Qy: 4D subspace whose boundary is 3D subspace V, 02y, = V.

ib

v
—~ ‘J%

0 > b3

For the left-hand side, | have used/defined
® Stokes theorem
/ d*z, 4" (x) = / SHELO jH (2)dV VPO
Qy v
® Charge on V (dVH#¥P is a volume element)

Q) = [ “pe it (ayav e

For the right-hand side, what is fﬂv d*xét(x —y)?
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Ja, d*z6*(z — y): linking number of V and y

[ Linking number ]

/ d*xé*(x — y) = Link (V,y)
Sy

'>L°
1%

0 D W3

o fﬂv d*xz6*(xz — y) = intersection number of 2y, and y.

® |t is equal to the linking number of V and y.
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Finally, we arrive at

[ Symmetry transf. ]

H(Q(V)®*(y)) = Link (V,y)M*;(®7 (y))
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Finally, we arrive at

[ Symmetry transf. ]

H(Q(V)®*(y)) = Link (V,y)M*;(®7 (y))

We remark that linking number in RHS is a topological invariant.

How about LHS?
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Finally, we arrive at

[ Symmetry transf. ]

H(Q(V)®*(y)) = Link (V,y)M*;(®7 (y))

We remark that linking number in RHS is a topological invariant.

How about LHS?
® Is Q(V) in LHS topological? — Yes.

® What is the origin of the topological property? — Conservation law
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Finally, we arrive at

[ Symmetry transf.

H(Q(V)®*(y)) = Link (V,y)M*;(®7 (y))

We remark that linking number in RHS is a topological invariant.

How about LHS?
® |s Q(V) in LHS topological? — Yes.
® What is the origin of the topological property? — Conservation law
This implies the following generalization:
Q is conserved — Q(V) is topological

Let us see it.
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Conservation — Topology

[ Rephrasing “conservation law” ]

Q is conserved — Q(V) is topological

Under a deformation, V — V' = V+9Q0, y € Q
H{Q(V)®%(y)) = Link (V,y)M*;(®7(y)) is invariant.

X v
.
I3 D 53

® LHS: conservation law Q(V') = Q(V)quaSZU F/“:';!p‘"j“dV""" =QWV)+ f“o dtzo, 5" = Q(V).

® RHS: topological invariance Link (V’,y) = Link (V, y)

We also have a finite symmetry transformation.
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Finite symmetry transformation

By the exponent of Q(V), we also have

[ Finite symmetry transformation

(U(g,V)®" () = R(g)" (27 ()

(if linked)

U(g,V) is a topological unitary operator given by
® symmetry group g € G

® 3D closed subspace V
Comments
® U satisfies <L U(e'™, V)|a=0 = iQ(V)

R(g): representation matrix of g
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Summary (continuous symmetry)

Cont. symmetry under G — Conserved charge Q — Topological object U(g, V)

[ Finite symmetry transformation

(U(g, V)@ (y)) = R(9)" (@ (y)) (if linked)

Some terminology
® U(g,V): symmetry generator, g € G
® di(y) charged object
® This symmetry is called a G 0-form symmetry: the charged object is 0-dim.
Q: How about discrete symmetries?
There may be no conserved currents.
A: Topological objects exist even for the discrete ones.
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Review of discrete symmetry

We consider internal discrete symmetries given by
® g € G: discrete group
® U(g): unitary operator commuting with Hamiltonian & momentum,
[U(g), P*] =0
® Unitary transformation (in can. quant. formalism)
U@ U9 ea = R(9)'5{P? (¥))ea;

R(g)ij: representation matrix

| would like to show that

Existence of U(g) — existence of topological operator U(g, V)
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Existence of topological objects for discrete symmetries

[ Discrete symmetry transf.

(U(g,V)2' () = R(9)"j(®? (y)) (if linked)

® [U(g), P¥] = 0 implies U(g) can continuously move.
— U(g) is topological.
® By the topological deformation of (U(g)®*(y)U(g9) ™ )eq.

we have a symmetry generator U(g, V)

(U@ WU (9) ™ ea = (U(g, V)2 (1))

XM UG) X
_—+—
vt 3
0 P yz,3 9] P 42,3
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Summary (ordinary symmetry)

Existence of symmetry under g € G — Existence of topological object U(g, V)

(rather than invariance of the action)

[ Symmetry transformation ]

(U(g, V)P (y)) = R(g)";(P7 (y)) if linked

R(g)*;: representation matrix
® U(g,V): Symmetry generator
3D, topological object
® di(y) Charged object
0D (not necessarily topological)

® This symmetry is called G 0-form symmetry.
Finding symmetries — Finding topological objects
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1-form symmetries in Maxwell theory

Just conservation laws of electric & magnetic fluxes



Message

There are U(1) electric & magnetic 1-form symmetries.

— time slice

(*e9g G
= . Ve \@

+ime slice

® Symmetry generator: surface integrals of electric & magnetic fluxes
2D topological objects

® Charged objects: Wilson loop & 't Hooft loop
1D objects (not necessarily topological)

® Symmetry groups: U(1) for electric & magnetic symmetries

due to Dirac quantization
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| begin with

[ Maxwell equations without matter

1 .
—Ouf" =0, 9, =0.
&

fuv = Ouay — Opay: field strength of U(1) gauge field ay,
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| begin with

[ Maxwell equations without matter

1 .
S0ufM =0, aufr =0,

fuv = Ouay — Opay: field strength of U(1) gauge field ay,

There are conserved quantities (S: 2D closed surface e.g., a sphere S2)

® Electric flux

QeS) = % [ g fuwds ~ [ B-ds,
S S
® Magnetic flux

QM$=i/ime~/Bd&
S S

We know that Qg(S) & Qwm(S) are topological under deformation of S.

There are symmetries for electric/magnetic fluxes!
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Symmetry for fluxes...?

Symmetry generators are

Ug(S) ~ exp(iQr(S)) and Um(S) ~ exp(iQm(S))
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Symmetry for fluxes...?

Symmetry generators are

UE(S) ~ exp(iQE(S)) and UM(S) ~ exp(iQM(S))

Two questions
1. What are charged objects (= source) for the symmetries?
For an ordinary symmetry, a charged object is ®*(y)
W(Oug (2) 2 (y)) = 6% (z — y)M* ;{7 (y))

2. What are groups parameterizing symmetries?
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Symmetry for fluxes...?

Symmetry generators are

UE(S) ~ exp(iQE(S)) and UM(S) ~ exp(iQM(S))

Two questions
1. What are charged objects (= source) for the symmetries?
For an ordinary symmetry, a charged object is ®*(y)
WO ()" (1)) = 8% (x — y) M*;(P7 (1))
2. What are groups parameterizing symmetries?
Answers
1. Charged objects are
a Wilson loop for the electric flux,
an 't Hooft loop for the magnetic flux.

2. Symmetry groups are U(1) for electric/magnetic fluxes

25/36



Wilson loop W (qg, C) = ele Je andz”

‘Hme slice

Worldline of probe electric particle

® Probe electric particle = Source of electric flux

Electric Gauss law: e%auf‘“’(ac) =qp [o 0*(z — y)dy”
® Worldline is closed: gauge invariance under a;, — a, + OpA
® g € Z: charge of the probe particle

The quantization is required if the gauge group is U(1) [deti]
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U(1) symmetry for electric flux

[ Symmetry transformation of Wilson loop ]

<UE(6'LQE’ S)ein Je audz“> — !OEIE Link (S,C) <ein Je audz“>

.
+ime slice - time slice

_ (o€ 9g G \_,
=< ®/ ®

® Ug(et®E,S) = exp (iagQr(S)): unitary operator of electric flux,

® Link (S,C): linking number of S and C

® Symmetry group is U(1), ag + 27 ~ ag due to the quantization of ¢g.
How to derive it?

® Schwinger-Dyson equation (quantum version of EOM) for agp < 1

® Field redefinition (for finite ag) [derivation]
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Summary of U(1) symmetry for electric flux

[ Symmetry transformation of Wilson loop ]

<UE(8iaE,S)€in Je a“dz“> — eiaEqE Link (S,C)<67LQE Je audz”>

.
‘(‘:me Shce — time shcz

xoieq,s / \_;

® Symmetry generator: Ug(e?®E,S) = exp (iagQr(S))
2D topological object
® Charged object: €'%E Je apdzt
® Symmetry group: e'“E € U(1)
This symmetry is called a electric U(1) 1-form symmetry, since the charged object is

1D.

How about magnetic flux?
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Charged object: 't Hooft loop T'(qum,C)

+time slice -6’\ G
AR Y
) ) \/

Y

Worldline of probe magnetic monopole

® Probe magnetic particle = Source of magnetic flux
Magnetic Gauss law: fS %fﬂyds“” = 2mqMm
® Worldline is closed: gauge invariance of dual photon

® g\ € Z: charge of the monopole

A monopole with quantized charge can exist if gauge group is U(1) [deti]
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U(1) symmetry for conservation of magnetic flux

[ Symmetry transformation of 't Hooft loop

(Uni ("M, 8)T (g, C)) = e’ M Link (SO (g €))

- time Sl-ce

® Upn(e*M,S) = exp (ianiQm(S)): unitary operator of magnetic flux

e ciom: [J(1) parameter, apg + 27 ~ aypp due to the quantization of qyy.

® Link (S,C): linking number of S and C
How to derive it?
® Using QM (S) = qu in the presence of T'(q\, C) if S and C are linked.

® Dualizing the theory to the Maxwell theory with the dual photon.
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Summary of U(1) symmetry for magnetic flux

[ Symmetry transformation of 't Hooft loop ]

(UE(eiaE , S)T(QM,C)> — eiaEqE Link (S,C) <T(QM,C)>

- time sfice

time slice
(¢ G
}’\: ‘ Gg _¢o M3M @/ %
EY

® Symmetry generator: Up(e?M,S) = exp (iayiQum(S))

2D topological object
® Charged object: 't Hooft loop T'(qyp,C)
® Symmetry group: €M € U(1)
This symmetry is also called a U(1) 1-form symmetry, since the charged object is 1D.
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Summary of higher-form symmetries in Maxwell theory without matter

There are U(1) electric & magnetic 1-form symmetries.

+ime slice - time slice

N G
G\® —e 9 @/ \@

-
~

® Symmetry generator: Ug(e?*E,S) & Up(e'*M,S)
2D topological objects

® Charged objects: Wilson loop e%E Je @ude® & 't Hooft loop T(qui, C),
1D objects (not necessarily topological)

® Symmetry groups: e!“E € U(1) & e**M € U(1) due to Dirac quantization
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Generalization

G p-form symmetry in D dimensions is given by
® Symmetry generator U(g,Xp_p—1): (D — p — 1)-dim. topological object
® Charged object W(q,Cp): p-dim. object

® Symmetry transformation

(U9, Ep-p-1)W(q,Cp)) = R(9)7(W(gq,Cp)) if linked

33/36



Summary

Message
1. Existence of symmetry = Existence of topological objects
2. Symmetry transf. = link of symmetry generators & charged objects

| have reviewed
® Ordinary symmetry: O-form symmetry
® Symmetry generator U(g, V): 3D topological object
® Charged object ®*(y): 0D object
® Electric & magnetic U(1) 1-form symmetries in Maxwell theory
® Symmetry generators U (e'*E, S) & Uy (e?*M, S): 2D topological objects
® Charged objects: Wilson & 't Hooft loops
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Appendix



Derivation of 0-form symmetry transf. - |

I will show that

[ Ward-Takahashi identity

(0" (2)2(y)) = 8 (x — y) M (! (1))

Derivation: in the path integral formalism, (9,,5*(z)®*(y)) is given by
(0" @ (1)) =N [ D20, (@) (1)1,

Ouj*(x) can be written as

0ujt (@) = = 507 S[®" + e(x) M’ ;9]

e(x)=0

since j#(z) is given by S[®% + () M?;®I] — S[®?] = — [ d*ze(x)Ouj" (z).



Derivation of 0-form symmetry transf. - Il

(0uj*(z)®*(y)) is then rewritten as

(0" (2) 9 (1)) = — N / DO 525 S[0 + ()M 07]0 (3)ei 1)

e(z)=0

= % I)N/D<I>‘i)1(y) iS[® te(z) M BT]

e(x)=0

By redefinition ®%(z) + e(z)M®;®I(z) — ®(z), we have

(L@ W) =~ ;i N [ DU (W) — ()M 27 ()

e(x)=0

:154(x—y)MijN/qubj(y)eiS[q’i].
7

(if there is an anomaly, redefinition of D ® should also be considered)



Derivation of 0-form symmetry transf. - 11l

Therefore, we obtain
(0" (2) " (y)) = 6% (x — y) M" (D7 (1))

[back]



. . . ; u
Large gauge invariance of Wilson loop ¢'4E Je ande

qe € Z is required for U(1) gauge theory.

If the gauge group is U(1),
® The gauge parameter X in e* € U(1) can be periodic, A + 27 ~ A.
(The gauge parameter and gauge field are normalized by the periodicity.)

® ) can have a winding number: [, 9, Adz# € 27Z.

® Wilson loop should be gauge invariant even for winding \:
ein Je apdat N ein Je apdzt eiqp; Je Opurdzt
i y M . .
® Thus, we have 8 Jc Ourde’ — 1 implying g € Z.

Large gauge invariance — Dirac quantization



Dirac quantization

® By the Stokes theorem, we also have

B ; Rt i ' v
e o apdet _ giam s orfuvdS" elquS/c 21 fuvds
G Se VA

. . 1 uv
iqg [ 7 a1 fuvdsS i 1 nv
e Scusg — B [s a1 furdS*Y _ 1

- < 5

Se

)

which implies

® For qp = 1, we have

1
— fuwdS*Y € 277,
s 2!
implying the existence of a magnetic monopole with a quantized charge inside S.

[back]



Derivation of 1-form transformation 0/4

We will evaluate

f Correlation function

<UE(eiaE,S)ein Je audz’“> _ /Daei5+iaEQE(S)+in Jeo apdz

where Sla,] = — 125 [ d*@ " fuu.
+ime sice < G
N @\
N :
) e 2\
£

2y

The correlator can be evaluated by eliminating Qr(S) = 8% fs 6‘5?’2#]" frvdsee

QE(S) can be absorbed to the action.



Derivation of 1-form transformation 1/4

1. Use of Stokes theorem

f 1st order derivative — 2nd order derivative

)

212! 212!

/€NVP¢7 fpudspo :/ €uvpo f,u,udspa —
S Vs

8

€vpoT

3!

Oy frrdveeT

Ry

® Vs is a 3d subspace satisfying 0Vs = S.

® JVP?T is a volume element.

Vs



Derivation of 1-form transformation 2/4

2. Use of delta function

Volume integral — spacetime integral

/ Eupa‘r f[,“/dv/)o‘T — /d4m8#f””J,, (VS)
ve 3

® J,(Vs) is an abbreviation of delta function current
Julaivs) = [T - y)averT(y)
vs 3!
Ju(x; Vs) is non-zero on Vs.

Derivation

LT By 1 (1) AV PO (y) = ate | e””#a P (@)8" (@ — y)aveoT
. ETR 31 =
< 3l

_ /44198 f‘“’(x)/ EVPUT 54 (a0 — y)avroT



Derivation of 1-form transformation 3/4

By the redefinition ay, () — agJu(x; Vs) — au, we can

L

[ Integrate out Qg(S)

/Daei5+iaEQE(S)+in Jo apdzt _ elIEOE Je Jv(Vs)dat <ein Je aud:t“>

Derivation
ag 4 v O‘% . . 2
S[au - O‘EJM(VS)] = S[au] + eT /d ZJ,,(VS)G,,,f +F /(()w Ju(Vs) — 0uJu(Vs))
= Slau] + agQr(S)

The last term in the 1st line can be regularized by a local counter term.

What is [, J,(Vs)dat ?



Derivation of 1-form transformation 4/4

[ Linking number

/ Ju(Vs)dat = Link (S,C) € Z
C

® [ Ju(Vs)dat = intersection number of Vs and C

® |t is equal to the linking number of S and C

+we slice

Vs G\L
®, >




Therefore, we obtain

f Correlation function ]

<UE(eio¢E , S)ein Je audz“> _ eiaEqE Link (S,C) (ein Je a.)

[back]
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