Welcome workshop: 11/24/2020

Model building in Pati-Salam models

Junichiro Kawamura room: G437

IBS-CTPU

Research interests

phenomenology of beyond the Standard Model [SM]

- supersymmetry
 - for gauge hierarchy, LSP dark matter, gauge coupling unification
 - LHC/DM/Higgs physics where wino is heavier than gluino
- vector-like particle (4th family quark/lepton)
 - as a mediator for Dark Matter [DM] annihilation
 - explain anomalies in $(g-2)_{\mu}$, $b \to s\ell\ell$
- flavor structure
 - "flavon" for Froggatt-Nielsen mech. stabilized with Higgs
 - analyze moduli/anomaly mediation in 10D SYM with magnetic flux

Pati-Salam unification

$$G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y \subset SU(4)_C \times SU(2)_L \times SU(2)_R = G_{PS}$$

$$(4,2,1) \to (3,2)_{\frac{1}{6}} + (1,2)_{\frac{1}{2}} \qquad Q_L = (q_L \quad \ell_L) = \begin{pmatrix} u_L & v_L \\ d_L & e_L \end{pmatrix}$$

$$(\overline{4},1,2) \to (\overline{3},1)_{\frac{2}{3}} + (\overline{3},1)_{-\frac{1}{3}} \qquad Q_R^c = \begin{pmatrix} u_R^c & v_R^c \\ d_R^c & e_R^c \end{pmatrix}$$

$$+(1,1)_{-1} + (1,1)_0$$

quarks and leptons are unified into two multiplets

Pati-Salam unification

$$\triangleright G_{PS} = SU(4)_C \times SU(2)_L \times SU(2)_R$$

- hypercharge is quantized: $Y = \frac{1}{2}(B L) + T_{3R}$
- no dangerous gauge/Higgs boson triplets
- may be realized in an orbifold Grand Unification Theory [GUT]

Coupling unifications
$$Q_L = (q_L \quad \ell_L), \qquad Q_R^c = \begin{pmatrix} u_R^c & v_R^c \\ d_R^c & e_R^c \end{pmatrix}$$

$$\mathcal{L} \supset y_{ij} \ Q_{L_i} \mathcal{H} \ Q_{R_j}^c \qquad \qquad \mathcal{H} = \begin{pmatrix} H_u \\ H_d \end{pmatrix}$$

- Yukawa couplings are unified wo/ PS breaking
- better fit to quark/lepton mass/mixing than SO(10) GUT 1703.09309, S.Raby et.al
- orbifold GUT may require gauge coupling unification

Objectives

1. explain baryon asymmetry in PS

- thermal leptogenesis
- lepto-axiogenesis
- else ?

2. TeV-scale leptoquark from PS

- light leptoquark consistent with Yukawa structure
- ullet relation to flavor observables, particularly B anomalies

Leptogenesis

baryon asymmetry

our world is made of matter, but not of anti-matter

Sakharov condition

C/CP violation

out of equilibrium

asymmetry from Majorana neutrino

$$Y_{\nu} \overline{\ell} H_{u} \nu_{R}^{c} + \frac{1}{2} M_{R} \nu_{R}^{c} \nu_{R}^{c} \longrightarrow m_{\nu} \sim \nu_{H}^{2} Y_{\nu} M_{R}^{-1} Y_{\nu}^{T}$$
 see-saw mech.

- Majorana mass violates lepton number
- lepton number is converted to baryon number via EW sphaleron

Thermal leptogenesis in PS

Yukawa unification predicts $Y_{\nu} \sim Y_{u}$

$$\rightarrow$$
 $m_{\nu} \sim v_H^2 Y_{\nu} M_R^{-1} Y_{\nu}^T \sim v_H^2 Y_u M_R^{-1} Y_u^T$

- \checkmark Y_u is hierarchical, c.f. $(m_u, m_c, m_t) \sim (10^{-3}, 1, 100)$ GeV
- ✓ mixing in Dirac Yukawa may be small for CKM matrix

e.g. 0507045, R.Dermisek, S.Raby

small ν mass diff. large ν mixing

• hierarchical Majorana mass $\sim (10^9, 10^{11}, 10^{14})$ GeV

- N_1 has sizable coupling with au via "top" Yukawa
- too strong wash-out for N_1
- leptogenesis via N_1 looks difficult sol.1) production via N_2 into (e, μ) direction (?) sol.2) other mechanism

Lepto-axiogenesis

R.T.Co, K.Harigaya et.al, 1910.02080, 2006.05687

asymmetry from Peccei-Quinn [PQ] field dynamics

$$V_P = m_P^2 |P|^2 + \frac{|P|^{2n-2}}{\Lambda^{2n-6}} + \left(A_P \frac{P^n}{\Lambda^{n-3}} + h.c.\right)$$

PQ number is generated via kick by A-term

*similarly to Affleck-Dine mech.

Conversion of asymmetry

PQ number --> lepton/Higgs number --> B-L number

Yukawa sphaleron Weinberg op.

 $(\ell H)^2/\Lambda$

Axion quality in PS model

JK, S.Raby 2009.04582

> Axion quality

 $U(1)_{PO}$ is anomalous global symmetry to solve strong CP problem

may be broken by higher-order effects, e.g. gravitational int.

$$V_{PQV} \supset A_P \frac{P^n}{\Lambda^{n-3}} \longrightarrow \Delta \theta_{QCD} \sim 10^{63-8n} \stackrel{\text{when } A_P, f_P, \Lambda}{\sim 10^5, 10^{10}, 10^{18} \text{ GeV}}$$
 $\longrightarrow n \gtrsim 10 \text{ is necessary for axion "quality"}$

- \succ SUSY Pati-Salam with non-anomalous $Z_R^4 \times Z_N$ symmetry
 - anomalous $U(1)_{PQ}$ arises accidentally
 - R-parity can be violated sizably if there are two PQ fields
 - A-term $A_P P^n$ $(n \ge 10)$ is allowed by discrete sym. \longrightarrow axiogenesis

Objectives

1. explain baryon asymmetry in PS

- thermal leptogenesis
- lepto-axiogenesis
- else ?

2. TeV-scale leptoquark from PS

- light leptoquark consistent with Yukawa structure
- relation to flavor observables, particularly B anomalies

Light vector leptoquark in PS

 \triangleright gauge boson of $SU(4)_C$

$$V_{\mu}^{PS}=egin{pmatrix} G_{\mu} & X_{\mu} \ X_{\mu}^{\dagger} & V_{\mu}^{B-L} \end{pmatrix}$$
 V_{μ}^{B-L} : B-L gauge boson

: gluon

 X_{μ} : leptoquark, $\sim SU(4)_{C}/SU(3)_{C}$

- relation to anomalies
 - anomaly reported in $b \rightarrow s\mu\mu, c\tau\nu$
 - TeV-scale leptoquark is a solution

However...

limit on leptoquark in "minimal" model is at PeV by $K_L \rightarrow \mu e$

1903.10434 J. Aebischer et.a

TeV scale leptoquark in PS

JK et.al, in preparation

 $K_L o \mu e$ can, in principle, be avoided by introducing vector-like fermions 1709.00692, L.Calibbi et.al

We show explicitly that the following texture of mass matrices,

$$M_e^{9\times9} \sim \begin{pmatrix} 0_{3\times3} & m_e & 0_{3\times3} \\ m_d & 0_{3\times3} & M_{\ell_L} \\ m_{\ell_R} & 0_{3\times3} & 0_{3\times3} \end{pmatrix} \qquad M_d^{9\times9} \sim \begin{pmatrix} 0_{3\times3} & m_e & m_{Q_L} \\ m_d & 0_{3\times3} & 0_{3\times3} \\ 0_{3\times3} & M_{Q_R} & 0_{3\times3} \end{pmatrix}$$

- is consistent with Pati-Salam Yukawa matrix unification
- forbids $K_L \to \mu e$ transition, since m_e, m_d is in different block
- TeV scale leptoquark is realized

on-going works

- quantify how precisely the texture should be hold
- flavor violation via scalar, particularly Higgs doublets

Summary

Research interests

- searching for beyond the Standard Model
- model building with SUSY, vector-like fermion, DM, additional symmetry
- LHC, flavor, DM phenomenology
- looking for new ideas, perhaps in astrophysics/string phenomenology

Pati-Salam model

- phenomenology under Yukawa matrix unification
- trying to explain baryon asymmetry via leptogenesis/axiogenesis
- building a model for TeV scale Pati-Salam breaking for light leptoquark

backup

Thermal leptogenesis in PS

Majorana mass from PS breaking

*other options: SU(2) triplets

$$SQ^{c}N + \frac{1}{2}M_{N}NN \qquad Q_{R}^{c} = \begin{pmatrix} u_{R}^{c} & v_{R}^{c} \\ d_{R}^{c} & e_{R}^{c} \end{pmatrix} : (\overline{4}, 1, 2), S: (4, 1, 2), N: (1, 1, 1)$$

$$\begin{pmatrix} \langle S \rangle = v_{S} \neq 0 \\ \text{integrate out } N \end{pmatrix} \longrightarrow \frac{1}{2}M_{R}v_{R}^{c}v_{R}^{c} \qquad M_{R} \sim \frac{v_{S}^{2}}{M_{N}}$$

Research interests

phenomenology of beyond the Standard Model [SM]

> LHC

Flavor violation

DM search

- direct production at TeV scale
- searches for sparticles/vector-like fermion/dark matter
- searches for (rare)flavor violating process
- explain anomaly in $b \to s \ell \ell$
- relation to dark matter

 signals of dark matter via (in)direct detection