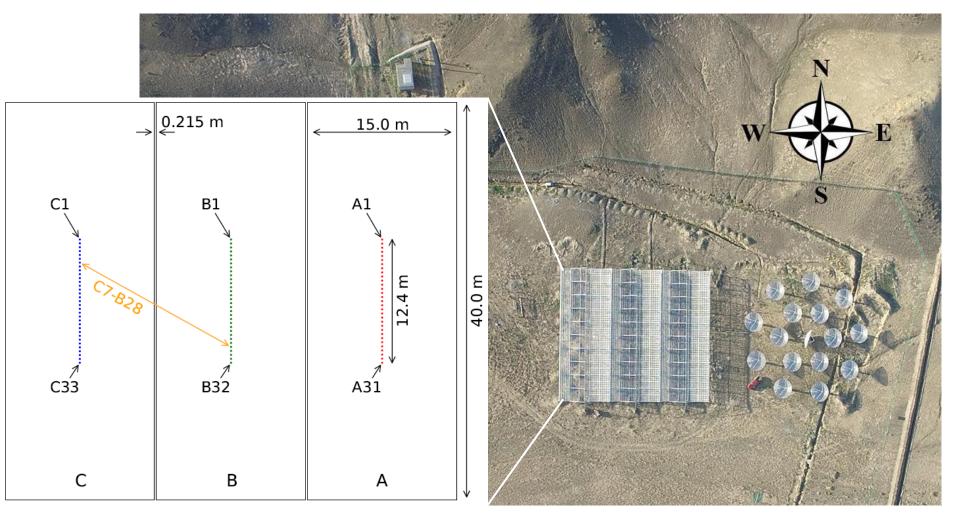


Tianlai cylinder array system and analysis

Jixia Li NAOC, China

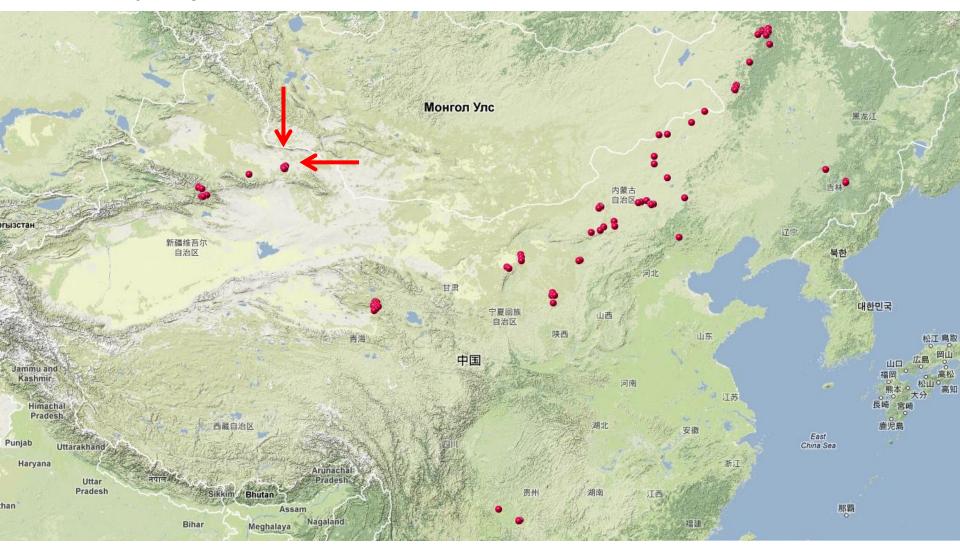
Outline

- Introduction
- Tianlai cylinder system
- Performance analysis
- Reflection analysis
- Summary


Tianlai project: antenna array

Antenna area

- Dish array and cylinder array.
- Comparison of two types of antennas in HI sky survey.
- Calibrator Noise Source (CNS), periodic broadcast


Tianlai project: naming convention

Antenna area

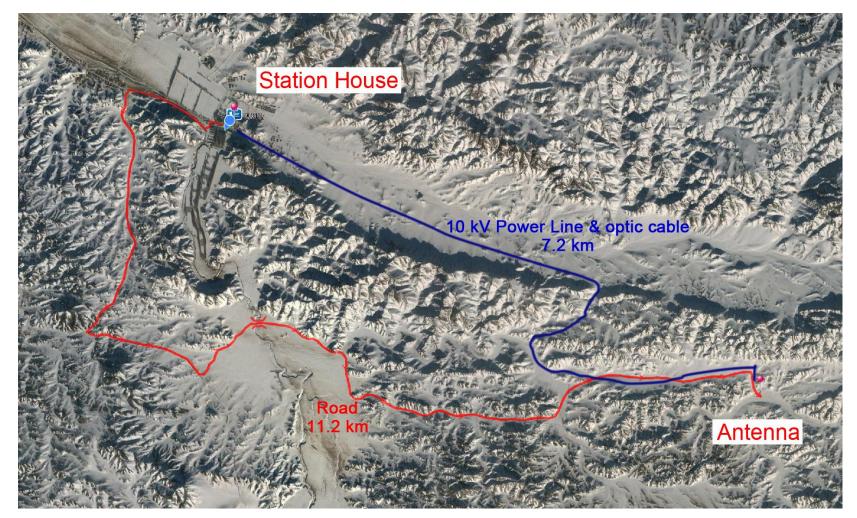
- Dish array and cylinder array.
- Comparison of two types of antennas in HI sky survey.

Tianlai project: location

HongLiuXia Observatory

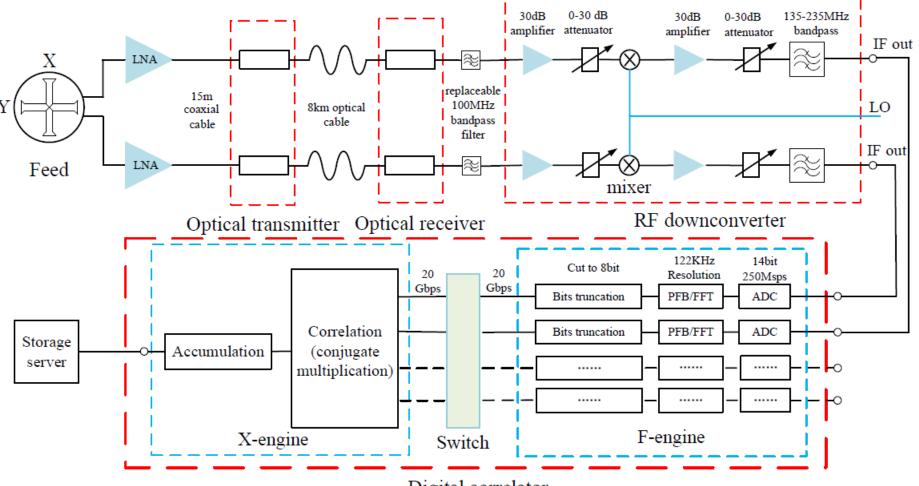
- Dahongliuxia, Balikun, Hami, Xinjiang (E 91.806867 deg; N 44.152683 deg)
- Very radio-quiet.

Tianlai project: radio environment


Current frequency range

- 700-800 MHz, almost none.
- RFI removed later.

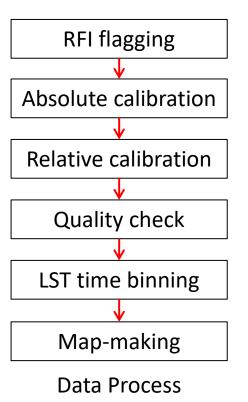
L band RFI source


Navigation, digital broadcasting satellite, communication satellite.

Tianlai project: optic cable

- Station house area
 - 6 km in distance, 11.2 km by road (30 mins' drive).
 - RFI of digital devices are avoided.

Tianlai project: schematic

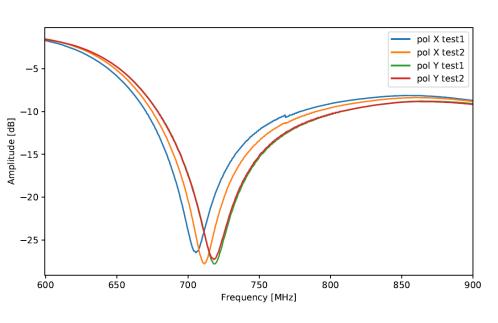


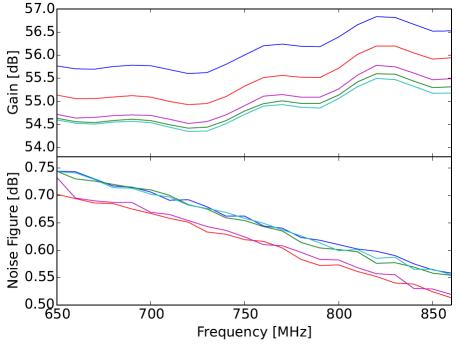
Digital correlator

- Schematic of analog and digital systems.
 - 700-800 MHz
 - 250 Msps, 2048-point FFT, 122 kHz resolution
 - 3.995 sec integration time

Tianlai project: data and process

- Data amount: ~400 TB (>100 days)
- Data transport by hard disks
 - Tianlai site → Beijing (Preliminary analysis) → Tianhe (full scale analysis)
- Data process (tlpipe*)




Data set	Lengths (d)	Malfunction channels
2016/09/27 20:15:37	5	A18Y, A28, B19, C7Y, C9X, C14X, C16, C29Y
2016/10/11 00:49:48	5	A18Y, A28, B19, C7Y, C9X, C14X, C16, C29Y
2016/12/31 20:51:54	17	Many
2017/02/13 19:23:07	5	A18Y, A24Y, B6Y, B26Y, C15X, C7Y
2017/02/24 19:31:07	9	A18Y, A24Y, B6Y, B26Y, C15X, C7Y, C18-C33
2017/08/21 21:26:39	3	A26X, B21X, C3X, C16, A17-A24, C26-C33
2017/09/03 14:32:17	9	A26X, B21X, C3X, C16, A17-A24, C26-C33
2017/09/22 01:33:18	7	A26X, B21X, C3X, C16, A17-A24, C26-C33
2017/09/29 21:42:59	13	A26X, B21X, C3X, C16, A17-A24, C26-C33
2017/12/09 19:21:54	10	A18Y, A24Y, A26X, B26Y, B31X
2017/12/20 19:22:02	4	A18Y, A24Y, A26X, B26Y, B31X
2018/01/21 00:05:35	14	A18Y, A24Y, A26X, B26Y, B31X, C28Y
2018/03/22 18:07:58	9	A18Y, A24Y, A26X, B26Y, B31X, C28Y
2018/03/31 17:08:12	4	A18Y, A24Y, A26X, B26Y, B31X, C28Y
Total	114 d	

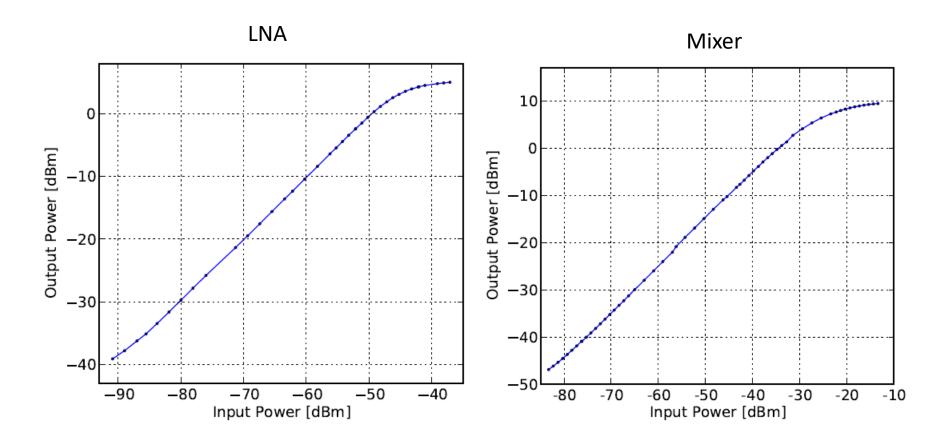
Observation data list

* Shifan Zuo, Jixia Li et al. 2020 (submitted) https://tlpipe.readthedocs.io

Hardware tests: feed S11 & LNA

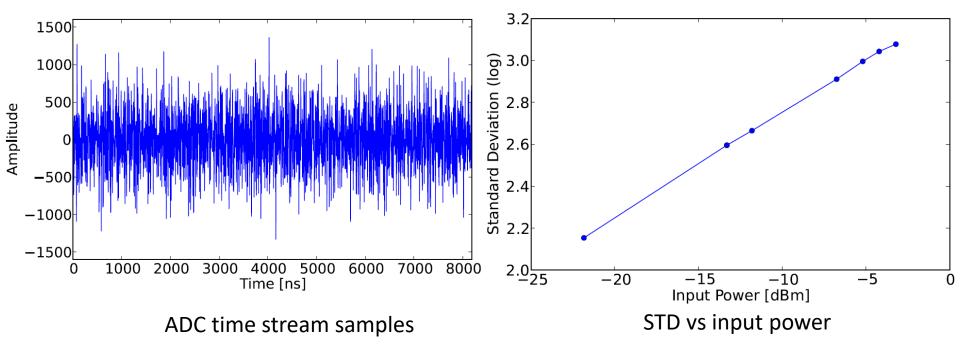
LNA gain and NF

Feed reflection

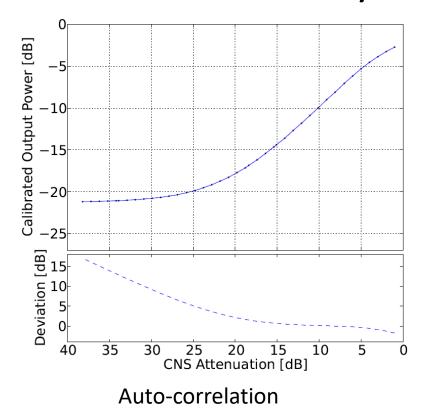

- Test in open space, may have reflections from surround.
- 700-730 MHz < -15 dB very low reflection.
- 730-800 MHz < -9dB.

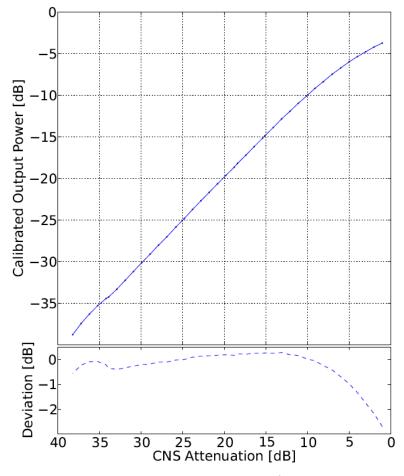
Gain \approx 55 dB NF \approx 0.65 dB, 0.1 dB variation Noise temperature

$$T = \left(10^{\frac{\text{NF}}{10} - 1}\right) \times T_0$$


 $T_{\rm LNA} \approx 47 \; {\rm K} \; @ \; 290 \; {\rm K}.$

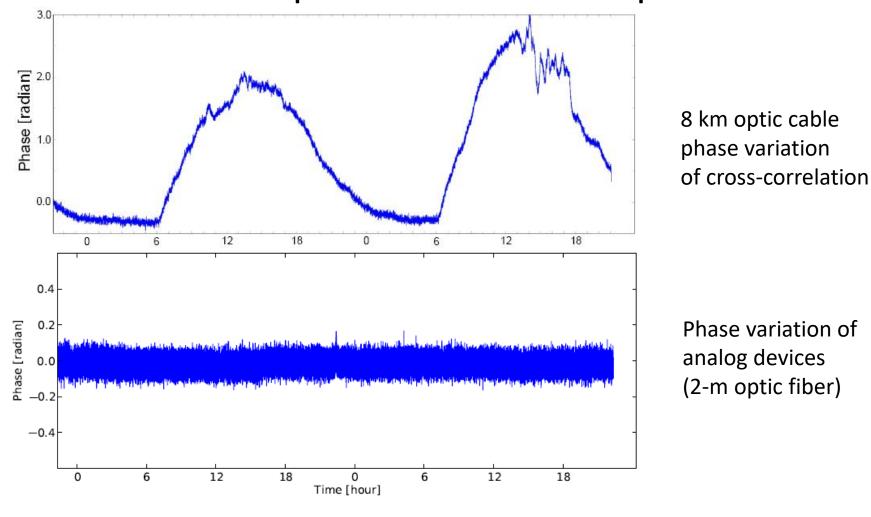
Hardware tests: linearity of LNA and mixer


- Input wideband noise of different levels.
- Measure the total channel power in band.
- Discontinuity caused by attenuations and pre-amplifier of spectrum.
- Good linearity.

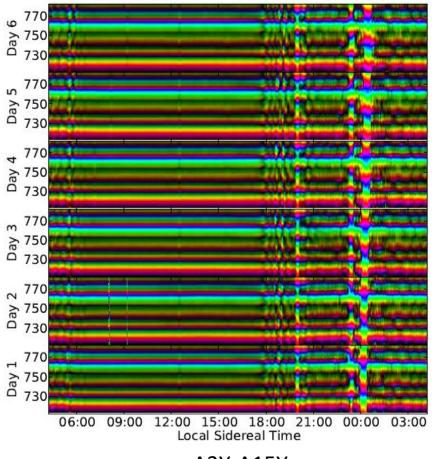

Hardware tests: linearity of ADC

- Input wideband noise of different levels.
- Take down ADC time stream samples.
- Calculate standard deviation of the raw samples.
- Current @ -13 dBm / 125 MHz at night when no source
 - 30 dB + 30 dB electric control attenuator inside mixer
 - 5 % of total AD range (14 bits).

Hardware tests: linearity



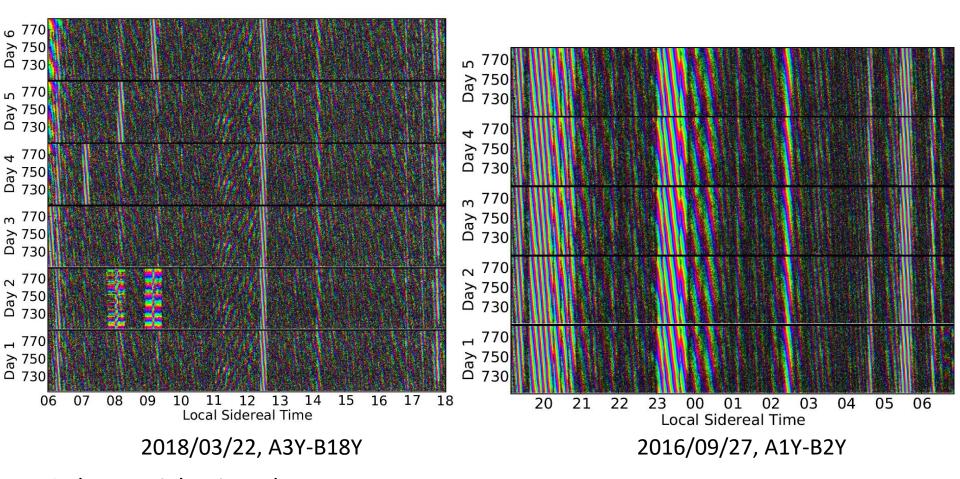
Cross-correlation


- Input Calibrator Noise Source (CNS) of different levels.
 - Levels achieved with different attenuators.
- Calculate the auto- and cross-correlation amplitude.
- Auto-correlation
 - $-~\sim10~dB$ range; P1dB point $\approx-3~dB$; ground level: noise and sky signal.
- Cross-correlation
 - > 35 dB range.


Hardware tests: phase variation of optic cable

- 50 Om shared by power splitter; 2 days continuous observation.
- Instrumental phase variation mostly comes from optic cable part.
- Most of the signal chains: $\Delta \phi < 2\pi$
- Strongly related to temperature.

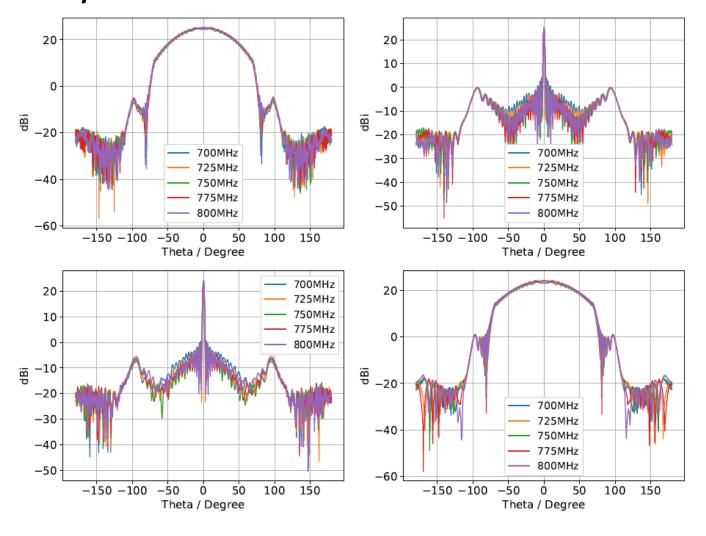
Visibility fringes: raw data


A3Y-A15Y

- 2018/03/22 data, 6 days' continuous observation.
- Rebinned to 488 kHz, 20-second integration time.
- Short baselines→stronger cross couplings.
- Sources: Moon, Virgo A, Sun, Dish reflections.

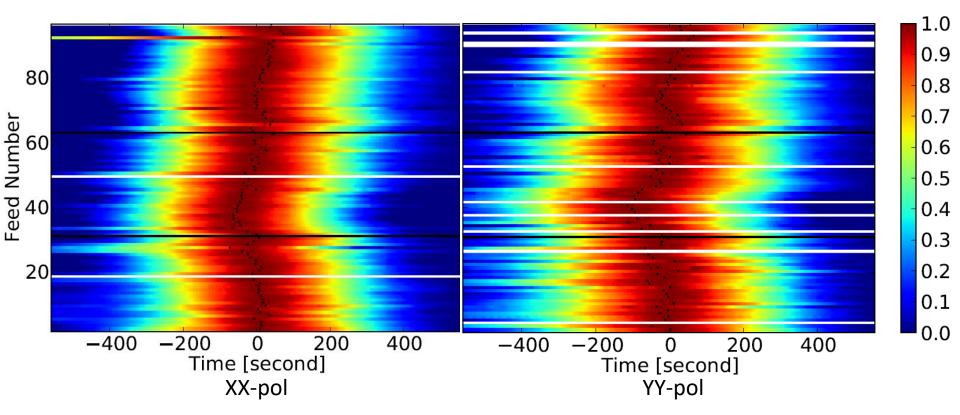
A3Y-B18Y

Visibility fringes: remove cross couplings

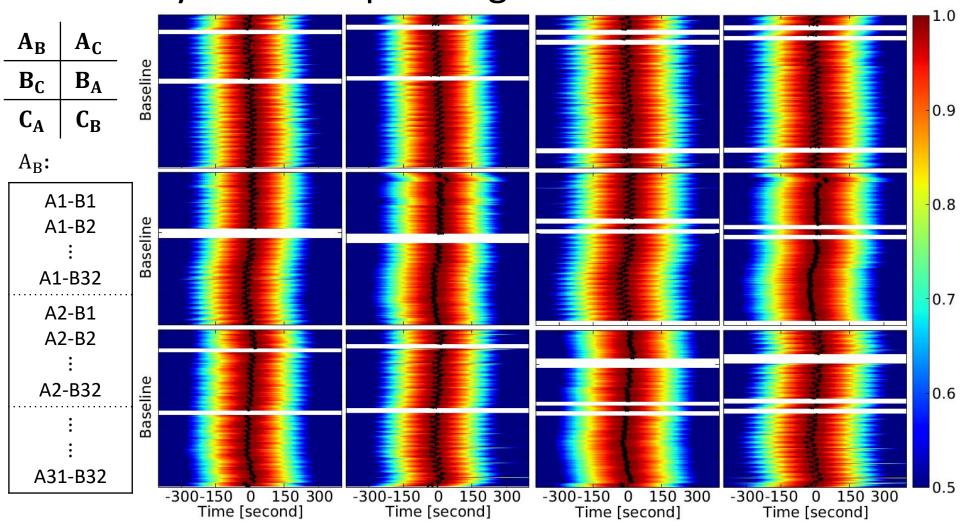

- Only use night-time data.
- Darker sources are visible after cross-couplings removed by smoothed moving average.
- 2018/03/22: spring night. 2016/09/27: autumn night.
- Recognize sources for full sky.

Visible Sources

Source	RA	Zenith (deg)	Flux (Jy)	Source	RA	Zenith (deg)	Flux (Jy)
3C 010	00:25	20.0	62	3C 295	14:11	8.1	37
3C 058	02:05	20.7	34	Hercules A	16:51	39.2	88
IC 1805	02:32	17.4		3C 353	17:20	45.1	88
3C 084	03:20	2.7	22	GC	17:45	73.0	-
3C 123	04:37	14.5	76	3C 380	18:29	4.6	23
M 1	05:34	22.15	-	3C 392	18:56	42.8	242
M 42	05:35	49.5	-	3C 400	19:23	30.0	673
IC 443	06:16	21.6	190	Cyg A	19:59	3.4	2980
3C 196	08:13	4.1	23	Cyg X	20:28	41.2	-
Hydra A	09:18	56.2	81	NRAO 650	21:12	8.3	48
M 87	12:30	31.8	353	3C 433	21:24	19.1	21
3C 286	13:31	13.6	19	Cas A	23:23	14.7	2861


- 2018/03/22 spring night + 2016/09/27 autumn night.
- Source information obtained from NASA/IPAC Extragalactic Database.
- Flux @ 750 MHz. Some are radio compounds.

Data analysis: beam simulation


Directivity along N-S and E-W direction for both E-plane and H-plane.

Data analysis: beam pointing – auto-correlation

- Source: Cyg A
- Amplitude averaged over all frequency points.
- Amplitude vs time curve fitted by Gaussian; black points are peaks.
- $\sigma_{\rm X} = 31.1 \, {\rm s} \rightarrow 0.099^{\circ}, \, \sigma_{\rm Y} = 38.8 \, {\rm s} \rightarrow 0.123^{\circ}$
- Cyg A is near to Cyg X and Milky Way
 - A linear background is fitted and removed.
 - Confused emission removal introduces errors → cross-correlation is better.

Data analysis: beam pointing – cross-correlation

- Cross-correlation amplitudes vs time. (Only use correlations spanning 2 cylinders.)
- A_B and A_C are similar. Two polarizations are similar.
- General distribution reflects the beam pointing → Calculate average curve.

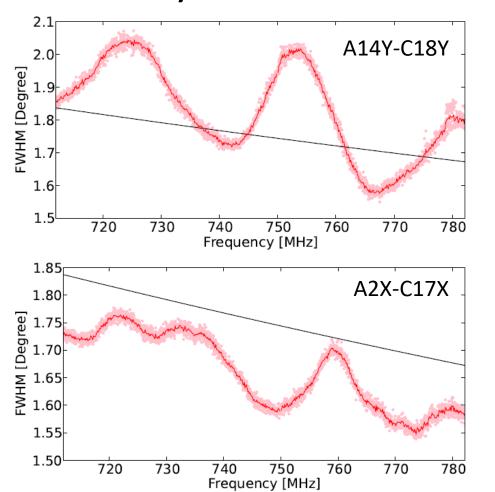
Data analysis: beam pointing - cross-correlation

- For feed Al and Bm, pointing are $\theta_{al}=a_l$ and $\phi_{bm}=b_m$.
- Cross-correlation beam pointing is $\gamma_{al-bm} = \frac{1}{2}(a_l + b_m)$.
- Setup many equations
 - Unknown pointing parameters: 96
 - Number of equations: 6142


$$a_{l} = \frac{1}{M} \sum_{m=1}^{M} \theta_{l,m}^{AB} + \frac{1}{N} \sum_{n=1}^{N} \phi_{l,n}^{AC} - \frac{1}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} \gamma_{m,n}^{BC}$$

$$b_{m} = \frac{1}{N} \sum_{n=1}^{N} \theta_{m,n}^{BC} + \frac{1}{L} \sum_{l=1}^{L} \phi_{m,l}^{BA} - \frac{1}{NL} \sum_{n=1}^{N} \sum_{l=1}^{L} \gamma_{n,l}^{CA}$$

$$c_{n} = \frac{1}{L} \sum_{l=1}^{L} \theta_{n,l}^{CA} + \frac{1}{M} \sum_{m=1}^{M} \phi_{n,m}^{CB} - \frac{1}{LM} \sum_{l=1}^{L} \sum_{m=1}^{M} \gamma_{l,m}^{AB}$$


- Though number of equations >> unknown parameters, a hypothesis:
 - Average pointing error is zero, or at least very small.

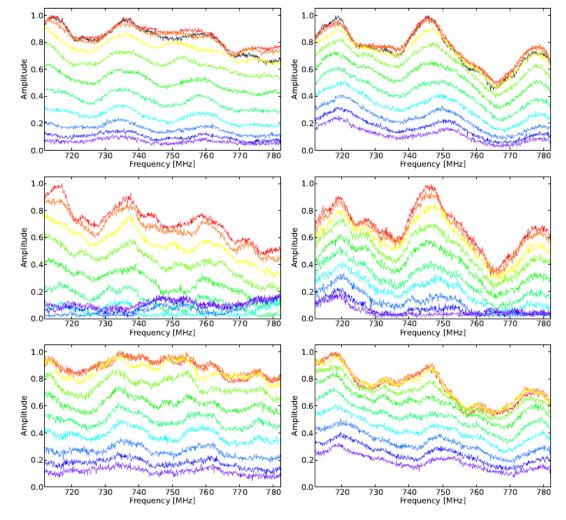
Data analysis: beam pointing – cross-correlation

- Two types of pointing errors
 - Feed supporters → tiny adjustment
 - Feed misalignment: $\sim 0.05^{\circ}$ a proper error for manual installation.
- Introduce errors on precision observations.

Data analysis: beam width - cross-correlation

$$D = \frac{P_{\text{max}}(\theta, \phi)}{P_{\text{mean}}}$$

$$P_{\text{mean}} = \frac{1}{4\pi} \int P(\theta, \phi) d\Omega$$
$$D = \frac{4\pi}{\Omega_{\Lambda}}$$


Effective area

$$A_{\rm e} = \frac{D\lambda^2}{4\pi}$$

$$D_{\rm X} = 25.2 \, \rm{dBi}$$

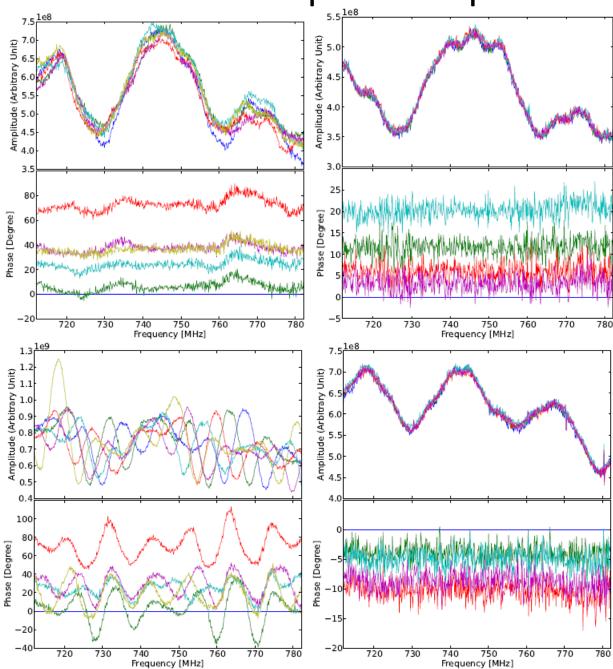
 $D_{\rm Y} = 24.2 \, \rm{dBi}$
 $A_{\rm e}^{\rm X} = 4.22 \, \rm{m}^2$
 $A_{\rm e}^{\rm Y} = 3.35 \, \rm{m}^2$

- . (2010/02/22 Cv~ A)
- Pink dots: 7 days beam width fitted at each frequency. (2018/03/22 Cyg A)
- Red Curve: average over 7 days. Day-t-day variation < 3%
- Wiggles indicate standing waves in antenna. Similar to CHIME (Newburgh et al. 2014)
- Diffraction-limited circular aperture $(1.028\lambda/0.9D)$

Calibration: bandpass of Cyg A

The transit process: Purple → red

A4X-B9X	A4Y-B9Y
A4X-A4X	A4Y-A4Y
B9X-B9X	В9Ү-В9Ү

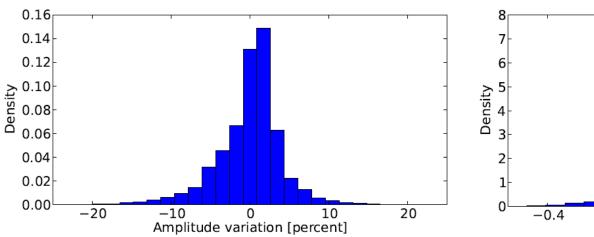

Cyg A flux (Perley, Butler, 2017)

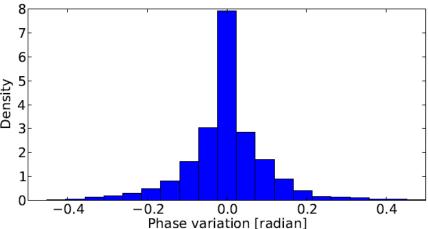
$$\log S = \sum_{n=0}^{5} a_n [\log(\nu)]^n$$

5% difference in band.

- Transit process indicated from purple to red. $\Delta t = 1 \text{ min}$
- Auto-correlation: background noise are removed.
- Black curves are square roots of auto-correlations.
 - Consistent to cross-correlation \rightarrow Cyg A dominates the beam.

Calibration: bandpass comparison


Left: 2018/03/22 Right: 2016/09/27


A2Y-B27Y	A2Y-B3Y
A13X-B31X	A6X-B13X

Phase @ Cyg A:
$$-\frac{2\pi\nu}{c}\vec{n}\cdot\overrightarrow{b_{ij}}+\varphi_{ij}(\nu)$$

- Amplitude and phase are stable among days.
- Sun in side lobe has a significant influence – Cyg A is not dominant any more.

Calibration: absolute calibration (Cyg A)

Strong point source Cyg A:

$$V_{ij}^{0} = S_c G_i G_i^*$$
 $G_i = g_i A_i(\hat{n}_0) e^{-i2\pi \hat{n}_0 \cdot \vec{u}_i}$

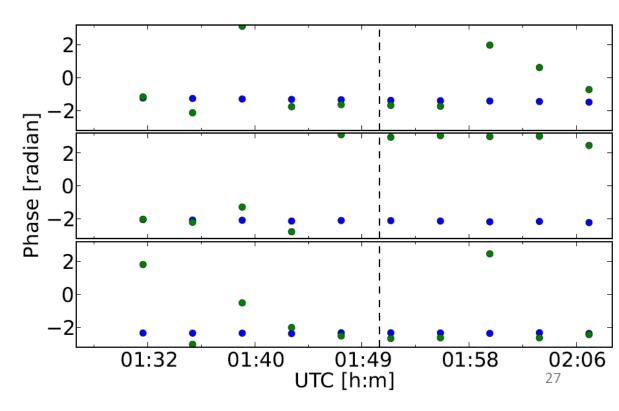
• In matrix form:

$$\mathbf{V}_0 = S_c \mathbf{G} \mathbf{G}^{\dagger}$$

- Solve for **G** by solving for the eigenvectors of matrix $\mathbf{V} = \mathbf{V_0} + \mathbf{N}$ (Zuo et al. 2019)
- Condition:
 - Noise N is small compared to calibrator source.
- Gain variation in 5 days of 2016/09/27.

Calibration: relative calibration (CNS)

- Visibility of CNS (Calibrator Noise Source)
 - Not a point source $V_{ij}^{\rm CNS} \propto S_n e^{-i2\pi(\vec{n}_i\cdot\vec{r}_i-\vec{n}_j\cdot\vec{r}_j)}$
- Remove sky


$$V_{ij}^{\text{on}} - V_{ij}^{\text{off}} \approx C|G_{ij}|e^{-i2\pi\nu\Delta\tau_{ij}}e^{-i2\pi(r_i-r_j)/\lambda}$$

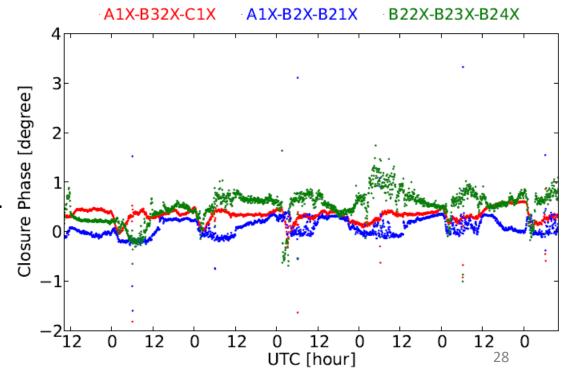
- Relative calibration tracks the instrumental phase variation.
- For feed channels
 - Fit baselines
 - $-t \rightarrow 0, \Delta \varphi \rightarrow 0$
- Comparison

Blue dots: relative calibration

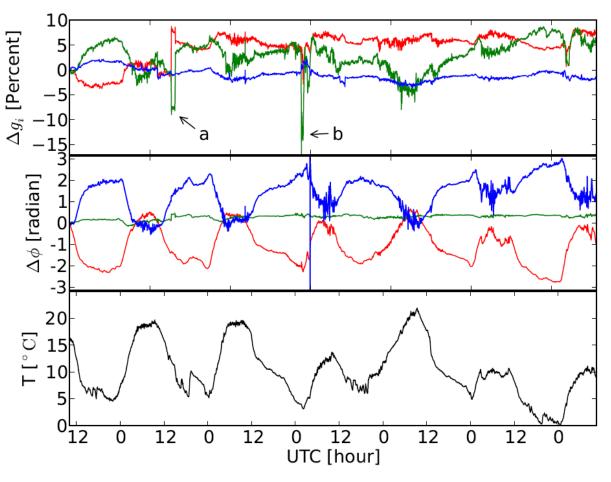
Green dots: absolute calibration

Two calibration results are consistent @ Cyg A

Calibration: relative calibration (CNS)


- Visibility of CNS (Calibrator Noise Source)
 - Not a point source $V_{ij}^{\mathrm{CNS}} \propto S_n e^{-i2\pi(\vec{n}_i\cdot\vec{r}_i-\vec{n}_j\cdot\vec{r}_j)}$
- Remove sky

$$V_{ij}^{\text{on}} - V_{ij}^{\text{off}} \approx C|G_{ij}|e^{-i2\pi\nu\Delta\tau_{ij}}e^{-i2\pi(r_i-r_j)/\lambda}$$


- Relative calibration tracks the instrumental phase variation.
- For feed pairs
 - $-\Delta \varphi_{\rm inst} = \Delta \varphi_{\rm CNS}$
- Check by closure phase
 - The closure phase:

$$\phi_{ij} + \phi_{jk} + \phi_{ki} = 2N\pi$$

- Baselines are calibrated individually.
- Deviations mostly < 1°.
- Large deviations @ Sun

Calibration: stability of gain

2018/03/22, 6 days' variation of gain. Take 1st day as reference.

- Gain of single feed channel
- $\Delta \phi$ correlated with temperature
 - Optic cable result
- Gain:
 - Low at night
 - High in daytime
 - Larger variation in daytime.
- "a"
 - Dish pointing changed
- "b"
 - The rising Sun.
- Other variations
 - Rapid temperature change.
 - Big wind.
 - Unknown reasons.
- Amplitude may be inaccurate

System Temperature & SEFD

- Flux calibration by Cyg A
- Received power for single polarization channel

$$P_{\nu} = \frac{1}{2} \eta A_e f_{\rm ps} S_0$$

- Point source power $P_{\nu} = \eta k T_{A}^{ps}$ (Antenna temperature T_{A}^{ps})
- For feed pair *ab*

$$V_{ab}^{\rm ps} = CT_A^{\rm ps}$$

- Method 1, auto-correlation
 - Receiver noise dominate

$$\bar{V}_{aa} = \langle n_a^* n_a \rangle = C T_{\rm sys}^{aa}$$
 $T_{\rm sys}^{aa} = \frac{V_{aa} T_A^{\rm ps}}{\Lambda V_{\rm ps}^{\rm ps}}$

$$T_{\rm sys}^{aa} = \frac{V_{aa} T_A^{\rm ps}}{\Delta V_{aa}^{\rm ps}}$$

Method 2, variation of auto-correlation

of auto-correlation
$$\sigma_{aa}^2 \equiv \langle |V_{aa} - \bar{V}_{aa}|^2 \rangle \quad \sigma_{aa} = C \frac{T_{\rm sys}^{aa}}{\sqrt{\delta \nu \delta t}} \qquad T_{\rm sys}^{aa} = \frac{\sigma_{aa}}{\Delta V_{aa}^{\rm ps}} T_A^{\rm ps} \sqrt{\delta \nu \delta t}$$

Method 3, variation of cross-correlation

$$\sigma_{ab}^{2} \equiv \langle |V_{ab} - \bar{V}_{ab}|^{2} \rangle \ \sigma_{ab} = C \frac{T_{\rm sys}^{ab}}{\sqrt{\delta \nu \delta t}} \qquad T_{\rm sys}^{ab} = \frac{\sigma_{ab}}{V_{ab}^{\rm ps}} T_{A}^{\rm ps} \sqrt{\delta \nu \delta t}$$

$$T_{\rm sys}^{aa} = \frac{\sigma_{aa}}{\Delta V_{aa}^{\rm ps}} T_A^{\rm ps} \sqrt{\delta \nu \delta t}$$

$$T_{\rm sys}^{ab} = \frac{\sigma_{ab}}{V_{ab}^{\rm ps}} T_A^{\rm ps} \sqrt{\delta \nu \delta t}$$

- Transfer cross $T_{\rm sys}^{ab}$ to auto $T_{\rm sys}^{aa}$
- Same method in solving for pointing of cross-correlation.

System Temperature & SEFD

$$T_{\rm sys}^{aa} = \frac{\bar{V}_{aa} T_A^{\rm ps}}{\Delta V_{aa}^{\rm ps}} \qquad T_{\rm sys}^{aa} = \frac{\sigma_{aa}}{\Delta V_{aa}^{\rm ps}} T_A^{\rm ps} \sqrt{\delta \nu \delta t}$$

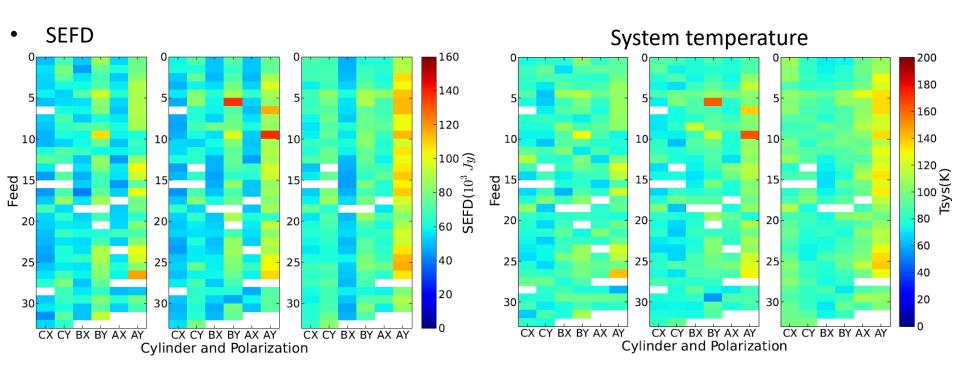
$$T_{\rm sys}^{ab} = \frac{\sigma_{ab}}{V_{ab}^{\rm ps}} T_A^{\rm ps} \sqrt{\delta \nu \delta t}$$

SEFD (System Equivalent Flux Density)

$$SEFD \equiv \frac{2kT_{\rm sys}}{A_e} = \begin{cases} f_{\rm ps}S_0 \frac{\bar{V}_{aa}}{\Delta V_{aa}^{\rm ps}} \\ f_{\rm ps}S_0 \frac{\sigma_{aa}\sqrt{\delta\nu\delta t}}{V_{aa}^{\rm ps}} \\ f_{\rm ps}S_0 \frac{\sigma_{ab}\sqrt{\delta\nu\delta t}}{V_{ab}^{\rm ps}} \end{cases}$$

- SEFD contains effective area: A_e
- From beam simulation, we have:

$$f_{\rm ps}^{X} = 0.9795, f_{\rm ps}^{Y} = 0.9908$$

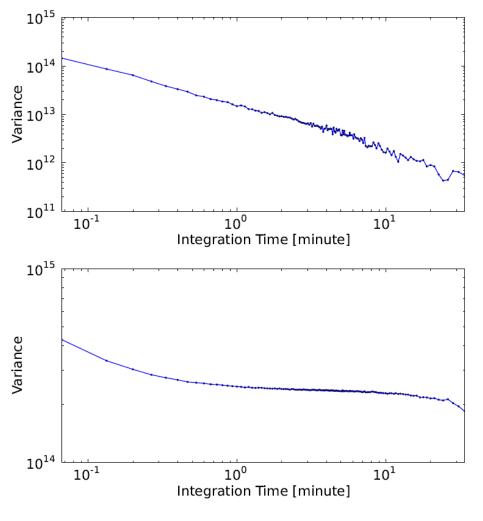

$$A_e^X = 4.22 \text{m}^2$$
, $A_e^Y = 3.35 \text{m}^2$

System Temperature & SEFD

$$T_{\rm sys}^{aa} = \frac{\bar{V}_{aa} T_A^{\rm ps}}{\Delta V_{aa}^{\rm ps}}$$

$$T_{\rm sys}^{aa} = \frac{\sigma_{aa}}{\Delta V_{aa}^{\rm ps}} T_A^{\rm ps} \sqrt{\delta \nu \delta t}$$

$$T_{\rm sys}^{ab} = \frac{\sigma_{ab}}{V_{ab}^{\rm ps}} T_A^{\rm ps} \sqrt{\delta \nu \delta t}$$


Pol	M1	M2	M3
X	55.1 <u>±</u> 6.4	53.9±5.83	60.1±7.92
Υ	75.1±13.3	77.5±16.0	81.4±15.3

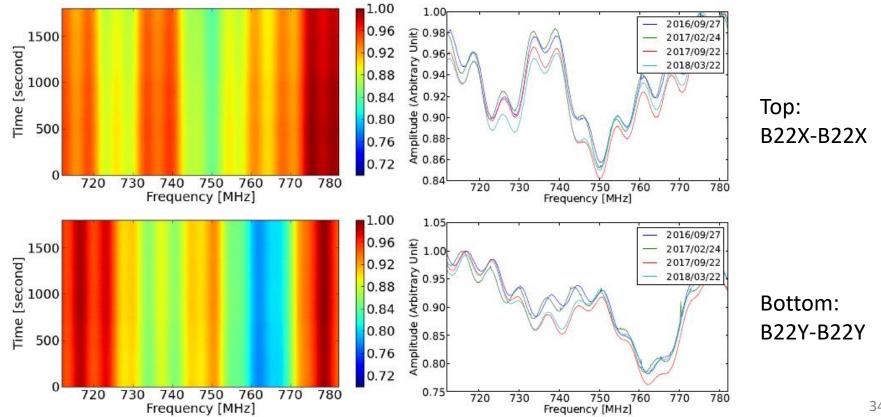
Pol	M1	M2	M3	Mean
X	81.4	81.6	90.9	84.8
Υ	91.0	91.7	96.7	93.3

(Unit: 10³Jy)

(Unit: K)

Data analysis: integration time

To observe HI, we should integrate data to suppress noise. How long?


Different cylinders: A1Y-B2Y (2018/03/22 night)

Same cylinder: A1Y-A2Y (2018/03/22 night)

- Short baselines hit ground ~ 1 minute.
- North-south baselines suffer heavy cross-coupling noises.
- Better to use long baselines spanning difference cylinders.

Reflections: stable wiggles

- Frequency response of individual device is flat.
- Stable sinusoidal wiggles in auto-correlation.
 - Wiggles are stable even in years.
 - Non-smooth structure makes foreground removal complex.

Reflections: model

- Reflections exist in signal chain.
 - Impedance mismatch.
- Voltage with reflection

$$\mathcal{E}'(v,t) = \mathcal{E}(v,t) + \epsilon(v)\mathcal{E}(v,t)$$

Reflection coefficient

$$\epsilon(\nu) = A e^{i(2\pi\nu\tau + \phi)}$$

Visibility with reflection
$$V' = [1 + (\epsilon + \epsilon^*) + \epsilon^* \epsilon)] \langle \mathcal{E}^* \mathcal{E} \rangle$$

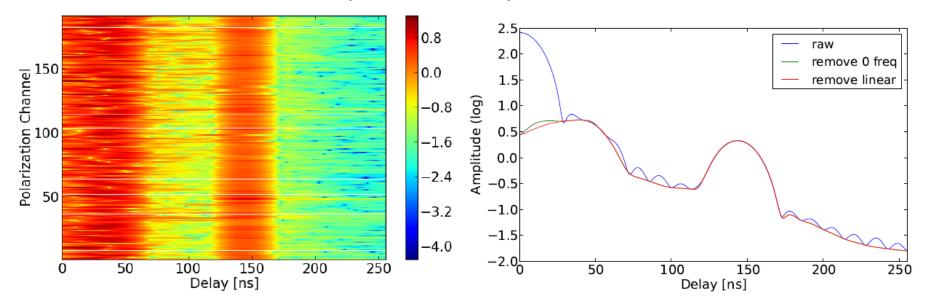
$$= [1 + 2A\cos(2\pi\nu\tau + \phi) + A^{2}]V$$

Multi-interfaces reflection

$$\mathcal{E}'_{i} = (1 + \epsilon_{i})\mathcal{E}_{i} \qquad \mathcal{E}'(\nu, t) = \mathcal{E}(\nu, t) \prod_{j} [1 + \epsilon_{j}(\nu)]$$

$$V' = V \prod_{i} [1 + 2A_{i} \cos(2\pi\nu\tau_{i} + \phi_{i}) + A_{i}^{2}]$$

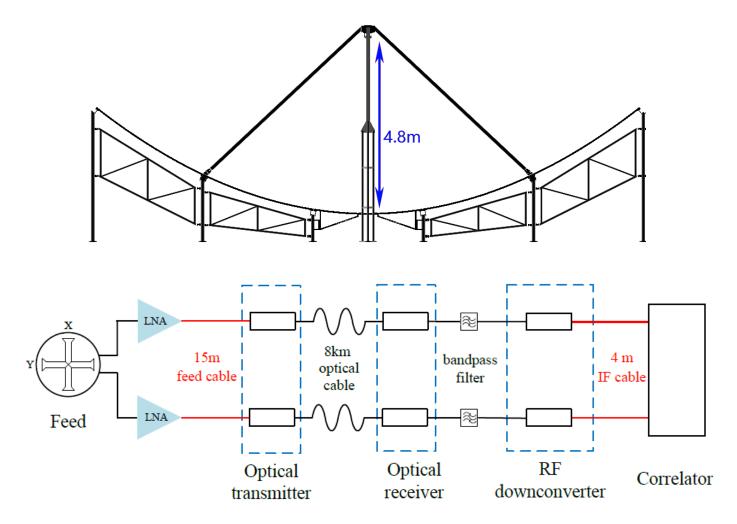
Reflections: delay transform


Fourier transforming the auto-correlation spectrum into delay spectrum:

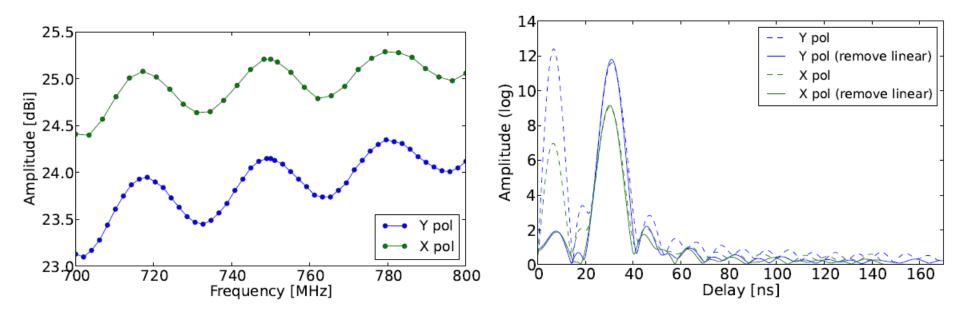
$$\tilde{V}(\tau) = \int W(\nu)V(\nu)e^{i2\pi\nu\tau}d\nu$$

In discrete form (Hann window to decrease spectrum leakage):

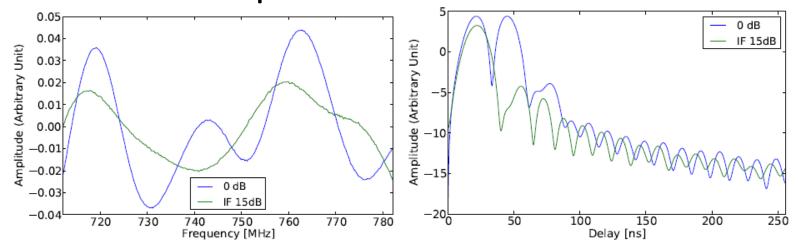
$$\tilde{V}(\tau) = \sum_{n} W_n V(\nu_n) e^{i2\pi\nu_n \tau} \qquad W(n) = 0.5 - 0.5 \cos\left(\frac{2\pi n}{M - 1}\right), \qquad (0 \le n \le (M - 1))$$


Increase resolution from 576 points to 16384 points.

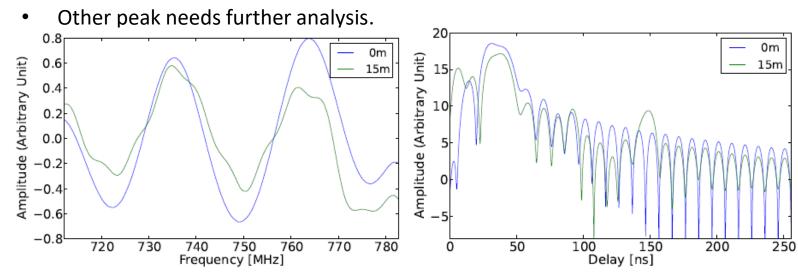
Two peaks @ ~ 142 ns and $0 \sim 60$ ns


Reflections: origin

- Time delay $au = rac{2L}{v}$, where $v = rac{c}{\sqrt{arepsilon_r \mu_r}}$
 - For most coaxial cables, $v \approx 0.7c$ (Pozar, 2009).

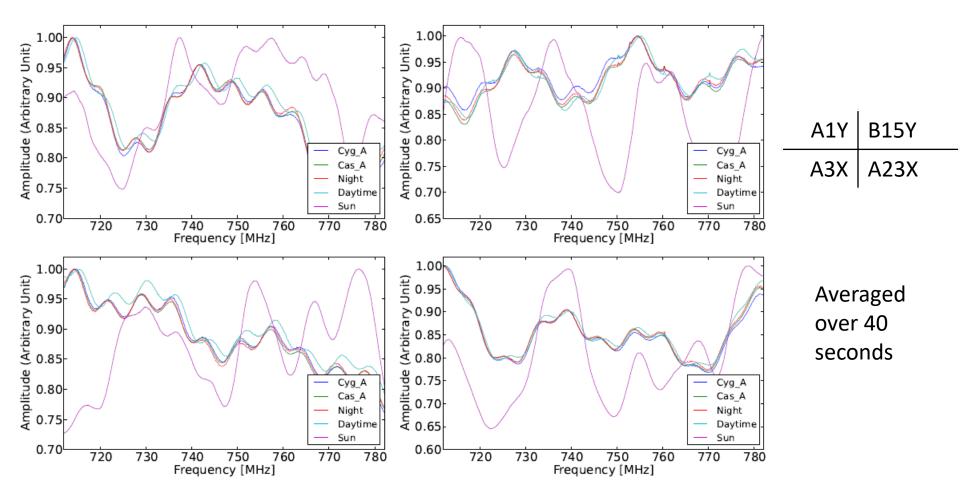

Reflections: antenna simulation

- Simulation of 1 feed plus antenna.
- Directivity of center beam at different frequencies.

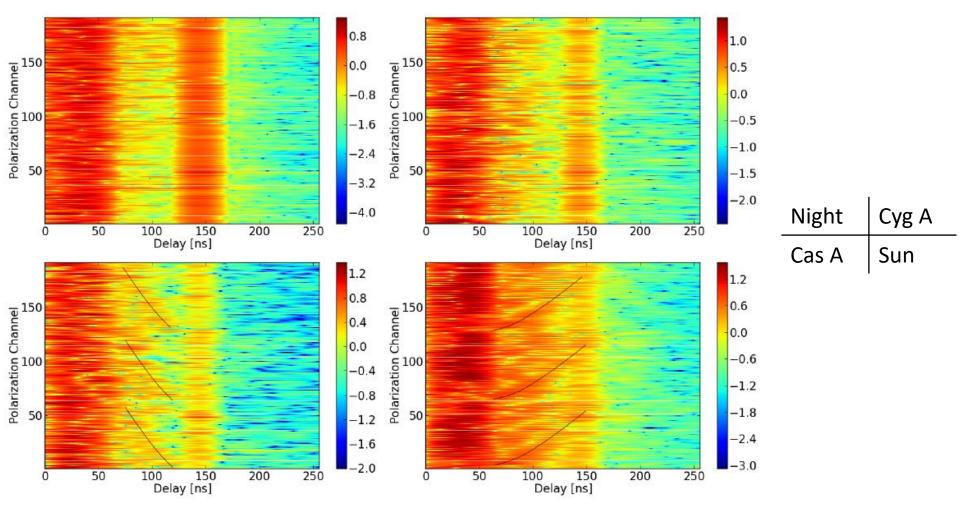


- Part of <60ns peak is confirmed to be caused by standing waves between antenna reflector and feed (peak \sim 31ns)
- Also consider IF cable part.

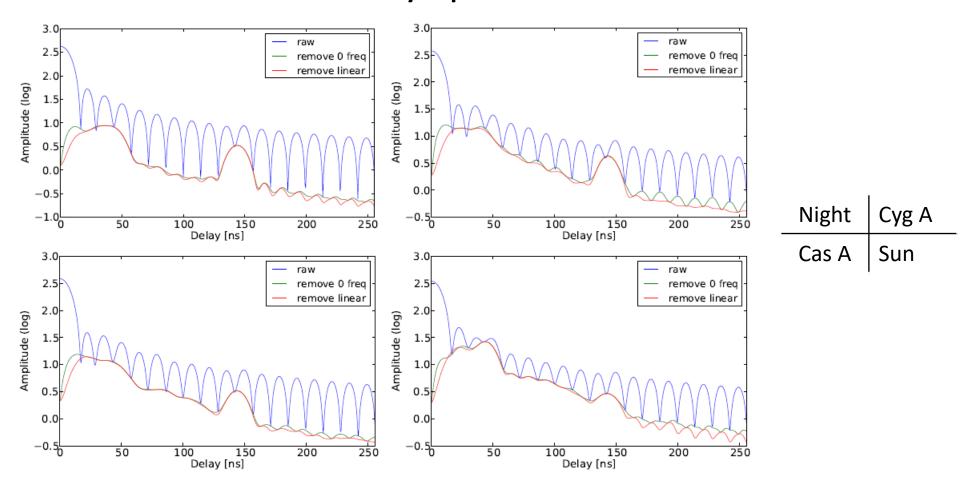
Reflections: experiment verification



- Insert 15 dB attenuator in IF cable. (Flat noise as mixer input.)
- Part of <60ns peak is confirmed to be caused by IF cable (peak of ~ 42 ns).


- Insert 15-meter cable after LNA.
- ~ 142 ns peak is confirmed to be caused by 15-meter feed cable.

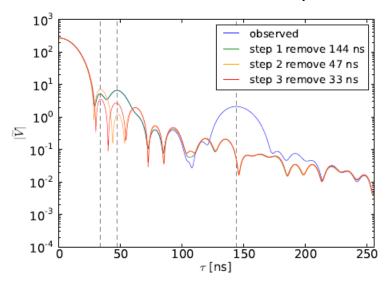
Reflections: different sources

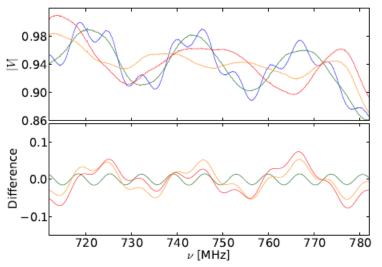

- Compare Cyg A, Cas A, night data, daytime data, Sun's data.
- Reflections are similar @ different sources, except the Sun.

Reflections: delay spectra of different sources

- Delay spectra of all polarization channels.
- Similar patterns are found across all channels.
- Feather-like features are related to sources' zenith angles.
- Reflections are related to source's zenith angle → calibration difficulty.

Reflections: mean delay spectra of different sources


- Averaged delay spectra of all polarization channels.
- Similar delay peaks are found.
- For Sun, ~ 142 ns is weak.
 - Scatter source reflection effects counteracted.
 - Normalization.


Reflections: reflection calibration

• 1. In delay spectrum, make initial estimate

$$- \tau_0 = \tau_{\text{peak}}, A_0 = \frac{\left| \tilde{v} \left(\tau = \tau_{\text{peak}} \right) \right|}{\left| \tilde{v} \left(\tau = 0 \right) \right|}$$

- 2. reflection correction
 - $-V^{\mathrm{cal}}=V(1+\varepsilon)(1+\varepsilon^*)$, where $\varepsilon=Ae^{i(2\pi\nu\tau+\phi)}$
- 3. minimize and iterate over other peaks.

Next work: Mitigate/remove reflections by hardware improvement.

Peak	A	au(ns)	ϕ (rad)
1	7.80×10^{-3}	144.6	7.19
2	2.12×10^{-2}	45.6	0.31
3	1.37×10^{-2}	31.0	8.30 43

Summary

- Tianlai system and observation
- Tianlai cylinder performance analysis
 - Hardware performance experiments
 - Gain, linearity, bandpass, pointing
 - Antenna LNA, optic cable, feed, mixer, correlator
 - Absolute calibration (Cyg A) and relative calibration (CNS)
 - System temperature (~ 90K) and SEFD
- Reflections in the Tianlai system
 - $-\sim 142 \text{ ns} \rightarrow 15\text{-m}$ feed cable
 - $-0 \sim 60 \text{ ns} \rightarrow \text{standing waves in antenna, 4-m IF cable, other.}$
 - Reflection is related to source's zenith angle.
 - Reflection removal.
- See papers for detail:
 - https://link.springer.com/article/10.1007/s11433-020-1594-8
 - http://www.raa-journal.org/docs/papers_accepted/2020-0198.pdf
 - https://arxiv.org/abs/2011.10757

Thanks!