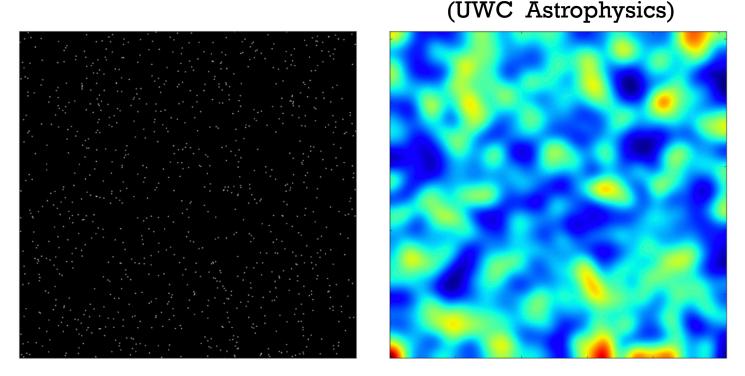

HI FOR FAST: FROM GALAXIES SURVEY TO INTENSITY WAPPING

WENKAI HU

INTRODUCTION

The neutral hydrogen is an excellent tracer of the total mass distribution


Baryon Acoustic Oscillations (BAO), Dark Energy

Detections:

Galaxy Redshift Surveys (HIPASS, ALFALFA): resolve individual galaxies,

Intensity Mapping: map the unresolved emission of all HI at each frequency (Chang et al. 2008)

INTRODUCTION

Left: galaxies. Right: HI intensity map of the same region.

IM experiments are confusion limited, but they do not need to resolve individual galaxies, they can more easily push to high redshifts

Rather than a telescope with very high resolution and sensitivity, and fast survey speed, with IM we only need to design for fast survey speed

EXPERIMENTS

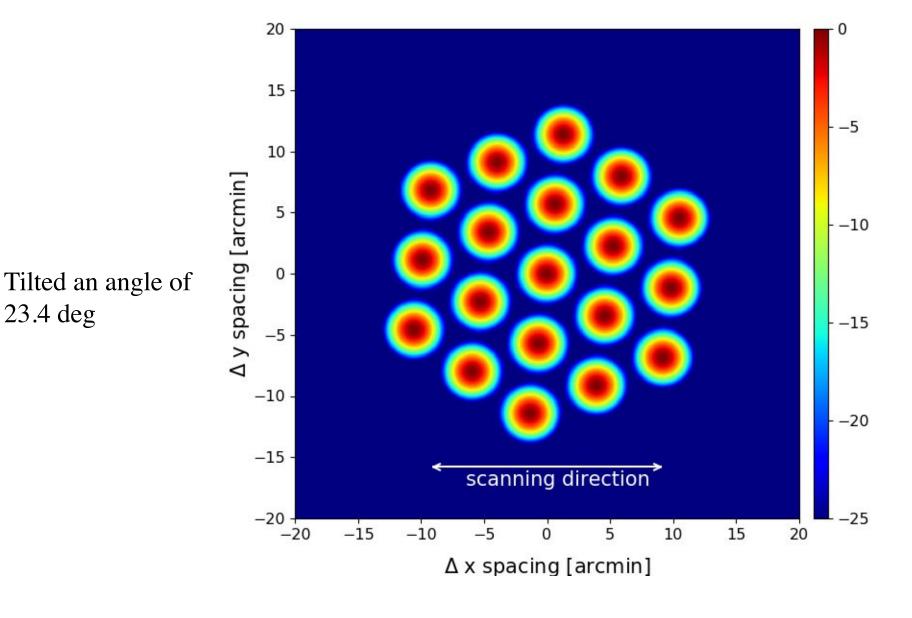
- The following telescopes have either hosted intensity mapping surveys, or plan to carry them out in future.
- CHIME(Canada)
- TIANLAI (China)
- BINGO (Brazil/Uruguay/UK)
- FAST (China)
- Parkes(Australia)
- GREEN BANK TELESCOPE (USA)
- HIRAX (South Africa)
- MeerKAT (South Africa)
- PAPER (USA/South Africa/Australia)
- SKA (South Africa/Australia)

FAST: THE FIVE-HUNDRED-METER APERTURE SPHERICAL RADIO TELESCOPE

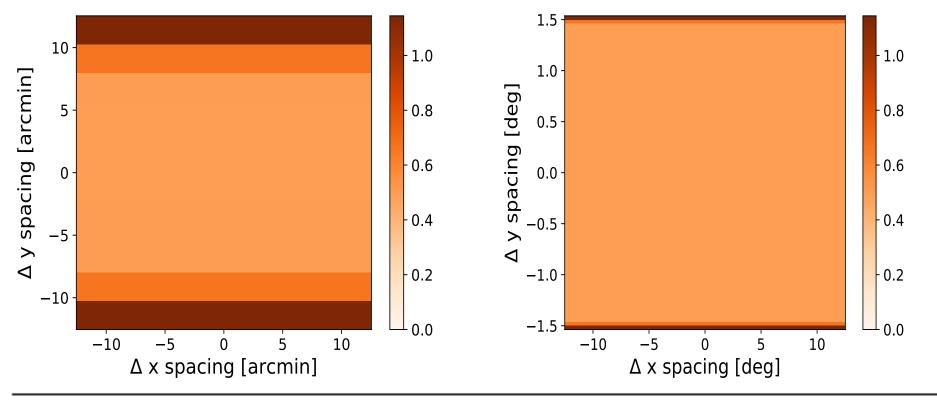
Spherical reflector: Aperture=500m

Illuminated aperture: 300m

Focal ratio: f/D=0.4665


Sky coverage: zenith angle +-40 deg

(20,000 deg^2)


Sensitivity(L-Band): system temperature :20k

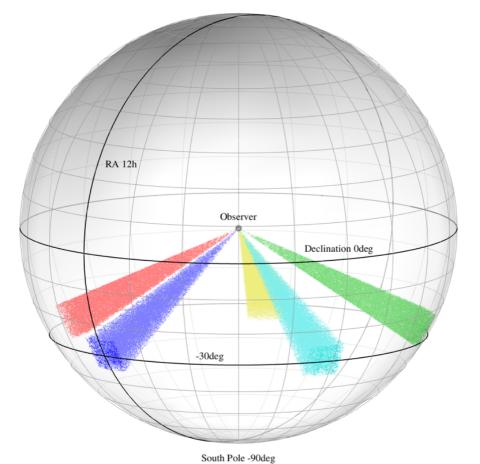
Multi-beam(L-Band): beam number = 19, beam size: 2.94(1+z) arcmins

The sky is covered by shifting the whole array in declination by 21.9 arcmin for the next scan.

23.4 deg

Receiver	Band (GHz)	Beams	$T_{\rm rec}$ (K)	$t_{\rm sur}$ (days)
L-band	1.05-1.45	19	20	220
Wide-band	0.27 - 1.62	1	60	1211
UHF PAF (future)	0.5-1.0	81	30	135

For a full drift scan of ±40 deg from the centre declination of FAST


SIMULATED SKY

Semi-Analytic Suite of the SKA Simulated Skies, S3-SAX

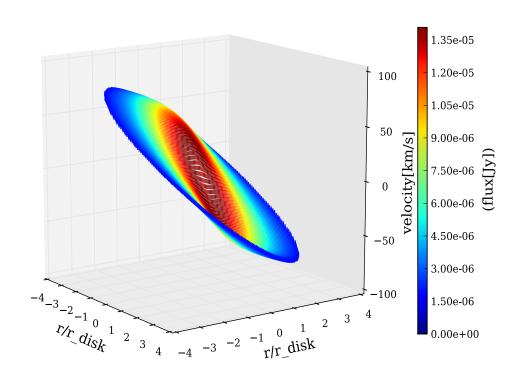
Semi-analytic models (De Lucia & Blaizot 2007) based on the millennium *N*-body simulation

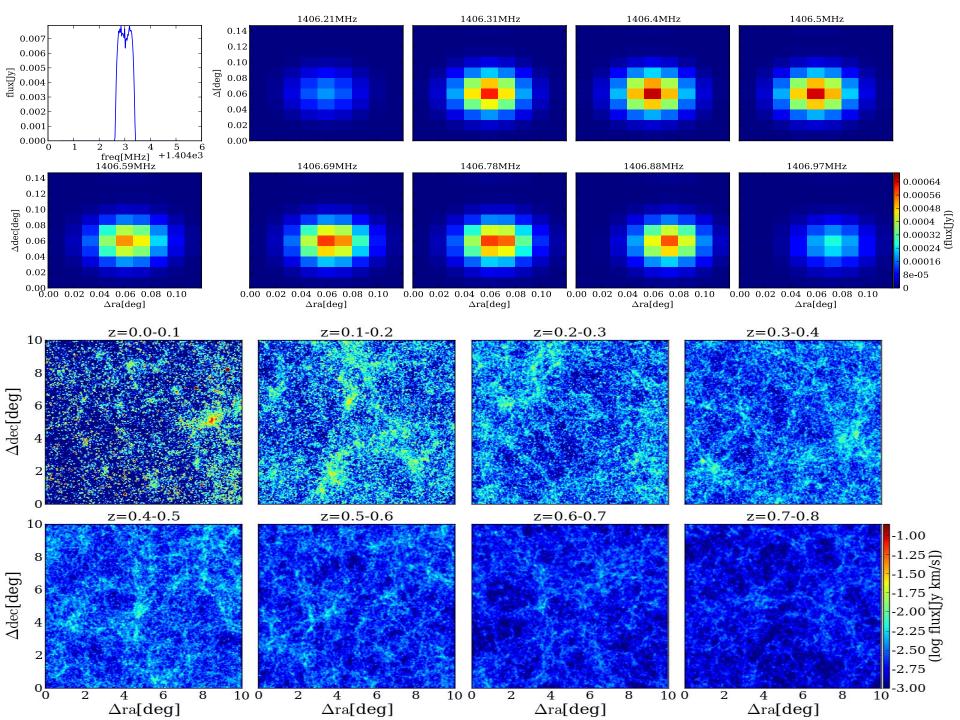
HI, H₂: Obreschkow et al, 2009a,b,c

100 deg² Mock Galaxy Cone for HI Surveys

Col	Symbol	Unit	Description
1	ID	_	Unique galaxy identifier in the Munich Semi-Analytic Model "DeLucia2006a"
2	RA	\deg	Right ascension of galaxy centre
3	Dec	\deg	Declination of galaxy centre
4	z	-	Apparent redshift of galaxy centre, including the Doppler component due to peculiar motion relative to the Hubble expansion
5	i	\deg	Galaxy inclination defined as the smaller angle $(0^\circ-90^\circ)$ between the line-of-sight and the rotational axis of the galaxy
6	T	-	Numerical Hubble type $(-60$ for ellipticals, 010 for spirals, 99 for morphologically unresolved objects, mostly dwarfs)
7	M_*	${ m M}_{\odot}$	Stellar mass
8	$M_{ m HI}$	${ m M}_{\odot}$	Mass of neutral atomic hydrogen H I, without helium
9	$M_{ m H_2}$	${ m M}_{\odot}$	Mass of molecular hydrogen H_2 , without helium
10	$S_{ m H~I}^{ m int}$	$\rm Jykms^{-1}$	Velocity-integrated flux of the redshifted $21\mathrm{cm}$ H I emission line, with velocity units defined in the galaxy rest-frame
11	$S_{ m HI}^{ m peak}$	$\mathbf{J}\mathbf{y}$	Peak flux density of the ${\rm H{\sc i}}$ emission line; typically the flux density of the 'horns'
12	$S_{ m CO}^{ m int}$	$ m Jykms^{-1}$	Velocity-integrated flux of the redshifted 115.27 GHz $^{12}{\rm CO}(1-0)$ emission line, with velocity units defined in the galaxy rest-frame
13	$S_{ m CO}^{ m peak}$	$_{ m Jy}$	Peak flux density of the $^{12}\mathrm{CO}(10)$ emission line; typically the flux density of the 'horns'
14	$W_{ m H~I}^{50}$	$\rm kms^{-1}$	Width of the H $\scriptstyle\rm I$ emission line, in galaxy rest-frame velocity units, measured at 50% of the peak flux density
15	$W_{ m H~I}^{20}$	$\rm kms^{-1}$	Width of the H $\scriptstyle\rm I$ emission line, in galaxy rest-frame velocity units, measured at 20% of the peak flux density
16	$r_{ m HI}^{ m edge}$	arcsec	Apparent H I radius along the major axis out to a H I disk surface density of $1\rm M_\odot pc^{-2}$, corresponding to a face-on column density of $1.25\cdot 10^{20} \rm cm^{-2}$
17	$r_{ m HI}^{ m half}$	arcsec	Apparent H _I half-mass radius along the major axis
18	$M_{ m R}$	mag	Absolute Vega R -band magnitude, corrected for intrinsic dust extinction; 99 if stellar mass and star formation history are insufficiently resolved to compute $M_{\rm R}$
19	$m_{ m R}$	mag	Apparent Vega R -band magnitude; value 99 if no absolute magnitudes available
20	$r_{ m e}$	arcsec	Effective radius, here approximated as the radius containing half the stellar mass if the galaxy were viewed face-on

a. HI mass profiles:


$$\Sigma_{\rm H\,I}(r) = \frac{\tilde{\Sigma}_{\rm H} e^{-r/r_{\rm disk}}}{1 + R_{\rm mol}^c e^{-1.6r/r_{\rm disk}}}$$

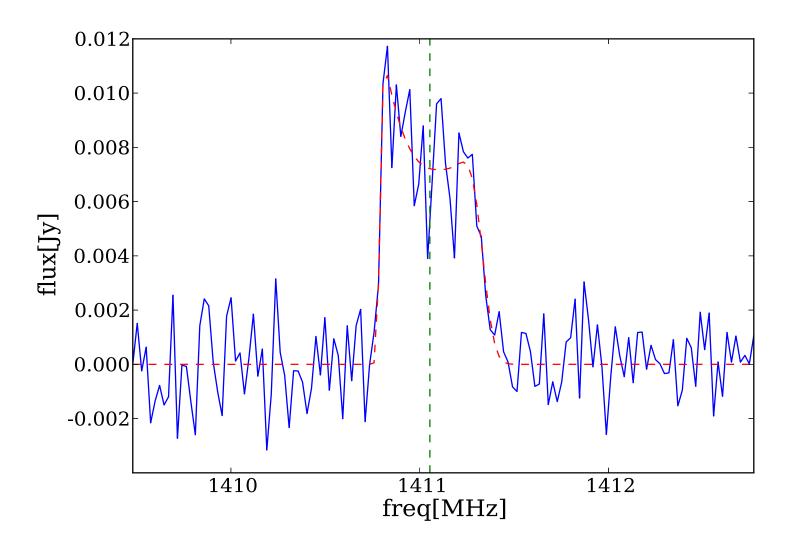

b. Circular velocity profiles:

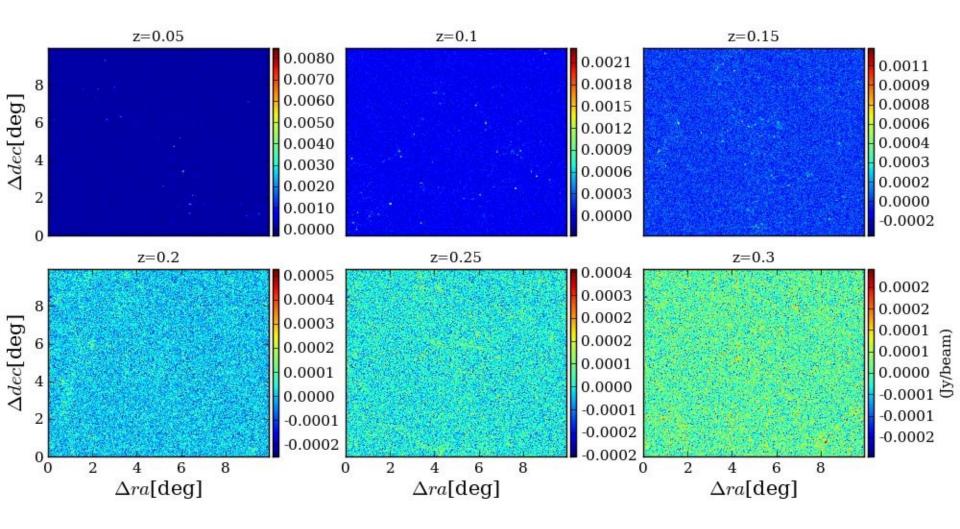
(Polyex model)

c. HI intensity:

$$V_{\text{PE}}(r) = V_0 (1 - e^{-r/r_{\text{PE}}}) \left(1 + \frac{\alpha r}{r_{\text{PE}}} \right)$$
$$\frac{M_{\text{H I}}}{M_{\odot}} = 2.36 \times 10^5 \left(\frac{D_{\text{L}}}{\text{Mpc}} \right)^2 \frac{S_{\text{i}}}{\text{Jy}} \frac{dv}{\text{km}} \, \text{s}^{-1} (1 + z)^{-2}$$

NOISE MODEL


$$\sigma_{\text{noise}} = \sqrt{2} \frac{k_{\text{B}} T_{\text{sys}}}{A_{\text{eff}}} \frac{1}{\sqrt{\Delta v t}}$$

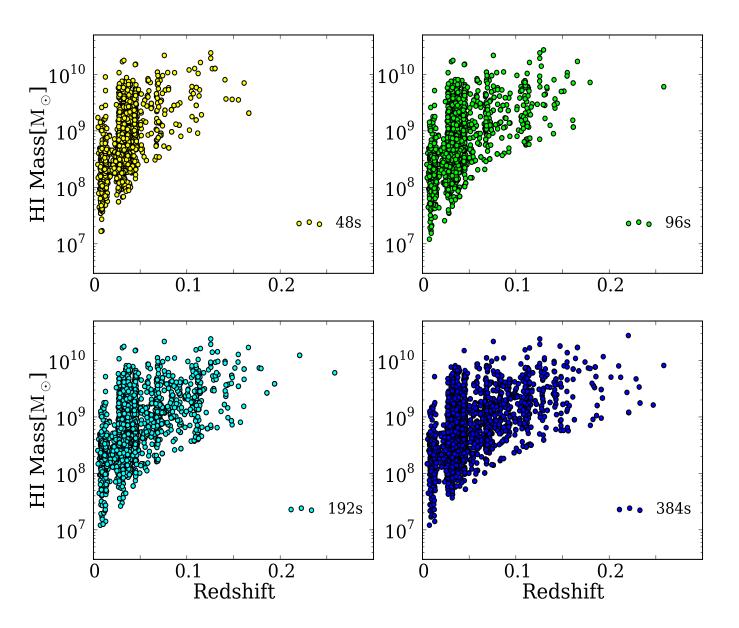

$$T_{\rm sys} = T_{\rm rec} + T_{\rm sky}$$

$$T_{\text{sky}} = 2.73 + 25.2 \times (0.408/\nu_{\text{GHz}})^{2.75} K$$

$$t_{\rm pix} = 2.9(1+z) \arcsin/(\omega_{\rm e} \cos \delta)$$
 (48s in a scan)

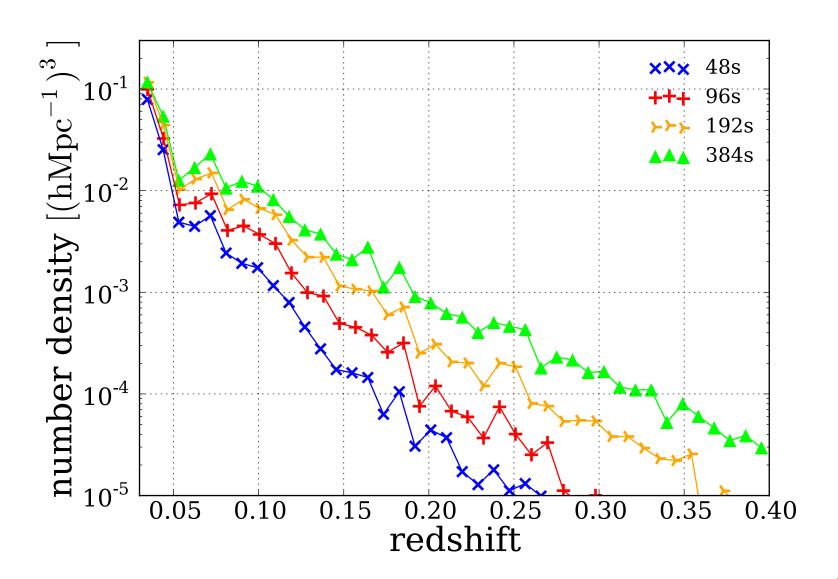
A velocity line width of 5 km/s and 48s integration time per beam, the sensitivity of FAST will be 0.86 mJy.

The galaxy flux and noise both are computed with a bandwidth of 1 MHz and a integration time of 192 s per beam

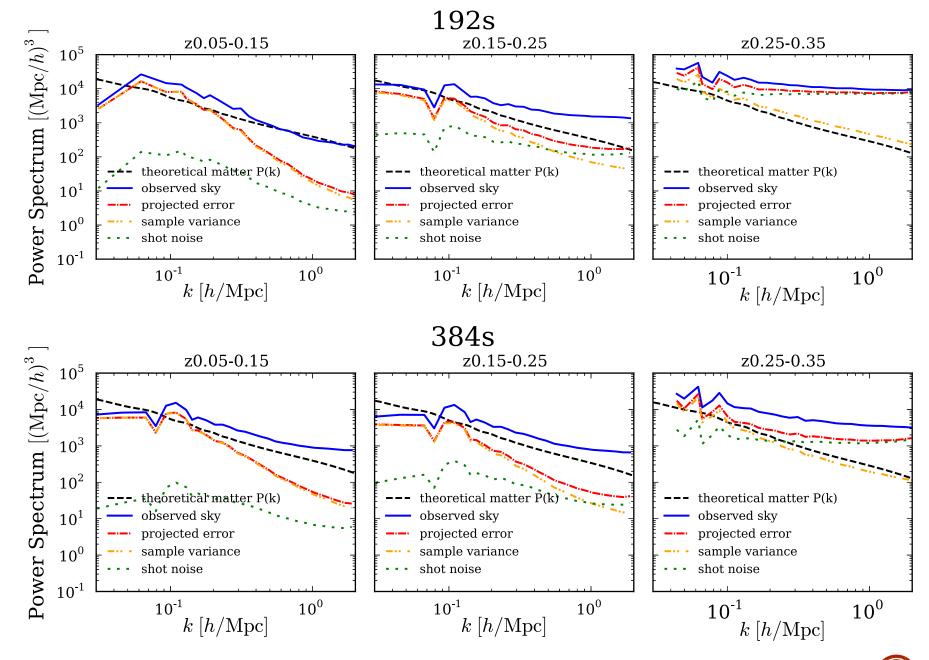


GALAXY SURVEY

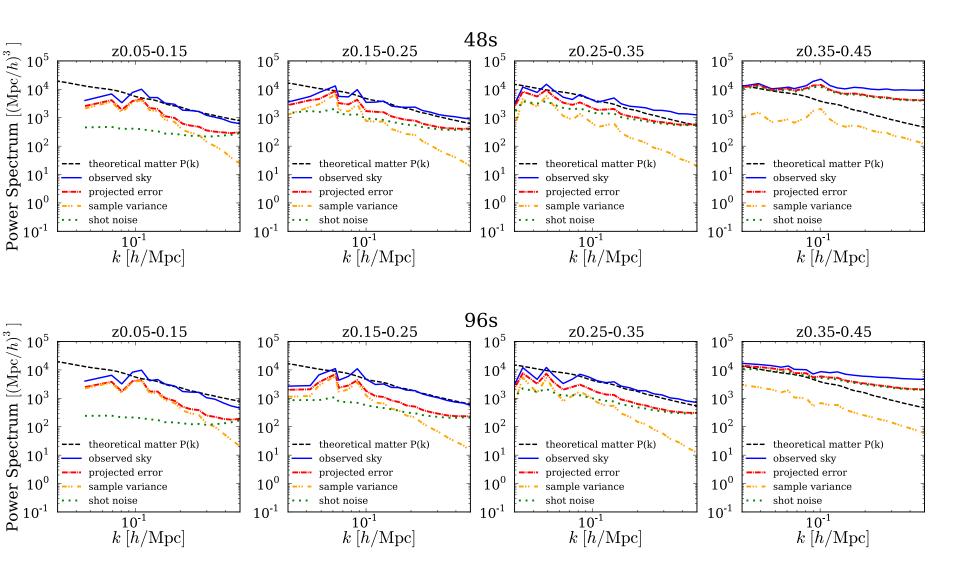
(i) Coarse resolution search. Re-bin the noise-filled data to an angular resolution of 0.08 deg and a frequency resolution of 0.473 MHz (corresponding to velocity resolution of 100 km/s at redshift 0), setting a threshold of 3σ , and detect voxels above the threshold.

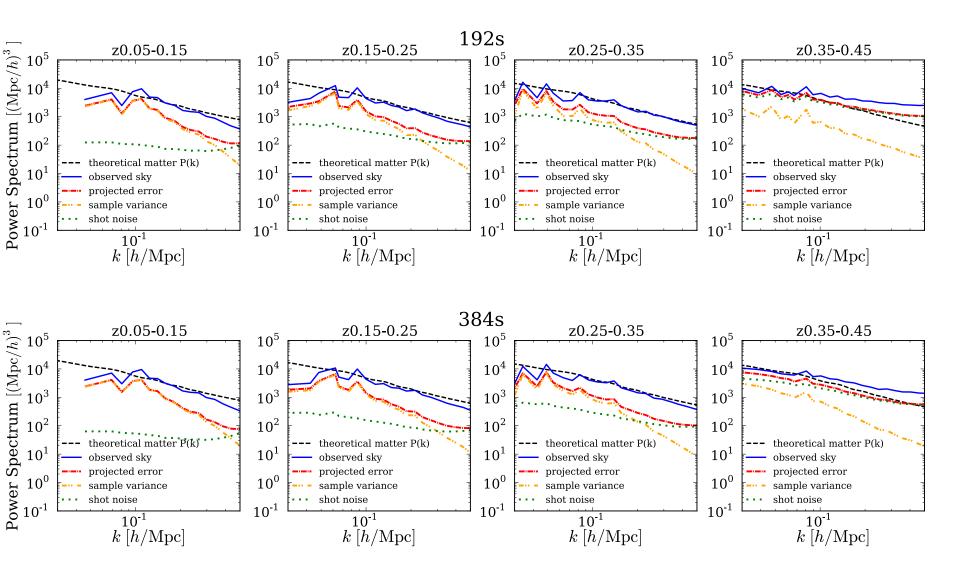

(ii) Fine resolution fit. For galaxies detected in the coarse search, use a finer frequency resolution (0.0236 MHz, corresponding to velocity resolution of 5 km/s at redshift 0) to fit its spectrum in the data cube with a parametrized profile function. If successful, we integrate the HI profile and the candidate is selected as a galaxy if the total flux exceeds 5σ .

GALAXY SURVEY

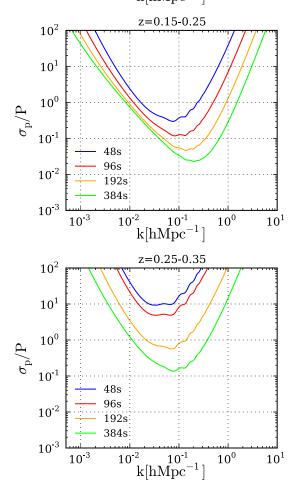


The distribution of the H I mass of the galaxy candidates from the $15 \times 15 \times 600$ h-3 Mpc3 comoving volume.


GALAXY SURVEY

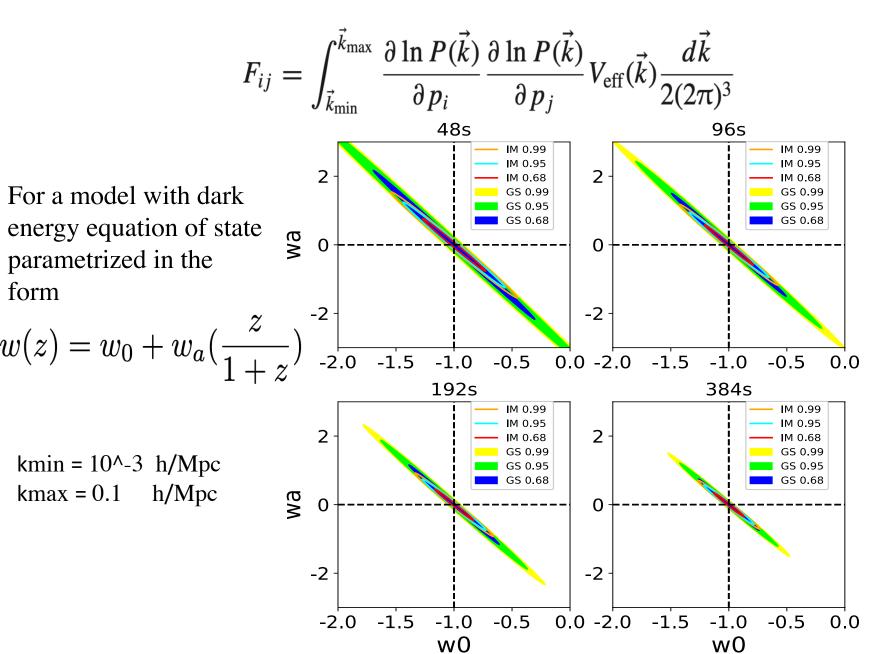


INTENSITY MAPPING


INTENSITY MAPPING

$$\frac{\sigma_P}{P} = \sqrt{2 \frac{(2\pi)^3}{V_{\text{eff}}}} \frac{1}{4\pi k^2 \Delta k} \frac{P(k) + 1/n}{P(k)} \int_{0}^{10^4} \frac{1}{10^3} \frac{20000 - \text{deg^2}}{\Delta k/k} = 0.125$$

$$V_{\text{eff}}(k) = \int \left[\frac{n(\vec{r})P(k)}{n(\vec{r})P(k) + 1} \right]^2 d^3 \vec{r}$$


At the BAO scale $k \approx 0.07$ h/Mpc, the signal-to-noise ratio can reach 5.0 at $z \approx 0.2, 0.25, 0.3$, and 0.35, respectively.

z=0.05-0.15

 $\frac{1}{V_{\rm eff}(k)k^2\Delta k}$ $V_{\rm eff}(\vec{k}) = V_{\rm sur}$ z0.05-0.15 z0.15-0.25 z0.25-0.35 z0.35-0.45 10^2 10^2 10^2 10^2 10^1 10^1 10^1 10^{1} ص ص 10-1 10^{0} 10^{0} 10^{0} 10^{0} 10^{-1} 10^{-1} 10^{-1} 48s 96s 96s 10⁻² 10^{-2} 10^{-2} 10⁻² 192s 192s 192s 192s 384s 384s 384s 384s $\frac{1}{10^{1}}$ 10⁻³ $\frac{1}{10^{1}}$ 10^{-3} 10⁻³ $\frac{1}{10^1} 10^{-3}$ $10^{\overline{0}}$ 10^{-3} 10^{-3} 10-2 10^{-3} 10^{-2} 10^{0} 10^{-2} 10⁻² 10^{-1} 10^{0} 10^{-1} 10^{-1} 10^{0} 10^{-1} 10^{1} z0.45-0.55 z0.55-0.65 z0.65-0.75 z0.75-0.85 10^2 10^{2} 10^2 10^2 10^1 10^1 10^1 10^1 10^{0} ⁶ 10⁻¹ 10^{0} 10^{0} 10^{0} 10^{-1} 10^{-1} 10^{-1} 48s 48s 48s 96s 96s 96s 96s 10⁻² 10^{-2} 10⁻² 10^{-2} 192s 192s 384s 384s 384s 384s $\frac{10^{-3}}{10^{1}}$ $\frac{10^{1}}{10^{1}}$ $\frac{1}{10^{1}}$ 10⁻³ 10^{-3} 10-2 10^{0} 10-1 10^{0} 10 3 10^{-2} 10^{-1} 10^{-3} 10^{-2} 10^{-1} 10^{-3} 10⁻² 10^{-1} 10^{1} z1.15-1.25 z0.85-0.95 z0.95-1.05 z1.05-1.15 10^2 10^2 10^2 10^2 10^{1} 10^{1} 10^{1} 10^{1} р По-1 10^{0} 10^{0} 10^{0} 10^{0} 10^{-1} 10^{-1} 10^{-1} 96s 96s 96s 10⁻² 10^{-2} 10⁻² 10⁻² 192s 192s 192s 192s 384s 384s $\frac{1}{10^1}$ 10^{-3} $\frac{10^{1}}{10^{1}}$ 10⁻³ $\frac{1}{10^1}$ 10^{-3} 10^{-3} 10^{-3} 10⁻² 10⁻¹ $\overline{10^0}$ 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-3} 10⁻² 10⁻¹ 10^{-2} 10^{-1} $k[hMpc^{-1}]$ $k[hMpc^{-1}]$ $k[hMpc^{-1}]$ $k[hMpc^{-1}]$ S/N can reach 5.0 until redshift of 0.35, 0.55, 0.75, and 1.05

COSMOLOGICAL CONSTRAINTS

COSMOLOGICAL CONSTRAINTS

	GS	IM	
Survey	$(\sigma_{w_0},\sigma_{w_a})$	$(\sigma_{w_0},\sigma_{w_a)}$	Observation time (day)
L 48 s	(0.46, 1.44)	(0.19, 0.53)	220
L 96 s	(0.33, 1.00)	(0.15, 0.43)	440
L 192 s	(0.25, 0.77)	(0.13, 0.36)	880
L 384 s	(0.17, 0.49)	(0.12, 0.33)	1760
(L + w) 48 s	(0.46, 1.44)	(0.18, 0.50)	220 (L) + 2422 (w)
(L + w) 96 s	(0.33, 1.00)	(0.14, 0.39)	440 (L) + 4844 (w)
(L + w) 192 s	(0.25, 0.77)	(0.11, 0.30)	880 (L) + 9688 (w)
(L + w) 384 s	(0.17, 0.49)	(0.09, 0.23)	1760 (L) + 19376 (w)
L(192 s) + P(216 s)	_	(0.05, 0.12)	880 (L) + 135 (P)
L(384 s) + P(432 s)	_	(0.04, 0.10)	1760 (L) + 270 (P)

SUMMARY

- 1. We make a detailed study of large area drift scan HI survey with the FAST telescope.
- 2. We find that the FAST can effectively detect the individual galaxy till $z \approx 0.2, 0.25, 0.3$, and 0.35, or map the LSS with intensity mapping till $z \approx 0.35, 0.55, 0.75$, and 1.05, respectively, if we assume 48 s, 96 s, 192 s, and 384 s integration time per beam.
- 3. We find that the FAST HI intensity mapping survey can produce a good measurement of the underlying power spectrum and use the BAO method to measure the dark energy equation of state parameters.