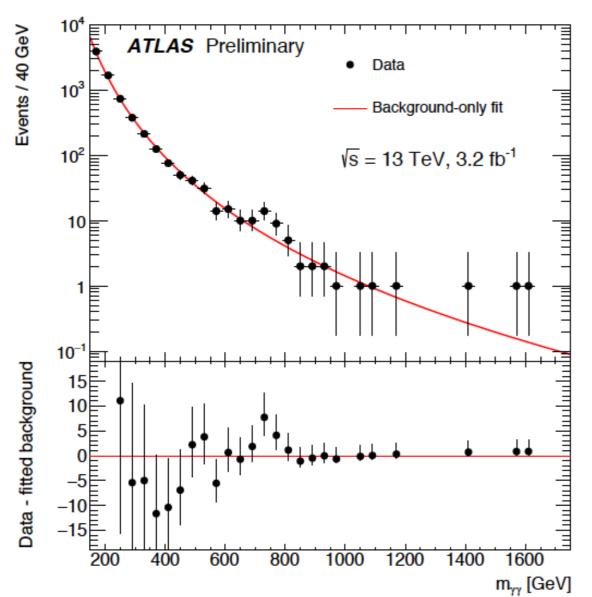
What if the 750 GeV diphoton excess is confirmed?

Pyungwon Ko (KIAS)

IBS-SNU Workshop & KIMFEST May 2-4 (2016)

Contents

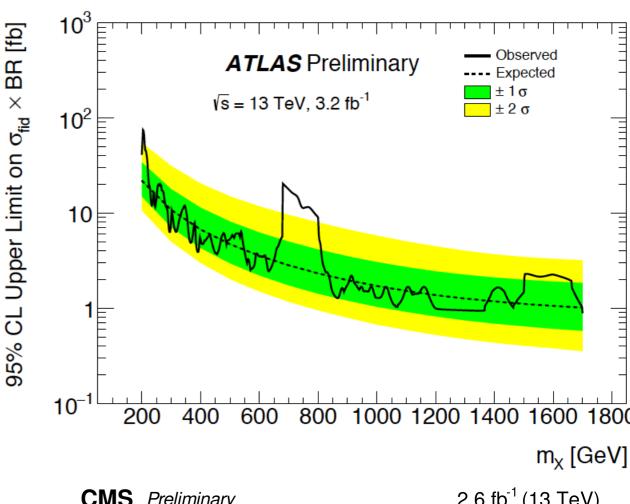

- 750 GeV Diphoton excess at the LHC
- Model I: E6 motivated leptophobic U(1)' model
- Model II: Dark Higgs interpretation of diphoton excess
- Model III: A Simple Composite Model
- Closing remarks

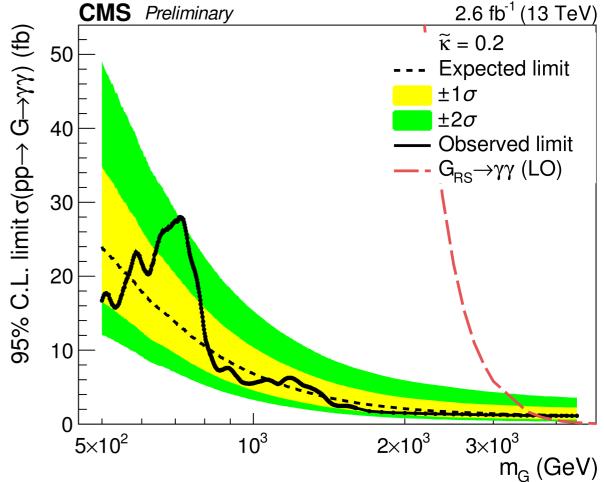
MY APOLOGY IF I DON'T MENTION MANY INTERESTING WORKS DONE BY AUDIENCE HERE

750 GeV diphoton excess at the LHC

1. Introduction

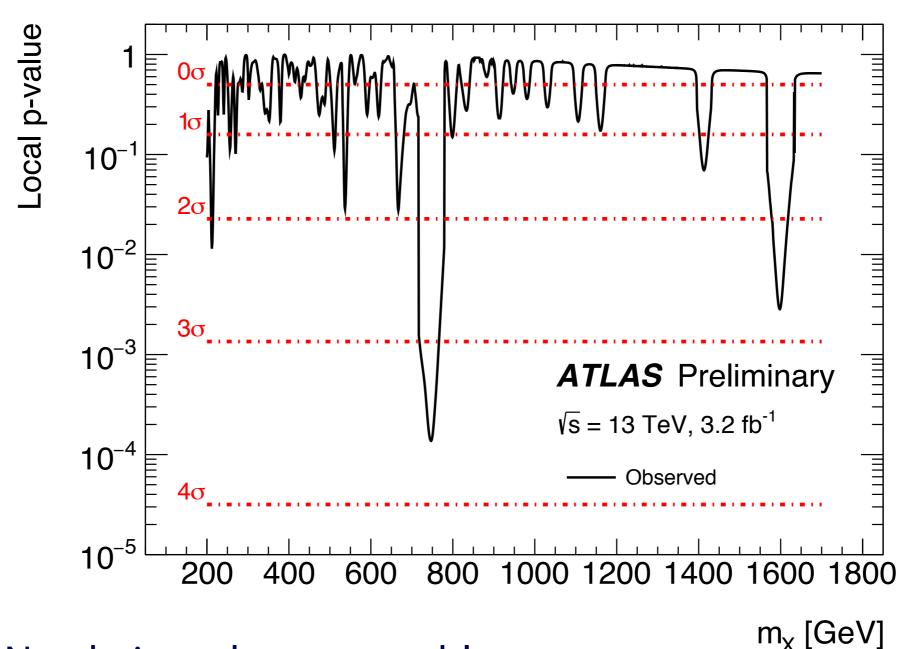
Diphoton excess at 750 GeV


ATLAS-CONF-2015-081, CMS-PAS-EXO-15-004


Both ATLAS and CMS observed bump on diphton invariant mass distribution

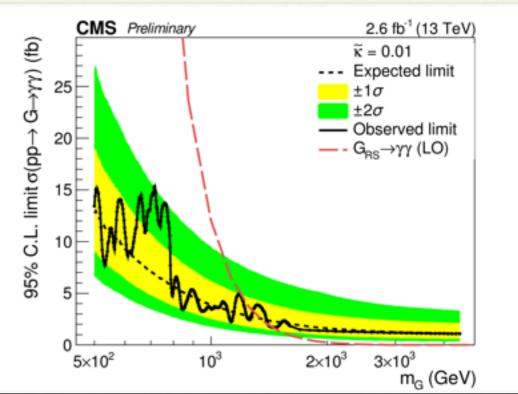
 $3.6 \sigma : ATLAS$

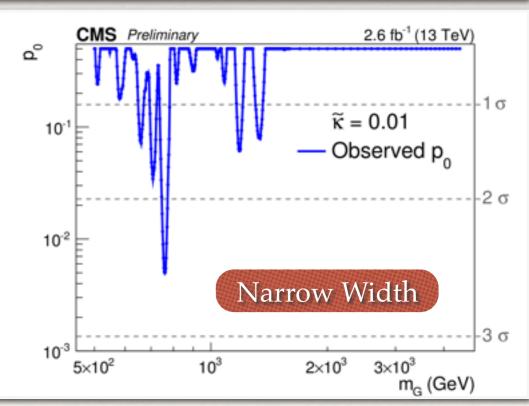
 2.6σ : CMS


(Local significance)

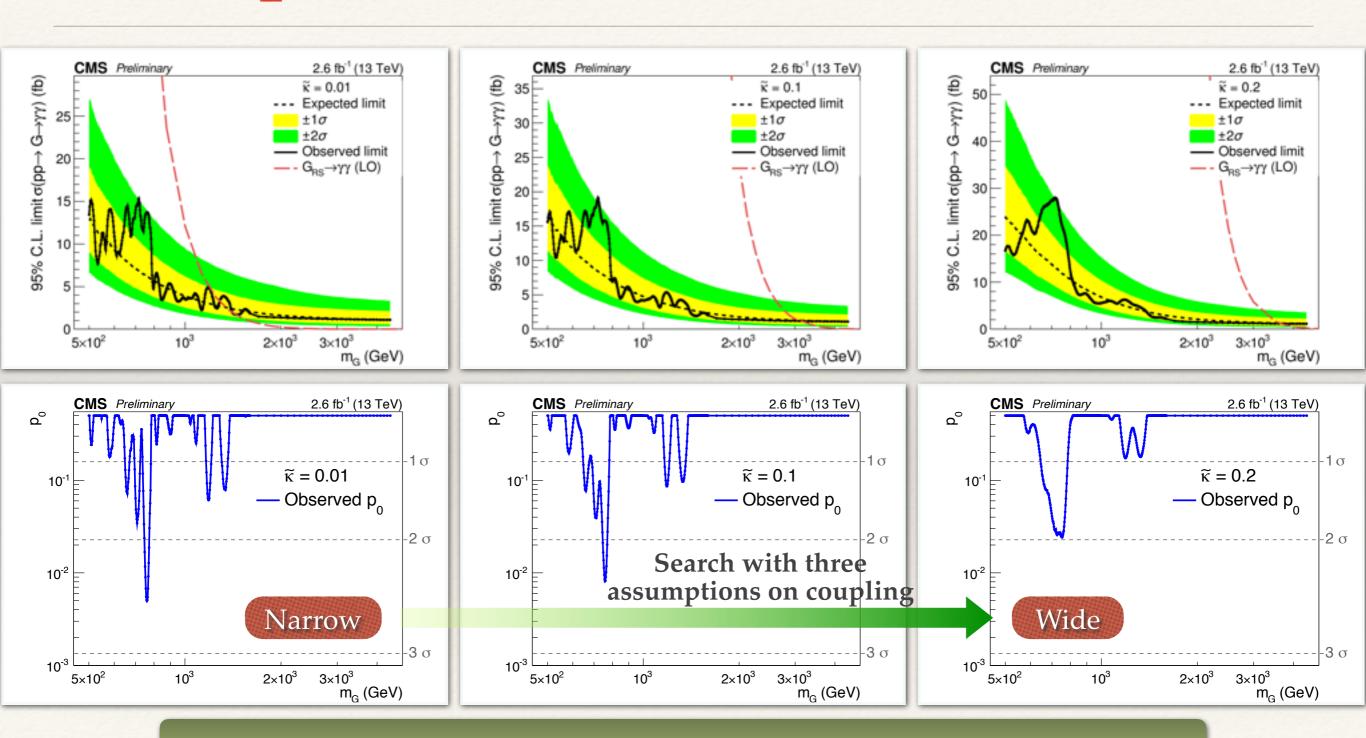
Diphoton

"Higgs-like" NWA scan \rightarrow local(global) 3.6(2.0) σ excess around 750 GeV


- No obvious detector problems
- Event characteristics: consistent with mass sideband
- \sim 1.5 σ pull of photon energy resolution systematics


Diphoton

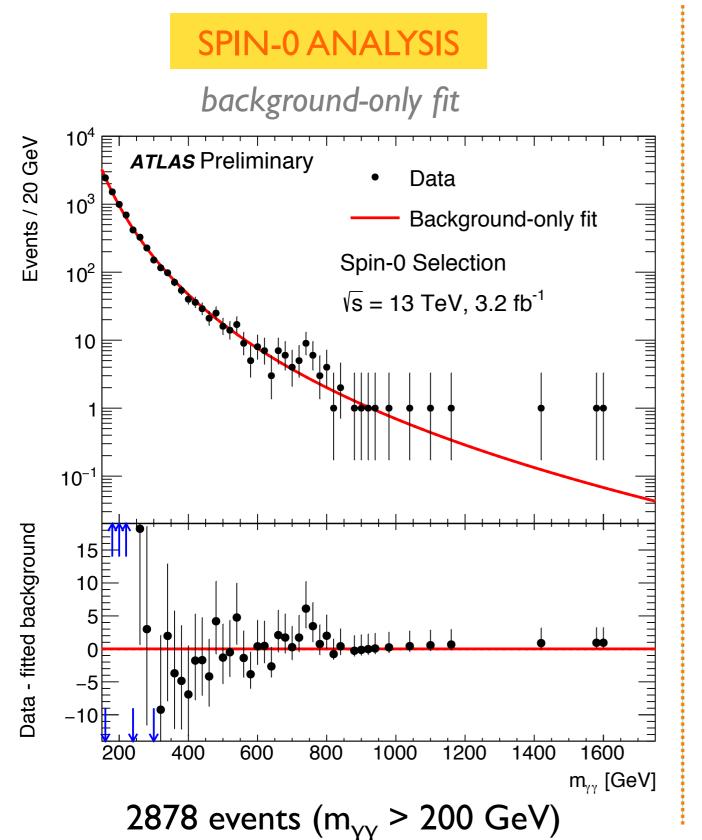
- 2D mass-width scan (mass = 200-2000 GeV, width =1-10%)
 - Local(global) 3.9(2.3)σ excess around 750 GeV
 - ▶ Best fit Γ /m ~ 6% (Γ ~ 45GeV)
- Compatible with Run 1 at $2.2(1.4)\sigma$ level for NWA (6% LWA) under gg hypothesis


Diphoton Resonances (cont.)

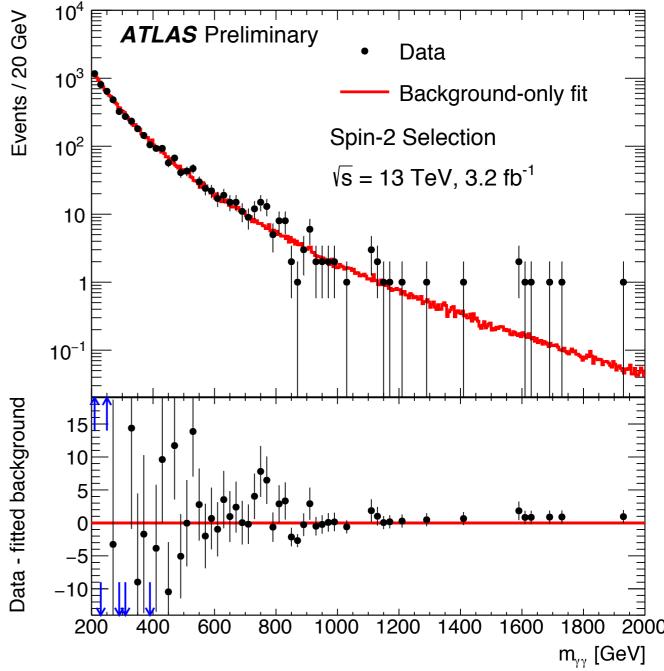
- Statistical interpretation based on the m spectrum for the search of diphoton resonances.
- * Modeling in the interpretation:
 - Signal interpolation of MC signal (spin-2 assumed)
 - * Background parametric fit to data.
- * Excesses in two categories are not in the same mass window:
 - * "wide excess": incompatible in terms of scale and resolutions.
 - * Sensitivity is driven by the EB-EB category (90%).
- * Maximum local significance: 2.6σ at 760 GeV



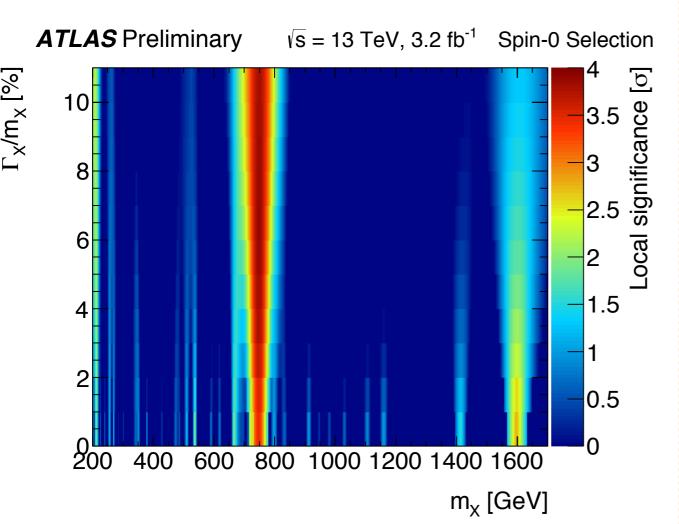
Diphoton Resonances (cont.)


Including LEE (0.5 - 4.5 TeV; narrow width), global p-value $< 1.2\sigma$

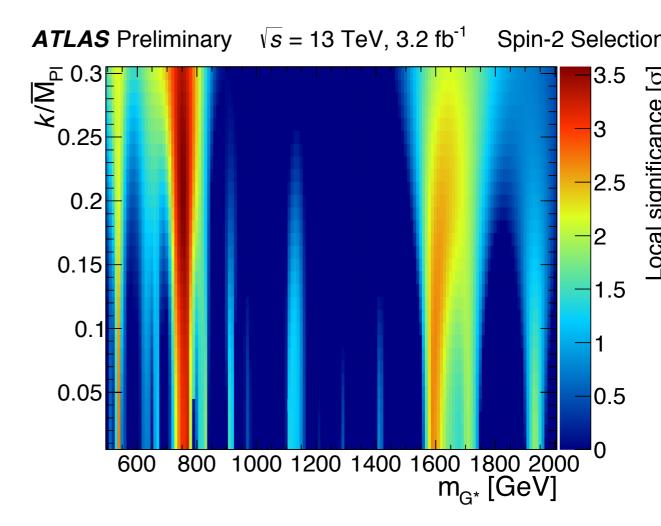
Well, 261 Citations So Far...


After Moriond 2016

Results


SPIN-2 ANALYSIS

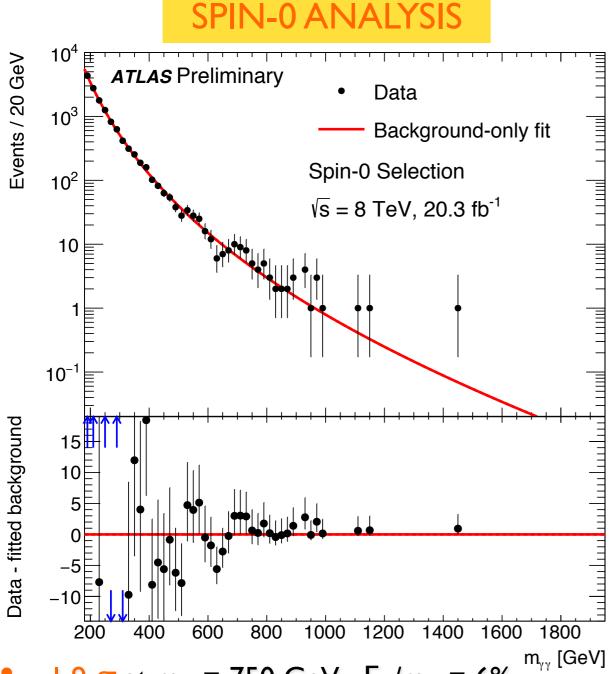
background-only fit


Results

SPIN-0 ANALYSIS

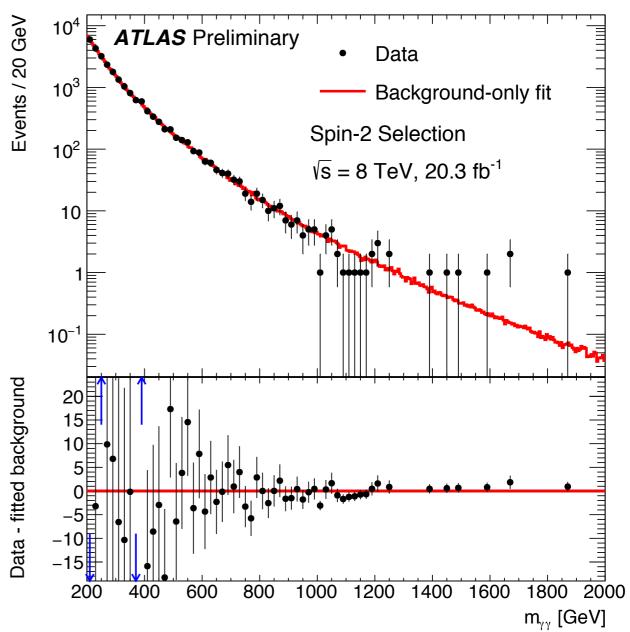
- Largest deviation from B-only hypothesis
 - \checkmark m_X ~ 750 GeV, Γ_X ~ 45 GeV (6%)
 - ✓ Local Z = 3.9 σ
 - ✓ Global $Z = 2.0 \sigma$
 - $m_X = [200 \text{ GeV} 2 \text{ TeV}]$
 - $\Gamma_{\rm X}/{\rm m}_{\rm X} = [1\% 10\%]$

SPIN-2 ANALYSIS



- Largest deviation from B-only hypothesis

 - ✓ Local Z = **3.6** σ
 - ✓ Global $Z = 1.8 \sigma$
 - $m_X = [500 \text{ GeV} 3.5 \text{ TeV}]$
 - $K/M_{Pl} = [0.01 0.3]$

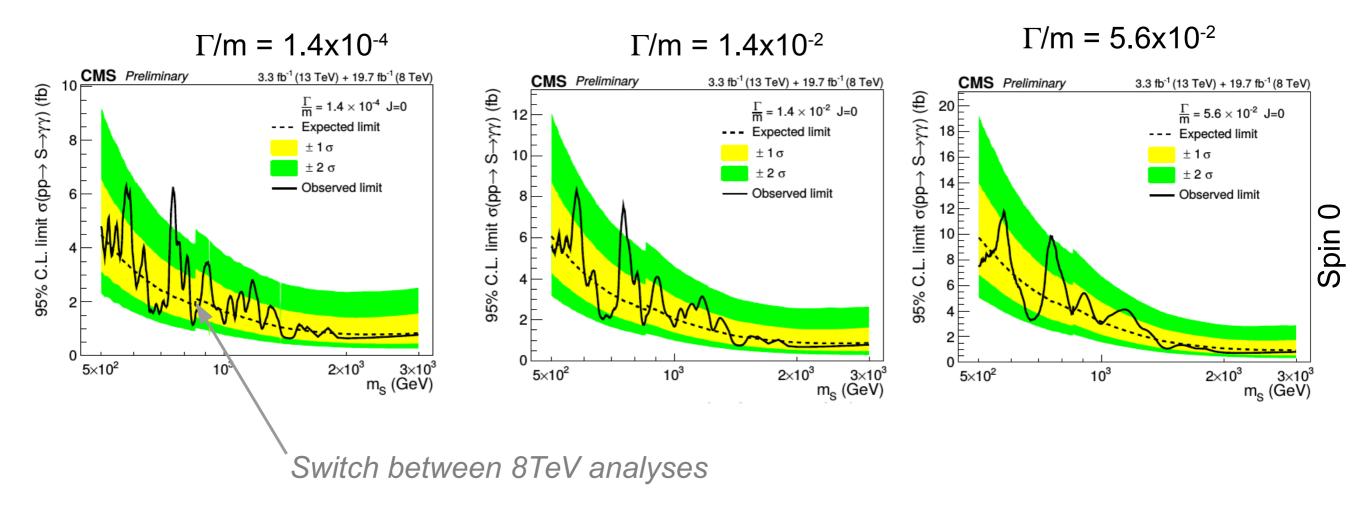

Compatibility with 8 TeV data

8 TeV data re-analyzed: latest Run I γ calibration + same Run I selections + 13 TeV analysis methods

- 1.9 σ at m_X = 750 GeV, Γ_X/m_X = 6%
- Compatibility with 13 TeV scalar
 - \checkmark gg (scaling: 4.7) → compatibility: 1.2 σ
 - \checkmark qq (scaling: 2.7) \rightarrow compatibility: 2.1 σ

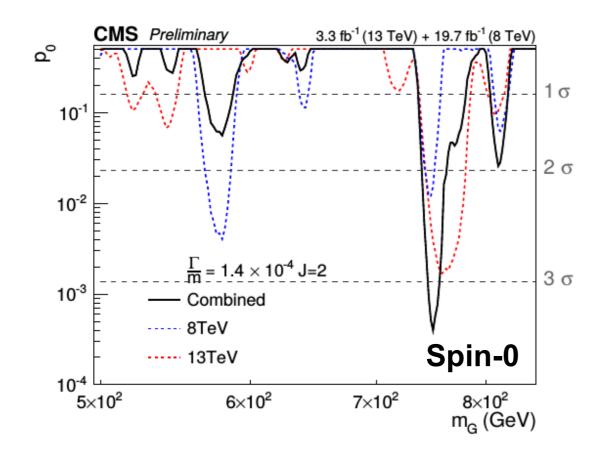
SPIN-2 ANALYSIS

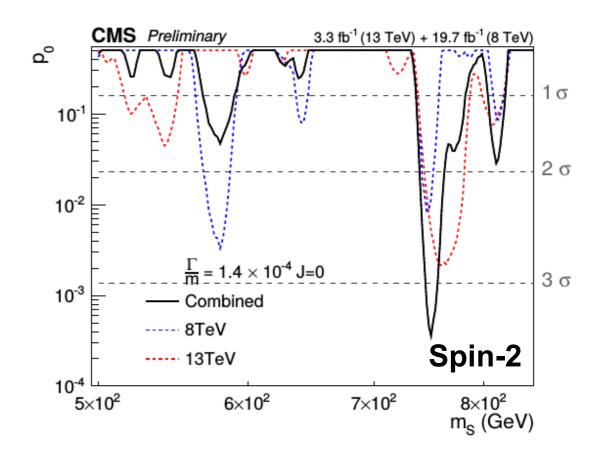
- No significant excess
- Compatibility with 13 TeV graviton
 - \checkmark gg \rightarrow compatibility: 2.7 σ
 - \checkmark qq \rightarrow compatibility: 3.3 σ


Summary

- Search for new resonances decaying to diphotons performed with 3.2 fb-1 13
 TeV data, with two analyses targeting "spin-0" and "spin-2" scenarios
- Most of the γγ spectrum consistent with B-only hypothesis
- Largest deviation from background-only hypothesis observed in broad region around 750 GeV, with global significance 2.0 (1.8) σ for the spin-0 (spin-2) analysis
- Numerous cross-checks of events with masses ~ 750 GeV performed
- 8 TeV data re-analyzed using latest Run I calibration, compatibility with 13 TeV results assessed
 - ✓ Scalar I.2 σ (gg) 2.1 σ (qq)
 - ✓ Graviton $2.7 \sigma (gg) 3.3 \sigma (qq)$
- More data needed to verify excess origin: looking forward to 2016 LHC run!

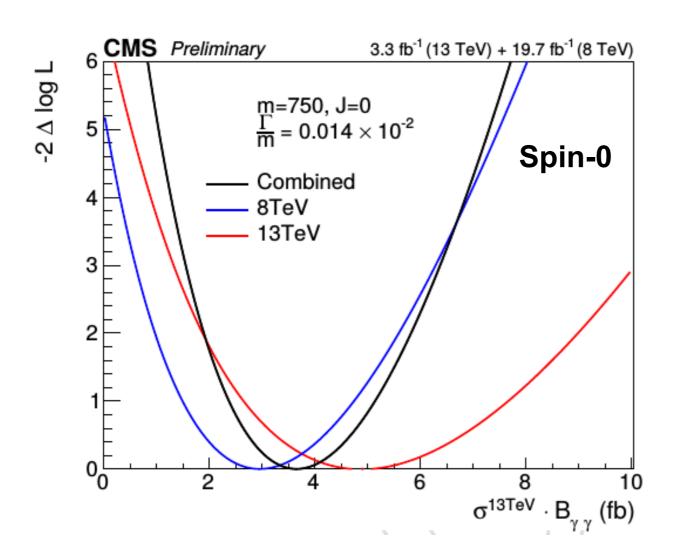
Upper limits (normalized to 13TeV x-sec)

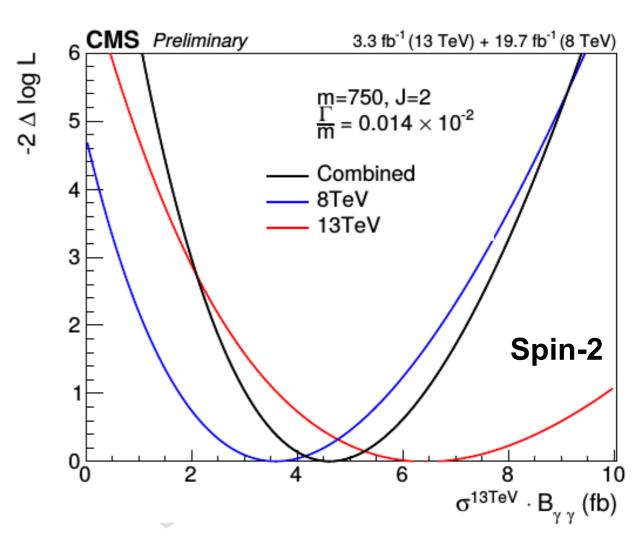

Compared to single analyses, sensitivity improved by 20-40%.



p-values

- \blacktriangleright Largest excess observed at $m_x = 750 \text{GeV}$ and for narrow width.
 - **Local** significance: 3.4σ
 - Taking into account mass range 500-3500GeV (and all signal hypotheses), "global" significance becomes 1.6σ





Consistency between 8 and 13TeV datasets

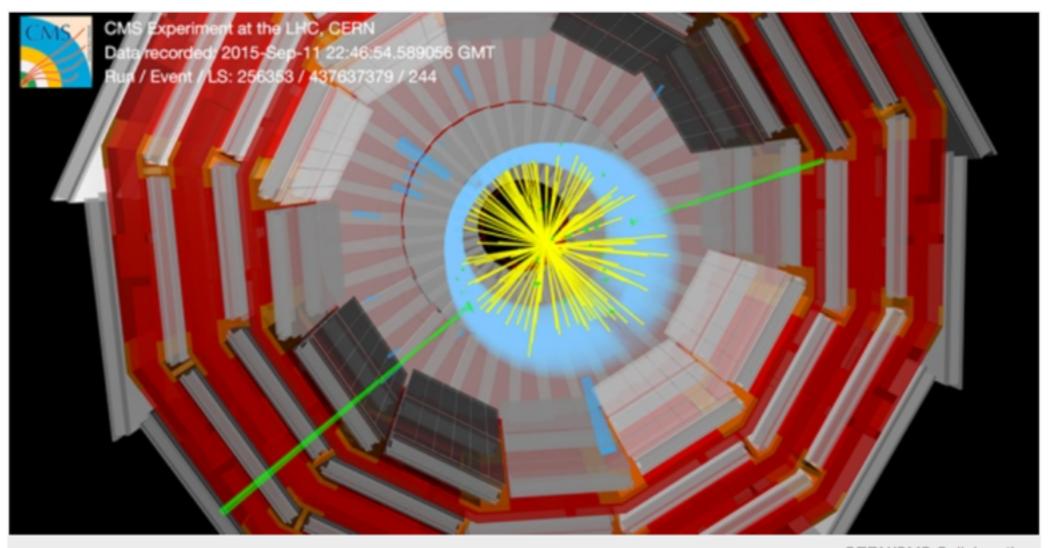
- ▶ Evaluated through likelihood scan vs equivalent 13TeV cross-section at $m_x = 750$ GeV under both spin (narrow-width) hypotheses.
 - Compatible results observed in both datasets.

Summary

- Showed an update on searches for diphoton resonances in the mass range above 500GeV at 8 and 13TeV.
 - Used simple and robust analysis strategy.
- Used improved detector calibration and analyzed dataset recorded at OT.
 - Compared to previous results, 13TeV analysis improved sensitivity by more than 20%.
- Results interpreted in terms of scalar resonances and RS gravitons production of different widths.
 - Observation generally consistent with SM expectations.
 - Modest excess of events observed at m_x = 750(760)GeV for the 8+13TeV(13TeV) dataset.
 - **Local** significance is $3.4(2.9)\sigma$, reduced to $1.6(<1)\sigma$ after accounting for look-elsewhere-effect.

Hints of new LHC particle get slightly stronger

One fresh analysis keeps alive physicists' hope for a breakthrough, but another is disappointing.


Davide Castelvecchi & Elizabeth Gibney

17 March 2016 | Corrected: 18 March 2016

Nature Magazine!

Rights & Permissions

CERN/CMS Collaboration


Particle collisions that produce two photons of a certain energy are unexpectedly prevalent at the LHC.

We are living in a very exciting era!

We are living in a very exciting era!

Not only for particle physics, But also for A.I.

(Sedol Lee) 1: 4 (Alpha Go)

Watch <u>AlphaGo</u> take on <u>Lee Sedol</u>, the world's top Go player, in the fourth match of the Google DeepMind challenge.

Properties of the diphoton excess

- ❖ Diphoton signal → interpret as a resonance: spin-0 or 2
 - ♦ We consider a scalar boson in this talk
- Cross section

$$\sigma(pp \rightarrow S)BR(S \rightarrow \gamma\gamma) \approx 3-10 \text{ fb}$$

❖ Width

Best fit value by ATLAS: Γ~45 GeV

- √ Narrow width is also possible
- Absence of 750 GeV resonance with other decay modes

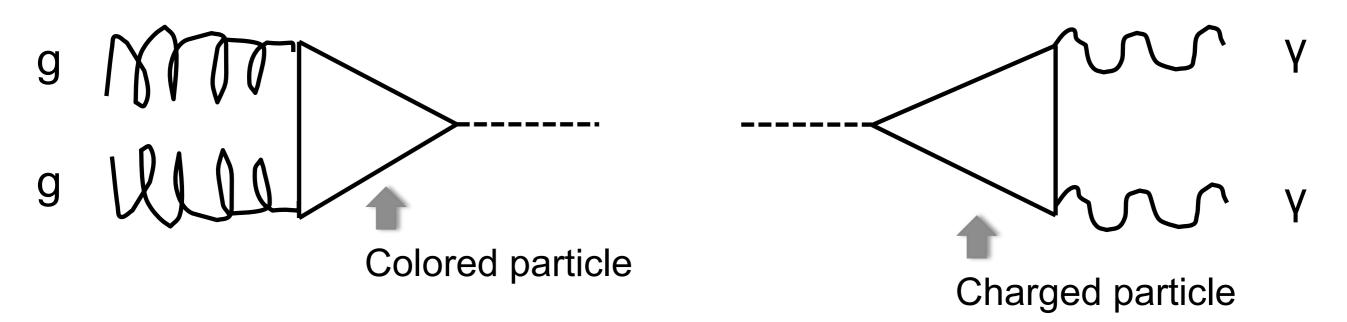
BRs are constrained

Properties of the diphoton excess

final	σ at $\sqrt{s} = 8 \text{TeV}$			implied bound or	1	
state f	observed	expected	ref.	$\Gamma(S \to f)/\Gamma(S \to \gamma \gamma)$	$_{\rm obs}$	
$\gamma\gamma$	< 1.5 fb	< 1.1 fb	[6, 7]	$< 0.8 \ (r/5)$		
$e^{+}e^{-} + \mu^{+}\mu^{-}$	< 1.2 fb	< 1.2 fb	[8]	$< 0.6 \ (r/5)$		
$ au^+ au^-$	< 12 fb	15 fb	[9]	$< 6 \ (r/5)$		
$Z\gamma$	< 4.0 fb	< 3.4 fb	[10]	< 2 (r/5)	r =	$\sigma_{_{13TeV}}/\sigma_{_{8TeV}}$
ZZ	< 12 fb	< 20 fb	[11]	$< 6 \ (r/5)$		
Zh	< 19 fb	< 28 fb	[12]	$< 10 \ (r/5)$	Γ	$/M \approx 0.06$
hh	< 39 fb	< 42 fb	[13]	$< 20 \ (r/5)$	•	7 101 0 .00
W^+W^-	< 40 fb	< 70 fb	[14, 15]	$< 20 \ (r/5)$		
$t ar{t}$	< 550 fb	-	[16]	$< 300 \ (r/5)$		
invisible	< 0.8 pb	-	[17]	$< 400 \ (r/5)$		
$b \overline{b}$	$\lesssim 1\mathrm{pb}$		[18]	$< 500 \ (r/5)$		
jj	$\lesssim 2.5 \text{ pb}$	-	[5]	$< 1300 \ (r/5)$		

From Table 1 of arXiv:1512.04933 (Franceschini et. al.)

Absence of 750 GeV resonance with other decay modes



BRs are constrained

One scenario: gluon fusion + diphoton decay via loop

Production: gluon fusion

Diphoton decay channel

It is not easy to get $\sigma(gg \rightarrow \Phi_{New})BR(\Phi_{New} \rightarrow \gamma\gamma) \sim 5$ fb

Ex) Two Higgs doublet Model (Type-II) (Angelescu, Djouadi, Moreau arxiv:1512.0492)

$$\sigma(gg \rightarrow H) \sim 850 \text{ fb} \times \cot^2\beta \qquad \sigma(gg \rightarrow A) \sim 850 \text{ fb} \times 2\cot^2\beta$$

BR(
$$H\rightarrow \gamma\gamma$$
)~O(10⁻⁵) BR($A\rightarrow \gamma\gamma$)~O(10⁻⁵)

We need exotic colored and/or charged particles

Let us discuss simple case of (SM) singlet scalar boson + exotic particles

Basic Questions

- Raison d'être of (fundamental?) singlet scalar and vector-like fermions? Completely singlet particles???
- Uncomfortable to have a completely singlet
- Two Options :
- Another new Higgs boson related with new spontaneously broken gauge symmetry
- Composite (pseudo)scalar

Basic Questions

- Raison d'être of (fundamental?) singlet scalar and vector-like fermions? Completely singlet particles???
- Can we generate phi(750) decay width ~ 45 GeV without any conflict with the known constraints?
- Yes, if phi(750) mainly decays into new particles
- Many examples: (i) Leptophobic U(1)' with fermions in the fundamental representation of E6, (ii) Dark U(1)' plus dark sector, Dark Higgs decay into a pair of Z'
- 750 GeV execss ~ U(1)' breaking scalar (Dark Higgs)

My own related works

- arXiv:1512.07853, "A Higgcision study on the 750 GeV Di-photon Resonance and 125 GeV SM Higgs boson with the Higgs-Singlet Mixing", with Kingman Cheung, Jae Sik Lee, Po-Yan Tseng
- arXiv:1601.00586, "Diphoton Excess at 750 GeV in leptophobic U(1)" model inspired by E6 GUT", with Yuji Omura, Chaehyun Yu (JHEP, to appear)
- arXiv:1601.02490, "Dark sector shining through 750 GeV dark Higgs boson at the LHC", with Takaaki Nomura
- arXiv:1602.07214, "Confronting a New Three-loop Seesaw Model with the 750 GeV Diphoton Excess", with Takaaki Nomura, Hiroshi Okada, Yuta Orikasa
- arXiv:1602.08816, "ADMonium: Asymmetric Dark Matter Bound State", with Xiao-Jun Bi, Zhaofeng Kang, Jinmian Li, Tianjun Li
- arXiv:1603.08802, "750 GeV diphoton excess as a composite (pseudo)scalar boson from new strong interaction" with Chaehyun Yu and T.C. Yuan, composite models

My own related works

- arXiv:1512.07853, "A Higgcision study on the 750 GeV Di-photon Resonance and 125 GeV SM Higgs boson with the Higgs-Singlet Mixing", with Kingman Cheung, Jae Sik Lee, Po-Yan Tseng
- arXiv:1601.00586, "Diphoton Excess at 750 GeV in leptophobic U(1)' model inspired by E6 GUT", with Yuji Omura, Chaehyun Yu
- arXiv:1601.02490, "Dark sector shining through 750 GeV dark Higgs boson at the LHC", with Takaaki Nomura
- arXiv:1602.07214, "Confronting a New Three-loop Seesaw Model with the 750 GeV Diphoton Excess", with Takaaki Nomura, Hiroshi Okada, Yuta Orikasa
- arXiv:1602.08816, "ADMonium: Asymmetric Dark Matter Bound State", with Xiao-Jun Bi, Zhaofeng Kang, Jinmian Li, Tianjun Li
- arXiv:1603.08802, "750 GeV diphoton excess as a composite (pseudo)scalar boson from new strong interaction" with Chaehyun Yu and T.C. Yuan, composite models (?)

Before 750 GeV diphoton, Only Higgs (~SM) and Nothing Else So Far at the LHC & Local Gauge Principle Works!

Building Blocks of SM

- Lorentz/Poincare Symmetry
- Local Gauge Symmetry: Gauge Group +
 Matter Representations from Experiments
- Higgs mechanism for masses of weak gauge bosons and SM chiral fermions
- These principles lead to unsurpassed success of the SM in particle physics

Lessons from SM

- Specify local gauge sym, matter contents and their representations under local gauge group
- Write down all the operators upto dim-4
- Check anomaly cancellation
- Consider accidental global symmetries
- Look for nonrenormalizable operators that break/conserve the accidental symmetries of the model

- If there are spin-I particles, extra care should be paid: need an agency which provides mass to the spin-I object
- Check if you can write Yukawa couplings to the observed fermion
- One may have to introduce additional Higgs doublets with new gauge interaction if you consider new chiral gauge symmetry (Ko, Omura, Yu on chiral U(I)' model for top FB asymmetry)
- Impose various constraints and study phenomenology

(3,2,1) or SU(3)cXU(1)em?

- Well below the EW sym breaking scale, it may be fine to impose SU(3)c X U(1)em
- At EW scale, better to impose (3,2,1) which gives better description in general after all
- Majorana neutrino mass is a good example
- For example, in the Higgs + dilaton (radion) system, and you get different results
- Singlet mixing with SM Higgs

For the 1st two models,

- Assume new chiral U(1)' gauge symmetry under which the SM fermions could be charged or neutral
- New chiral fermions (vectorlike under the SM gauge group) needed to cancel gauge anomalies ~ their masses entirely from U(1)' breaking
- 750 GeV diphoton excess ~ New Higgs that break U(1)' spontaneously
- One or 2 HDM depending on the SM fermions chirally charged under U(1)' or not

E6 motivated leptophobic U(1)' model

arXiv:1601.00586 (JHEP)

with Yuji Omura, Chaehyun Yu

2HDM with U(1)_H gauge sym

- 2HDM: one of the popular extensions of the SM Higgs sector
- Yukawa's and mass matrices cannot be diagonalized simultaneously —> neutral Higgs mediated FCNC problem
- Natural Flavor Conservation: usually in terms of Z2 (Glashow and Weinberg, 1977)

Natural Flavor Conservation (Glashow and Weinberg, 1977)

- Fermions of the same electric charge get their masses from the same Higgs doublet [Glashow and Weinberg, PRD (1977)] NFC
- Impose a discrete Z2 sym, and assign different Z2 parity to H1 and H2
- This Z2 is softly broken to avoid the domain wall problem

However

- The discrete Z₂ seems to be rather ad hoc, and its origin and the reason for its soft breaking are not clear
- We implement the discrete Z₂ into a continuos local U(1) Higgs flavor sym under which H₁ and H₂ are charged differently [Ko, Omura, Yu PLB (2012)]
- This simple idea opens a new window for the multi-Higgs doublet models, which was not considered before

Type-II 2HDM with U(1)H gauge symmetry

Ko, Omura, Yu: arXiv:1204.4588 [hep-ph]

Table 1: Matter contents in U(1)' model inspired by E_6 GUTs. Here, i denotes the generation index: i = 1, 2, 3.

Fields	SU(3)	SU(2)	$\mathrm{U}(1)_Y$	U(1)'	$Z_2^{ m ex}$
Q^i	3	2	1/6	-1/3	
u_R^i	3	1	2/3	2/3	
d_R^i	3	1	-1/3	-1/3	
L_i	1	2	-1/2	0	+
e_R^i	1	1	-1	0	
n_R^i	1	1	0	1	
H_2	1	2	-1/2	0	
H_1	1	2	-1/2	-1	+
Φ	1	1	0	-1	
D_L^i	3	1	-1/3	2/3	
D_R^i	3	1	-1/3	-1/3	
\widetilde{H}_L^i	1	2	-1/2	0	_
\widetilde{H}_R^i	1	2	-1/2	-1	
N_L^i	1	1	0	-1	

Basic Ingredients

- New vectorlike fermions which are chiral under new U(1)': non-decoupling effects on X->gg, gam gam
- Diphoton at 750 GeV = Higgs boson from U(1)' symbreaking, mostly a SM singlet scalar
- All the masses from dynamical (Higgs) mechanism
- New decay modes to enhance the total decay rate

$$Z_2: (H_1, H_2) \to (+H_1, -H_2).$$

TABLE I: Assignment of Z_2 parities to the SM fermions and Higgs doublets.

Type	H_1	H_2	U_R	D_R	E_R	N_R	Q_L, L
I	+	_	+	+	+	+	+
II	+	_	+	_	_	+	+
III	+	_	+	+	_	_	+
IV	+	_	+		+	_	+

$$V(H_1, H_2) = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 + \frac{\lambda_1}{2} (H_1^{\dagger} H_1)^2 \qquad \Delta V = m_{\Phi}^2 \Phi^{\dagger} \Phi + \frac{\Lambda_{\Phi}}{2} (\Phi^{\dagger} \Phi)^2 + (\mu H_1^{\dagger} H_2 \Phi) + \text{h.c.})$$

$$+ \frac{\lambda_2}{2} (H_2^{\dagger} H_2)^2 + \lambda_3 H_1^{\dagger} H_1 H_2^{\dagger} H_2 + \lambda_4 H_1^{\dagger} H_2 H_2^{\dagger} H_1. (4) \qquad + \mu_1 H_1^{\dagger} H_1 \Phi^{\dagger} \Phi + \mu_2 H_2^{\dagger} H_2 \Phi^{\dagger} \Phi, \qquad (5)$$

Soft Z2 breaking is replaced by spontaneous U(1) Higgs gauge sym breaking

Type-I Extensions

Models are anomaly free without extra chiral fermions

TABLE II: Charge assignments of an anomaly-free $U(1)_H$ in the Type-I 2HDM.

Type	U_R	D_R	Q_L	L	E_R	N_R	H_1
$U(1)_H$ charge	u	d	$\frac{(u+d)}{2}$	$\frac{-3(u+d)}{2}$	-(2u+d)	-(u+2d)	$\frac{(u-d)}{2}$
$h_2 \neq 0$	0	0	0	0	0	0	0
$U(1)_{B-L}$	1/3	1/3	1/3	-1	-1	-1	0
$U(1)_R$	1	-1	0	0	-1	1	1
$U(1)_Y$	2/3	-1/3	1/6	-1/2	-1	0	1/2

See arXiv:1309.7256 for Higgs data analysis, arXiv:1405.2138 for DM (Ko,Omura,Yu)

A Type-II Extension has all the necessary ingredients

Table 1: Matter contents in U(1)' model inspired by E_6 GUTs. Here, i denotes the generation index: i = 1, 2, 3.

=					
Fields	SU(3)	SU(2)	$\mathrm{U}(1)_Y$	U(1)'	$Z_2^{ m ex}$
Q^i	3	2	1/6	-1/3	
u_R^i	3	1	2/3	2/3	
d_R^i	3	1	-1/3	-1/3	
L_i	1	2	-1/2	0	+
e_R^i	1	1	-1	0	
n_R^i	1	1	0	1	
H_2	1	2	-1/2	0	
H_1	1	2	-1/2	-1	+
Φ	1	1	0	-1	
D_L^i	3	1	-1/3	2/3	
D_R^i	3	1	-1/3	-1/3	
\widetilde{H}_L^i	1	2	-1/2	0	_
\widetilde{H}_R^i	1	2	-1/2	-1	
N_L^i	1	1	0	-1	

Fermions : 27 of E6 (!!!)

Scalar Bosons : 2 Doublets + 1 Singlet

Yukawa couplings

The U(1)'-symmetric Yukawa couplings in our model are given by

$$V_{y} = y_{ij}^{u} \overline{u_{R}^{j}} H_{1}^{\dagger} i \sigma_{2} Q^{i} + y_{ij}^{d} \overline{d_{R}^{j}} H_{2} Q^{i} + y_{ij}^{e} \overline{e_{R}^{j}} H_{2} L^{i} + y_{ij}^{n} \overline{n_{R}^{j}} H_{1}^{\dagger} i \sigma_{2} L^{i} + H.c.,$$
 (16)

where σ_2 is the Pauli matrix. The Yukawa couplings to generate the mass terms for the extra particles are

$$V^{\text{ex}} = y_{ij}^{D} \overline{D_R^j} \Phi D_L^i + y_{ij}^{H} \overline{\widetilde{H}_R^j} \Phi \widetilde{H}_L^i + y_{IJ}^{N} \overline{N_L^c} H_1^{\dagger} i \sigma_2 \widetilde{H}_L^i + y_{IJ}^{\prime N} \overline{\widetilde{H}_R^i} H_2 N_L^j + H.c. . \qquad (17)$$

Complex Scalar DM

One can introduce new Z_2^{ex} -odd scalar field X with the $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_H$ quantum numbers equal to (1, 1, 0; -1). Then the gauge-invariant Lagrangian involving X is given by

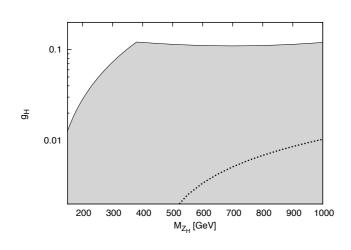
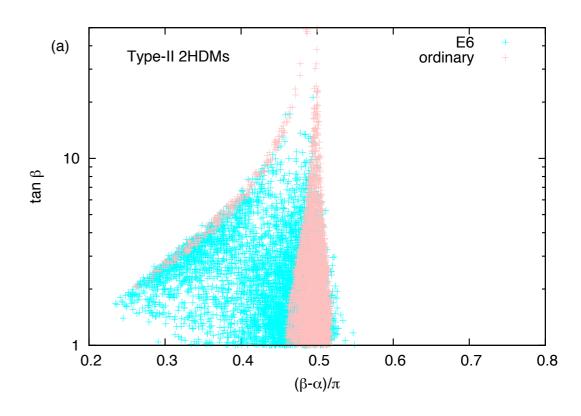
$$\mathcal{L}_{X} = D_{\mu}X^{\dagger}D^{\mu}X - (m_{X0}^{2} + \lambda_{H_{1}X}H_{1}^{\dagger}H_{1} + \lambda_{H_{2}X}H_{2}^{\dagger}H_{2})X^{\dagger}X - \lambda_{X}(X^{\dagger}X)^{2}$$

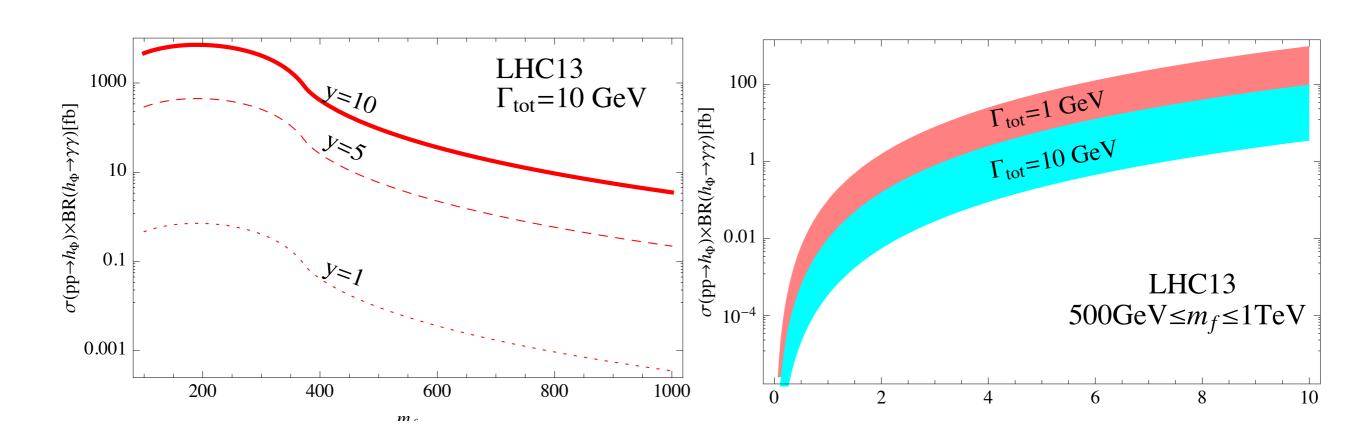
$$- \left(\lambda_{\Phi X}^{"}(\Phi^{\dagger}X)^{2} + H.c.\right) - \lambda_{\Phi X}\Phi^{\dagger}\Phi X^{\dagger}X - \lambda_{\Phi X}^{'}|\Phi^{\dagger}X|^{2}$$

$$- \left(y_{dX}^{D}\overline{d_{R}}D_{L}X + y_{LX}^{\tilde{H}}\overline{L}\widetilde{H}_{R}X^{\dagger} + H.c.\right)$$

$$(18)$$

125 GeV Higgs Data


FIG. 1. M_{Z_H} and g_H in the type-II $2\mathrm{HDM}_{U(1)}$. The dot line is the upper bound on the $U(1)_{\psi}$ gauge boson, and the gray region is allowed for the $U(1)_H (\equiv U(1)_b)$ gauge boson.

Qualitatively different from the ordinary Type-II 2HDM arXiv:1502.00262 (Ko, Omura, Yu)

750 GeV Diphoton Excess

Ko, Omura, Yu, arXiv:1601.00586

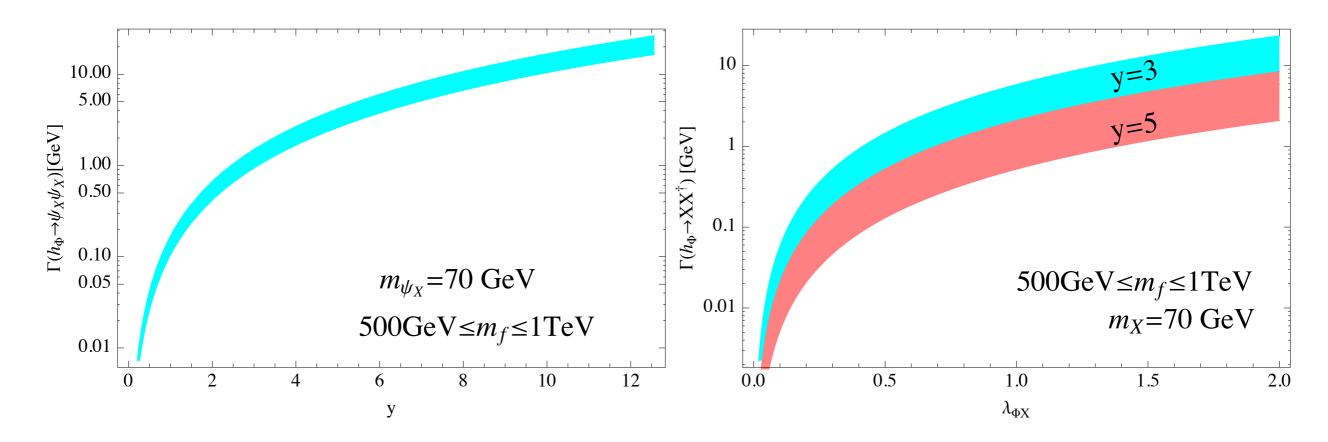


Figure 2: y vs. invisible decay width of h_{Φ} (GeV) in the fermionic DM scenario (left) and scalar DM scenario (right). The vector-like fermion mass is between 500 GeV and 1 TeV on the cyan and pink bands. The dark matter masses are 70 GeV in the both cases.

Constraints

final	σ at	$\sqrt{s} = 8 \text{Te}$	V	implied bound on
state f	observed	expected	ref.	$\Gamma(S \to f)/\Gamma(S \to \gamma \gamma)_{\rm obs}$
$\gamma\gamma$	< 1.5 fb	< 1.1 fb	[6, 7]	< 0.8 (r/5)
$e^{+}e^{-} + \mu^{+}\mu^{-}$	< 1.2 fb	< 1.2 fb	[8]	$< 0.6 \ (r/5)$
$\tau^+\tau^-$	< 12 fb	15 fb	[9]	$< 6 \ (r/5)$
$Z\gamma$	< 4.0 fb	< 3.4 fb	[10]	< 2 (r/5)
ZZ	< 12 fb	< 20 fb	[11]	$< 6 \ (r/5)$
Zh	< 19 fb	< 28 fb	[12]	$< 10 \ (r/5)$
hh	< 39 fb	< 42 fb	[13]	$< 20 \ (r/5)$
W^+W^-	< 40 fb	< 70 fb	[14, 15]	$< 20 \ (r/5)$
$t ar{t}$	< 550 fb	-	[16]	$< 300 \ (r/5)$
invisible	< 0.8 pb	-	[17]	$< 400 \ (r/5)$
$b\bar{b}$	$\lesssim 1\mathrm{pb}$	$\lesssim 1 \mathrm{pb}$	[18]	$< 500 \ (r/5)$
jj	$\lesssim 2.5 \text{ pb}$	-	[5]	$< 1300 \ (r/5)$

Rescaled Run I limits

[Franceschini et al, 1512.04933]

- Most can be evaded
- Monojet + missing ET ??

Key Aspects of the Model

- Extra fermions are chiral under U(1)', and vectorlike under the SM gauge group: this is the consequence of gauge anomaly cancellation (27 rep. of E6 group)
- Their masses from U(1)' breaking > nondecoupling
- U(1)'-breaking scalar produces a new singlet-like scalar h_phi ~ 750 GeV scalar boson
- Decay channels of 750 GeV are determined by gauge symmetry of the underlying Type-II 2HDM with U(1)' Higgs gauge symmetry (hh, Hh, HH, Z'Z',DM DM etc.)

Conclusion

- Type II 2HDM + U(1) Higgs gauge symmetry:
 leptophobic U(1)' derived from E6
- Can accommodate the 750 GeV diphoton excess at qualitative level. Quantitatively ?? (Work in progress)
- A few more different models within the same ingredients are being studied now: Stay tuned
- A new playground for new gauge models (including DM)

Flavor dependent U(1)'

- One can consider flavor dependent U(1)', assuming only the 3rd generation for example feels U(1)'
- Such model in fact was constructed by Yuji Omura,
 Chaehyun Yu and myself in the context of Top FBA at the Tevatron [Origin of nonMFV = flavor dep. U(1)']
- Can accommodate B->D(*) tau nu anomaly too
- arXiv:1108.0350, 1108.4005, 1205.0407, 1212.4607

Dark Higgs shines through 750 GeV Dark Higgs Boson at the LHC

arXiv:1601.02490, with T. Nomura

Disclaimer

In this part, "Dark sector" means that it carries dark gauge charges.

Does not mean that it is made of SM singlets.

Dark Sector Shining through 750GeV Dark Higgs @ LHC

(arXiv:1601.02490 with Takaaki Nomura)

- Raison d'être of (fundamental?) singlet scalar and vector-like fermions? Completely singlet particles?
- Can we generate phi(750) decay width ~ 45 GeV without any conflict with the known constraints?
- Yes, if phi(750) mainly decays into new particles
- Here we consider phi(750) decay into dark photons, assuming phi(750) is a dark Higgs boson

$SM+U(1)_X + New fermions and scalars with <math>U(1)_X$ charge

- ❖New fermions are VL under SM but chiral under U(1)_X
- ❖Relevant couplings are related to new gauge coupling g_X
- ❖750 GeV scalar can decay into new massive gauge boson (Z')
- DM candidate is contained in a model

- Every f_R in the SM has its dark partner, F_L with the same SM quantum #'s and dark gauge charge
- $\overline{F_L}$ f_R X : gauge invariant, due to a new complex scalar X which can make DM candidate, if $\langle X \rangle = 0$

Model: Local $U(1)_X$ model with exotic particles

Contents in dark sector (anomaly free)

(P.Ko, T.N. arXiv:1601.02490)

		Scal	ar							
	E_L	E_R	N_L	N_{R}	U_L	U_{R}	D_L	D_R	Φ	X
SU(3)	1	1	1	1	3	3	3	3	1	1
SU(2)	1	1	1	1	1	1	1	1	1	1
$\mathrm{U}(1)_Y$	-1	-1	0	0	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{-1}{3}$	$\frac{-1}{3}$	0	0
$U(1)_X$	a	-b	-a	b	-a	\boldsymbol{b}	a	-b	a + b	\boldsymbol{a}

(3 generations of fermions)

New Lagrangian

X,N: DM candidate

$$\begin{split} L^Y &= y^E \overline{E}_L E_R \Phi + y^N \overline{N}_L N_R \Phi^* + y^U \overline{U}_L U_R \Phi^* + y^D \overline{D}_L D_R \Phi \\ &+ y^{Ee} \overline{E}_L e_R X + y^{Uu} \overline{U}_L u_R X^* + y^{Dd} \overline{D}_L d_R X + h.c. \end{split}$$

$$V = \mu^{2} |H|^{2} + \lambda |H|^{4} + \mu_{\Phi}^{2} |\Phi|^{2} + \mu_{X}^{2} |X|^{2}$$
$$+ \lambda_{\Phi} |\Phi|^{4} + \lambda_{X} |X|^{4} + \lambda_{H\Phi} |H|^{2} |\Phi|^{2} + \lambda_{HX} |H|^{2} |X|^{2} + \lambda_{X\Phi} |X|^{2} |\Phi|^{2}$$

Model : local $U(1)_X$ model with exotic particles

Contents in dark sector (anomaly free)

(P.Ko, T.N. arXiv:1601.02490)

		Scal	ar							
	E_L	E_R	N_L	N_R	U_L	U_{R}	D_L	D_R	Φ	X
SU(3)	1	1	1	1	3	3	3	3	1	1
SU(2)	1	1	1	1	1	1	1	1	1	1
$\mathrm{U}(1)_Y$	-1	-1	0	0	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{-1}{3}$	$\frac{-1}{3}$	0	0
$\mathrm{U}(1)_X$	a	-b	-a	b	-a	\boldsymbol{b}	a	-b	a+b	\boldsymbol{a}

(3 generations of fermions)

New Lagrangian

X,N: DM candidate

$$L^Y = \underbrace{y^E \overline{E}_L E_R \Phi + y^N \overline{N}_L N_R \Phi^* + y^U \overline{U}_L U_R \Phi^* + y^D \overline{D}_L D_R \Phi}_{\textbf{Giving mass for new fermions + gg fusion and } \textbf{\textit{\gamma}} \textbf{\textit{\gamma}} \textbf{\textit{decay of }} \textbf{\textit{\Phi}} \\ + y^{Ee} \overline{E}_L e_R X + y^{Uu} \overline{U}_L u_R X^* + y^{Dd} \overline{D}_L d_R X + h.c.}$$

$$V = \mu^{2} |H|^{2} + \lambda |H|^{4} + \mu_{\Phi}^{2} |\Phi|^{2} + \mu_{X}^{2} |X|^{2}$$
$$+ \lambda_{\Phi} |\Phi|^{4} + \lambda_{X} |X|^{4} + \lambda_{H\Phi} |H|^{2} |\Phi|^{2} + \lambda_{HX} |H|^{2} |X|^{2} + \lambda_{X\Phi} |X|^{2} |\Phi|^{2}$$

Model: local $U(1)_X$ model with exotic particles

Contents in dark sector (anomaly free)

(P.Ko, T.N. arXiv:1601.02490)

		Scal	ar							
	E_L	E_R	N_L	N_{R}	U_L	U_{R}	D_L	D_R	Φ	\boldsymbol{X}
SU(3)	1	1	1	1	3	3	3	3	1	1
SU(2)	1	1	1	1	1	1	1	1	1	1
$\mathrm{U}(1)_Y$	-1	-1	0	0	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{-1}{3}$	$\frac{-1}{3}$	0	0
$\mathrm{U}(1)_X$	a	-b	-a	b	-a	\boldsymbol{b}	a	-b	a+b	\boldsymbol{a}

(3 generations of fermions)

New Lagrangian

X,N: DM candidate

$$L^Y = \underbrace{y^E \overline{E}_L E_R \Phi + y^N \overline{N}_L N_R \Phi^* + y^U \overline{U}_L U_R \Phi^* + y^D \overline{D}_L D_R \Phi}_{\textbf{Giving mass for new fermions} + \textbf{gg fusion and } \textbf{vy decay of } \Phi \\ + y^{Ee} \overline{E}_L e_R X + y^{Uu} \overline{U}_L u_R X^* + y^{Dd} \overline{D}_L d_R X + h.c.}$$

Decay of new fermions F

$$V = \mu^{2} |H|^{2} + \lambda |H|^{4} + \mu_{\Phi}^{2} |\Phi|^{2} + \mu_{X}^{2} |X|^{2} \quad \mathbf{F} \to \mathbf{X} \, \mathbf{f}_{SM}$$

$$+ \lambda_{\Phi} |\Phi|^{4} + \lambda_{X} |X|^{4} + \lambda_{H\Phi} |H|^{2} |\Phi|^{2} + \lambda_{HX} |H|^{2} |X|^{2} + \lambda_{X\Phi} |X|^{2} |\Phi|^{2}$$

DM Stability/Longevity

- Accidental Z₂ symmetry after U(1)x symmetry breaking
- (FL, FR, X): Z2-odd, whereas the rest fields are Z2-even
- Have to be careful about operators that break this Z₂ symmetry, making X decay at (non)renormalizable level
- $X^\dagger \Phi^n$: gauge invariant operator that has to be forbidden
- a/(a+b)=n for gauge invariance: suitable choice of a, b can make a/(a+b) non-integer (absolutely stable), or make n very large (long-lived X). We choose a~b~1 for simplicity

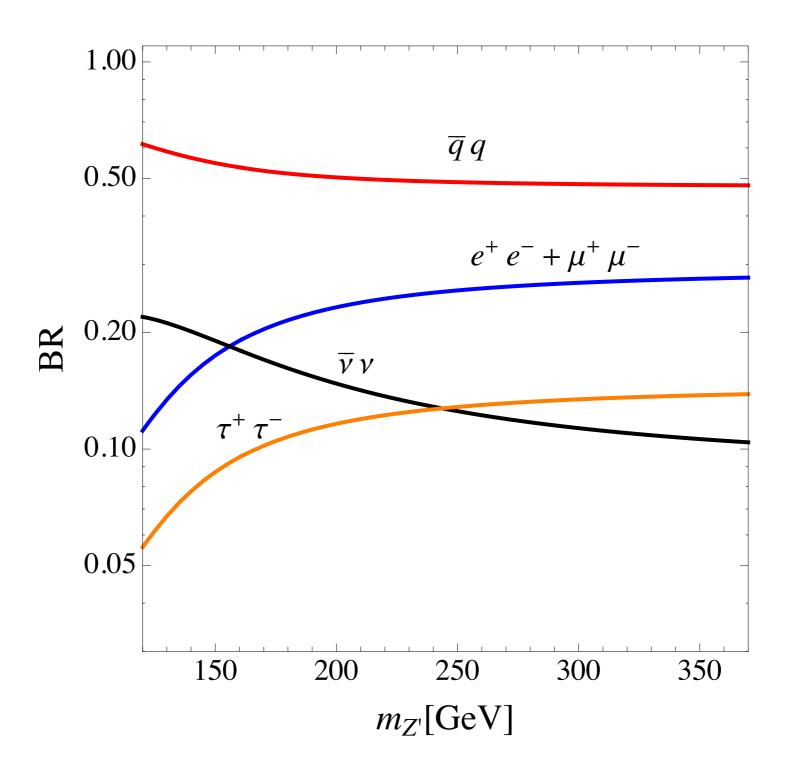
Gauge Symmetry breaking and Z'

VEVs of scalar fields

$$\langle H \rangle = \frac{1}{\sqrt{2}} v, \quad \langle \Phi \rangle = \frac{1}{\sqrt{2}} v_{\phi}$$

$$V \approx \sqrt{\frac{-\mu^{2}}{\lambda}}, \quad v_{\phi} \approx \sqrt{\frac{-\mu_{\Phi}^{2}}{\lambda_{\Phi}}}$$

$$\Phi = (v_{\phi} + \phi + iG_{X})/\sqrt{2}$$
U(1)_X is broken by <Φ>
We assume H-Φ mixing is negligible


Masses of Z' and new fermions

$$m_{Z'}^{2} \approx (a+b)^{2} g_{X}^{2} v_{\phi}^{2}, \quad m_{F} = \frac{y^{F}}{\sqrt{2}} v_{\phi}$$

$$\lambda_{\Phi} = \frac{2m_{\phi}^{2} g_{X}^{2}}{m_{Z'}^{2}}$$

Z' decays through small Z-Z' mixing

BRs of Z'

Gluon fusion and decay modes of ϕ

Gluon fusion and diphoton decay of φ via new fermion loop

$$gg \to \Phi \qquad L_{\phi gg} = \frac{\alpha_s}{8\pi} \left(\sum_{F=U,D} \frac{(a+b)\sqrt{2}g_X}{m_{Z'}} A_{1/2}(\tau_F) \right) \phi G^{a\mu\nu} G^a_{\mu\nu}$$

Decay widths

$$\Gamma(\phi \to \gamma \gamma) = \frac{\alpha^2 m_{\phi}^3}{256\pi^3} \left| \sum_F N_c^F \frac{(a+b)g_X Q_F^2}{m_{Z'}} A_{1/2}(\tau_F) \right|^2$$
BR(\phi)

$$\Gamma(\phi \to Z'Z') = \frac{(a+b)^2 g_X^2 m_\phi^3}{32\pi m_\phi} \sqrt{1 - \frac{4m_{Z'}^2}{m_\phi^2}}$$

$$\times \frac{m_{\phi}^{4} - 4m_{\phi}^{2}m_{Z'}^{2} + 12m_{Z'}^{4}}{m_{Z'}^{4}}$$

 $m_X = 350 \text{ GeV}$ $m_X = 350 \text{ GeV}$

Gluon fusion and decay modes of ϕ

Gluon fusion and diphoton decay of φ via new fermion loop

$$gg \to \Phi \qquad L_{\phi gg} = \frac{\alpha_s}{8\pi} \left(\sum_{F=U,D} \frac{(a+b)\sqrt{2}g_X}{m_{Z'}} A_{1/2}(\tau_F) \right) \phi G^{a\mu\nu} G^a_{\mu\nu}$$

Decay widths

$$\Gamma(\phi \to \gamma \gamma) = \frac{\alpha^2 m_{\phi}^3}{256\pi^3} \left| \sum_F N_c^F \frac{(a+b)g_X Q_F^2}{m_{Z'}} A_{1/2}(\tau_F) \right|^2 \frac{\text{BR}(\phi)}{\sum_{Z'Z'}}$$

$$\Gamma(\phi \to Z'Z') = \frac{(a+b)^2 g_X^2 m_{\phi}^3}{32\pi m_{\phi}} \sqrt{1 - \frac{4m_{Z'}^2}{m_{\phi}^2}}$$

$$\times \frac{m_{\phi}^4 - 4m_{\phi}^2 m_{Z'}^2 + 12m_{Z'}^4}{m_{Z'}^4}$$

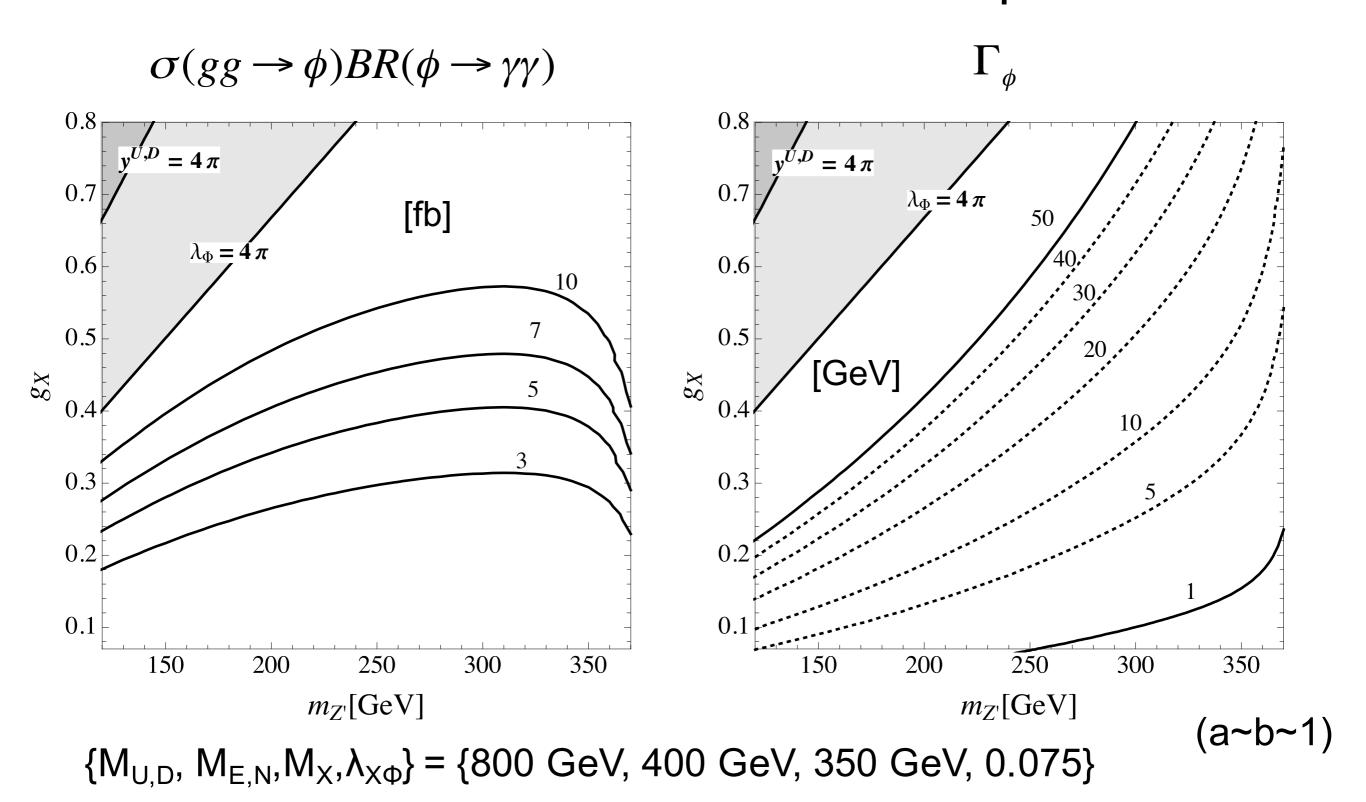
$$\vdots$$

$$N_c^F \frac{(a+b)g_X Q_F^2}{m_{Z'}^2} A_{1/2}(\tau_F) = \frac{1}{2} \frac{1}$$

0.2

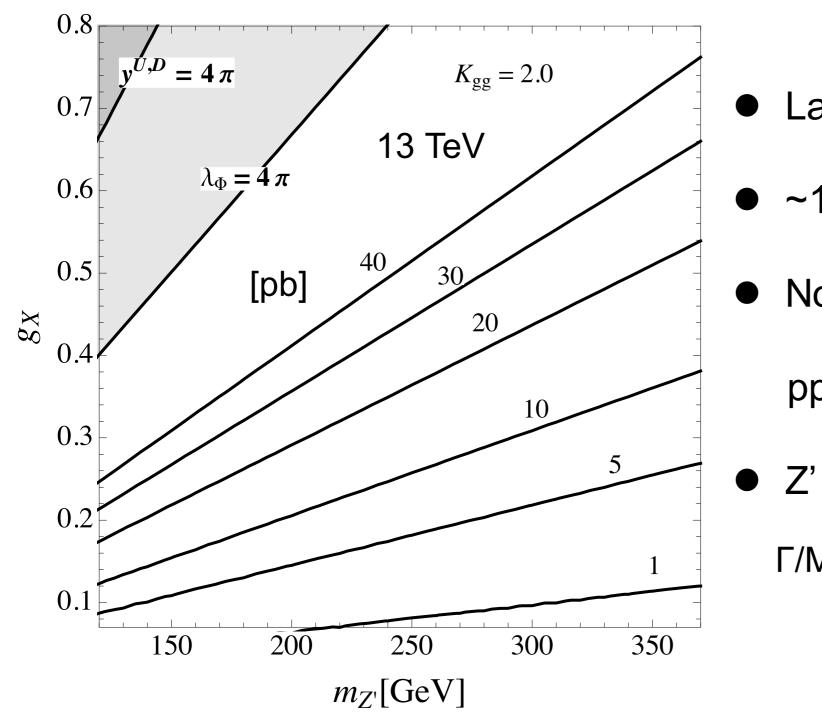
0.4

0.6


 g_X

0.8

1.0


BRs and gluon fusion are function of g_X and m_{Z'}

Cross section and widht of ϕ

- ❖ ~5 fb cross section with g_X=0.3~0.5 and m_{Z′}=120~360 GeV
- ❖ Decay width is relatively large: O(10~50) GeV

Discussion: Cross section of φ production

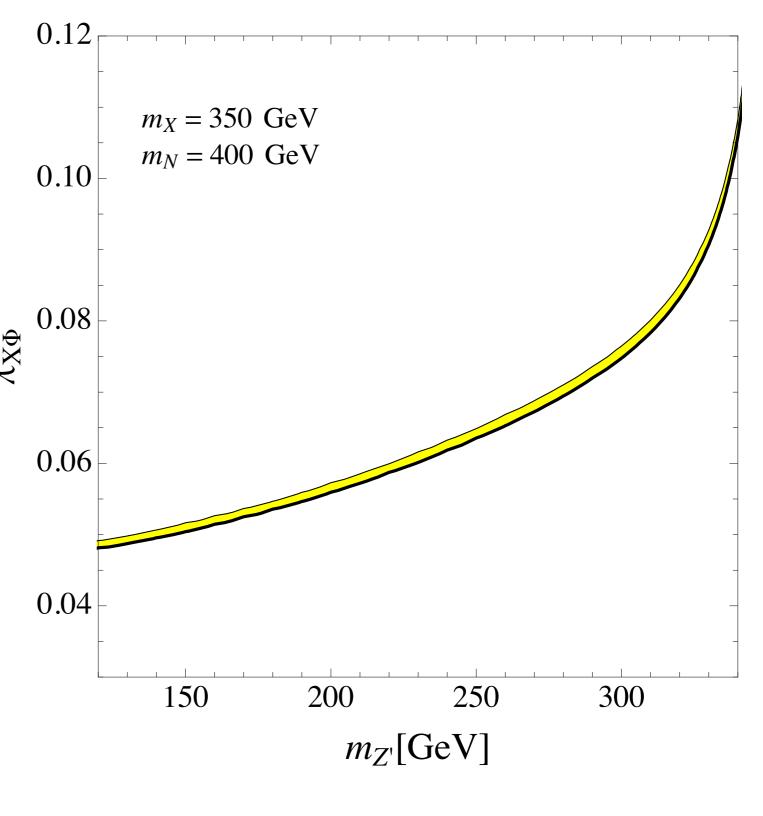
- Large cross section of O(10) pb
- ~1/5 for 8 TeV case
- No direct constraints for

$$pp \rightarrow \phi \rightarrow Z'Z' \rightarrow 4f_{SM}$$

Z' width is very narrow

Γ/M<10⁻⁶ due to small Z-Z' mixing

 $\{M_{U,D}, M_{E,N}, M_X, \lambda_{X\Phi}\} = \{800 \text{ GeV}, 400 \text{ GeV}, 350 \text{ GeV}, 0.075\}$ (a~b~1)


DM Relic Density

Annihilation process

$$XX \rightarrow Z'Z'$$

 $NN \rightarrow Z'Z'$

$$\langle \sigma v \rangle_{XX^*} \simeq \frac{\lambda_{X\Phi}^2}{32\pi m_X^2} \frac{m_{Z'}^4}{(4m_X^2 - m_s^2)^2} \times \frac{4m_X^4 - 4m_X^2 m_{Z'}^2 + 3m_{Z'}^4}{m_{Z'}^4} \sqrt{1 - \frac{m_{Z'}^2}{m_X^2}}$$
(25)

$$\langle \sigma v \rangle_{N\bar{N}} \simeq \frac{g_X^4}{2\pi m_N^2} \frac{m_N^4}{(m_N^2 - m_s^2)^2} \frac{4m_N^4 - 4m_N^2 m_{Z'}^2 + 3m_{Z'}^4}{m_{Z'}^4} \sqrt{1 - \frac{m_{Z'}^2}{m_N^2}}$$
(26)

N is subdominant in our analysis

Digress on muon (g-2)

- For mX = 350 GeV and mEi = 400 GeV, we can account for the deficit in the a_{μ} = 8 × 10^{-10}, if $y^{Ei}_{\mu} \sim 2-3$
- However, in this case, the annihilation cross section for X is too large, and X cannot be the main component of the DM in the present universe
- So we don't pursue this possibility any further

Summary with this new DM model

- A new viable model for DM with rich dark sector
- Interesting in its own, if 750 GeV excess disappears
- Can accommodate a large width with decay into Z'Z'
- Rich collider phenomenology, since dark fermions are charged under the SM gauge charges
- No strong constraints from DM (in)direct detection expt's
- Indirect signatures and SU(2)_L charged case under study

Composite Models

arXiv:1603.08802 and work in progress, with Chaehyun Yu, T.C. Yuan (Academia Sinica)

see also Kamenik, Redi

Basic assumptions

- New QCD-like confining gauge force described by SU(Nh)
- New Q's or scalar quark's charged under SU(Nh)
- SU(2)L singlets or doublets
- Q: Heavy fermions (>> new confining scale) (many works in other limit ~ h-pion, for future study)
- h-glueball: decay into SM particles through loop
- 750 GeV excess ~ etaq , psiq ??

$$\Lambda_h \simeq M \exp \left[-\frac{6\pi}{(11N_h - 2n_f)\alpha_h(M)} \right]$$

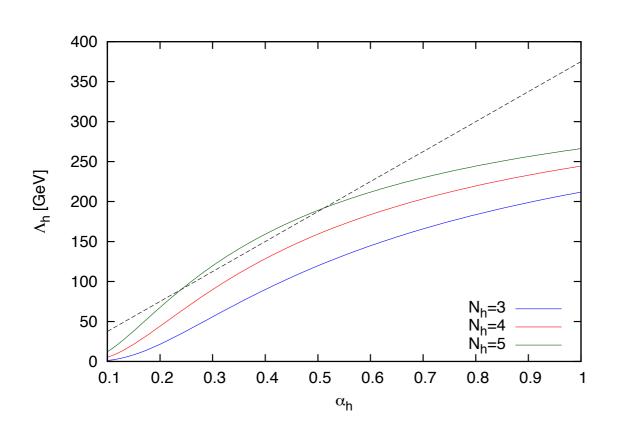


FIG. 1.
$$\Lambda_h$$
 in unit of GeV as a function of α_h for $m_Q = M/2 = 375$ GeV. The dashed line is $\alpha_h(m_Q)m_Q$ in unit of GeV.

$$V = -\frac{C_h \alpha_h}{r},$$

$$|R_{1S}(0)|^2 = m_Q \langle \frac{dV}{dr} \rangle = 4 \left(C_h \alpha_h \frac{m_Q}{2} \right)^3$$

$$\alpha_h(m_Q v_Q) m_Q > \Lambda_h$$

Coulomb like bound states

Assume scalar h-glueball is heavy to be produced in eta_Q decays

In the numerical analysis, we use

$$|R_{1S}(0)|^2 = m_Q \left\langle \frac{dV}{dr} \right\rangle = 4 \left(C_h \alpha_h \frac{m_Q}{2} \right)^3$$

$$N_c = 3,$$
 $N_h = 3, 4, 5,$
 $m_{\eta_Q} = 750 \text{ GeV},$
 $m_Q = 375 \text{ GeV},$
 $\alpha = \frac{1}{128},$
 $\alpha_s = 0.12,$
 $e_Q = \frac{2}{3}.$

Ex: Doublet with Qe=2/3

$$\sigma(gg \to \eta_Q \to \gamma\gamma) = \frac{C_{gg}}{sm_{\eta_Q}\Gamma_{\text{tot}}} \Gamma[\eta_Q \to gg]\Gamma[\eta_Q \to \gamma\gamma],$$

$$\begin{split} &\Gamma_{\gamma\gamma} = \frac{\alpha^2 N_c N_h e_Q^4}{m_Q^2} \left| R_{1S}(0) \right|^2, \\ &\Gamma_{\gamma Z} = \frac{\alpha^2 N_c N_h e_Q^2 (1 + 4 e_Q x_w)^2 (4 - r_Z)}{32 m_Q^2 x_w (1 - x_w)} \left| R_{1S}(0) \right|^2, \\ &\Gamma_{ZZ} = \frac{\alpha^2 N_c N_h (1 - r_Z)^{3/2}}{16 x_w^2 (1 - x_w)^2 m_Q^2 (2 - r_Z)^2} \left(1 + 4 e_Q x_w + 8 e_Q^2 x_w^2 \right)^2 \left| R_{1S}(0) \right|^2, \\ &\Gamma_{WW} = \frac{\alpha^2 N_c N_h (1 - r_W)^{3/2}}{8 x_w^2 m_Q^2 (2 - r_W)^2} \left| R_{1S}(0) \right|^2, \\ &\Gamma_{gg} = \frac{C_F N_h \alpha_s^2}{2 m_Q^2} \left| R_{1S}(0) \right|^2, \\ &\Gamma_{ghgh} = \frac{C_h N_c \alpha_h^2}{2 m_Q^2} \left| R_{1S}(0) \right|^2, \end{split}$$

$$|R_{1S}(0)|^2 = m_Q \left\langle \frac{dV}{dr} \right\rangle = 4 \left(C_h \alpha_h \frac{m_Q}{2} \right)^3$$

gh's will hadronize into a h-gleball, eventually decays into SM particles through loop diagrams with Q's

Br's for three states

TABLE I. Branching ratios of η_Q , which are independent of α_h and N_h . We have assumed that the decay channel $\eta_Q \to g_h g_h$ is kinematically closed.

Mode	gg	$\gamma\gamma$	γZ	ZZ
Br (%)	99.05	0.57	0.34	0.04

TABLE II. Branching ratios of ψ_Q , which are independent of α_h and N_h . We have assumed that the decay channel $\psi_Q \to g_h g_h g_h$ is kinematically closed. ^a

Mode	999	γgg	l^+l^-	$ u \bar{ u}$	$qar{q}$	$t \bar{t}$	W^+W^-
Br (%)	12.25	3.15	33.52	6.89	29.08	13.81	1.30

a $\psi_Q \to g_h g_h \gamma$ is also possible if the scalar h-glueball mass is less than m_{ψ_Q} . Then, the DY cross section is decreased by a factor of about 0.88 (0.77) for α_h =0.2 (0.3), respectively [6].

TABLE III. Branching ratios of $\eta_{\widetilde{Q}}$, which are independent of α_h and N_h .

Mode	gg	$\gamma\gamma$	γZ	ZZ
Br (%)	99.05	0.57	0.34	0.04

eta_Q(2S) mass spectrum

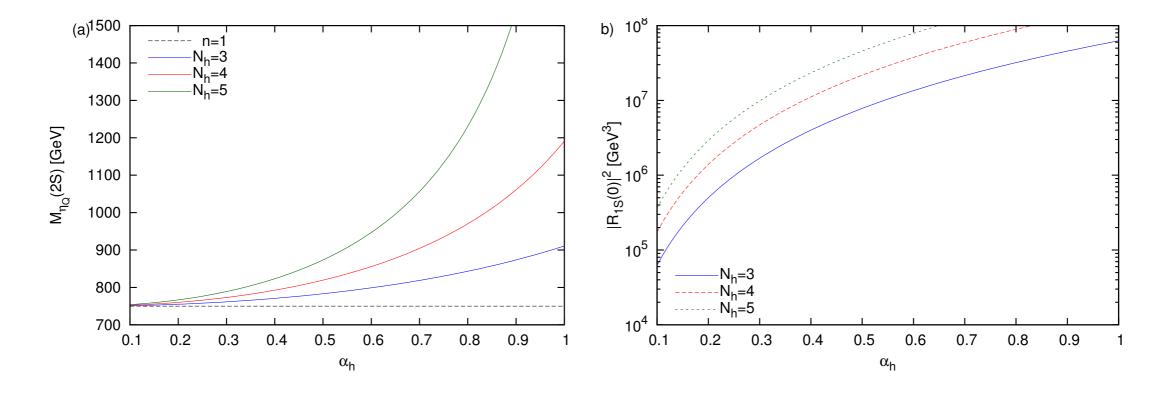


FIG. 2. (a) $M_{\eta_Q}(2S)$ as a function of α_h for $N_h=3,4,5$. The dashed line is for n=1. (b) $|R_{1S}(0)|^2$ in unit of GeV³ as a function of α_h .

Decays (continued)

$$\Gamma(\psi_Q \to g_h g_h g_h) = \frac{(\pi^2 - 9)\alpha_h^3}{36\pi m_Q^2} \frac{N_c(N_h^2 - 1)(N_h^2 - 4)}{N_h^2} |R_{1S}(0)|^2, \tag{31}$$

$$\Gamma(\psi_Q \to ggg) = \frac{(\pi^2 - 9)\alpha_s^3}{36\pi m_Q^2} \frac{N_h(N_c^2 - 1)(N_c^2 - 4)}{N_c^2} |R_{1S}(0)|^2, \tag{32}$$

$$\Gamma(\psi_Q \to u\bar{u}) = \frac{2N_c^2 N_h \alpha^2 e_Q^2}{27m_Q^2} \left[2 - \frac{2(3 - 8x_w)}{(4 - r_Z)(1 - x_w)} + \frac{9 - 24x_w + 32x_w^2}{(4 - r_Z)^2(1 - x_w)^2} \right] |R_{1S}(0)|^2 (33)$$

$$\Gamma(\psi_Q \to d\bar{d}) = \frac{N_c^2 N_h \alpha^2 e_Q^2}{27m_Q^2} \left[1 - \frac{2(3 - 4x_w)}{(4 - r_Z)(1 - x_w)} + \frac{9 - 12x_w + 8x_w^2}{(4 - r_Z)^2(1 - x_w)^2} \right] |R_{1S}(0)|^2 (34)$$

$$\Gamma(\psi_Q \to l^+ l^-) = \frac{N_c N_h \alpha^2 e_Q^2}{3m_Q^2} \left[1 - \frac{2(1 - 4x_w)}{(4 - r_Z)(1 - x_w)} + \frac{2(1 - 4x_w + 8x_w^2)}{(4 - r_Z)^2(1 - x_w)^2} \right] |R_{1S}(0)|^2 (35)$$

$$\Gamma(\psi_Q \to \nu\bar{\nu}) = \frac{2N_c N_h \alpha^2 e_Q^2}{3m_Q^2 (4 - r_Z)^2(1 - x_w)^2} |R_{1S}(0)|^2, \tag{36}$$

$$\begin{split} &\Gamma(\eta_{\widetilde{Q}} \to \gamma \gamma) = \frac{N_c N_h \alpha^2 e_Q^4}{2m_Q^2} \left| \widetilde{R}_{1S}(0) \right|^2, \\ &\Gamma(\eta_{\widetilde{Q}} \to \gamma Z) = \frac{N_c N_h \alpha^2 e_Q^4 x_w (4 - r_Z)}{4m_Q^2 (1 - x_w)} \left| \widetilde{R}_{1S}(0) \right|^2, \\ &\Gamma(\eta_{\widetilde{Q}} \to ZZ) = \frac{N_c N_h \alpha^2 e_Q^4 x_w^2 (8 - 8r_Z + 3r_Z^2) \sqrt{1 - r_Z}}{4m_Q^2 (2 - r_Z)^2 (1 - x_w)^2} \left| \widetilde{R}_{1S}(0) \right|^2, \\ &\Gamma(\eta_{\widetilde{Q}} \to gg) = \frac{N_h (N_c^2 - 1) \alpha_s^2}{8N_c m_Q^2} \left| \widetilde{R}_{1S}(0) \right|^2, \\ &\Gamma(\eta_{\widetilde{Q}} \to g_h g_h) = \frac{N_c (N_h^2 - 1) \alpha_h^2}{8N_b m_Q^2} \left| \widetilde{R}_{1S}(0) \right|^2, \end{split}$$

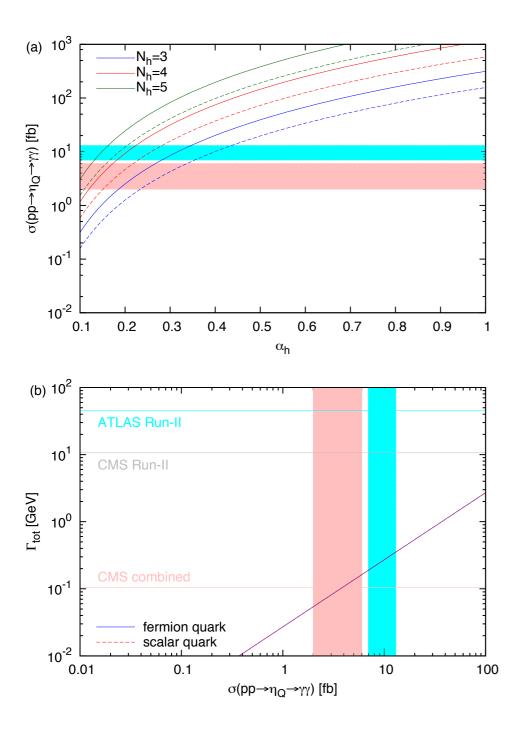


FIG. 2. (a) The cross section for $pp \to \eta_Q(\eta_{\widetilde{Q}}) \to \gamma \gamma$ at $\sqrt{s} = 13$ TeV in unit of fb as function of α_h . The solid (dashed) curve corresponds to the η_Q ($\eta_{\widetilde{Q}}$) resonance. (b) The correlation between the diphoton cross section and the total decay width of η_Q ($\eta_{\widetilde{Q}}$) in solid (dashed) curve, but both curves are overlapped.

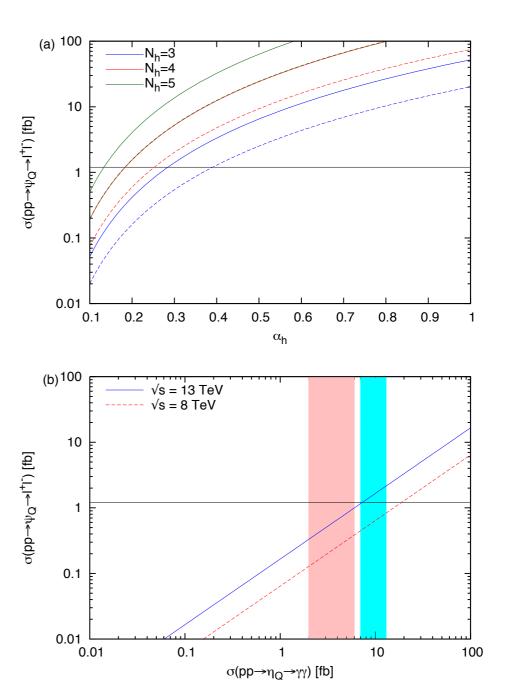
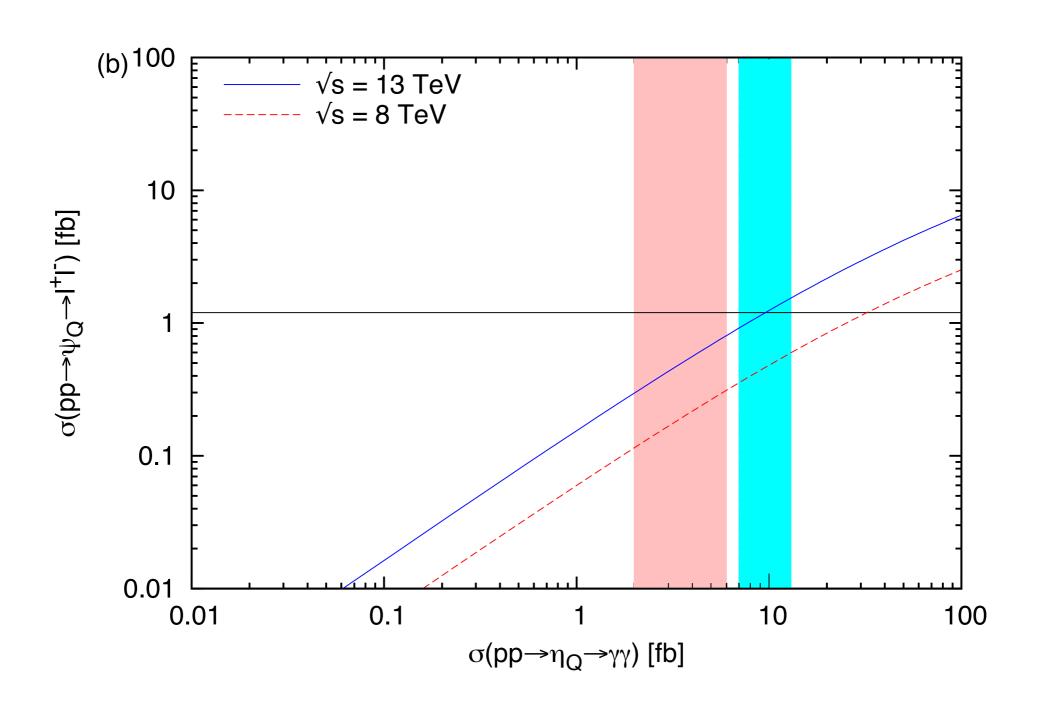
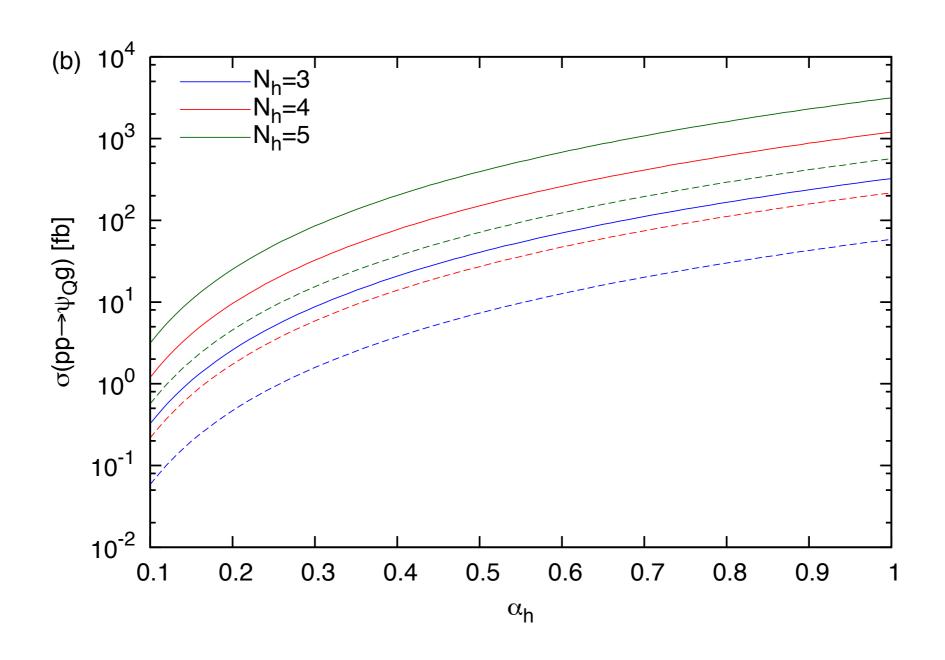
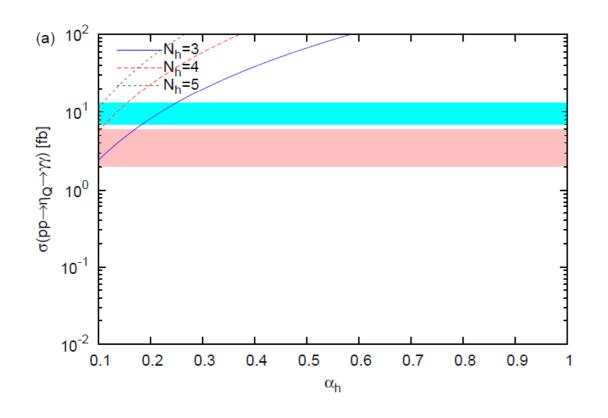




FIG. 3. (a) The cross section for the $q\bar{q} \to \psi_Q \to l^+ l^-$ in units of fb as a function of α_h at $\sqrt{s} = 13$ TeV (solid line) and 8 TeV (dashed line), respectively. The horizontal line is the upper bound for the DY production at $\sqrt{s} = 8$ TeV [8]. (b) The correlation between the diphoton cross section vs. DY cross section at LHC 13 TeV (solid line) and 8 TeV (dashed line).

If gh gh gamma included,

gg > psi_Q + g

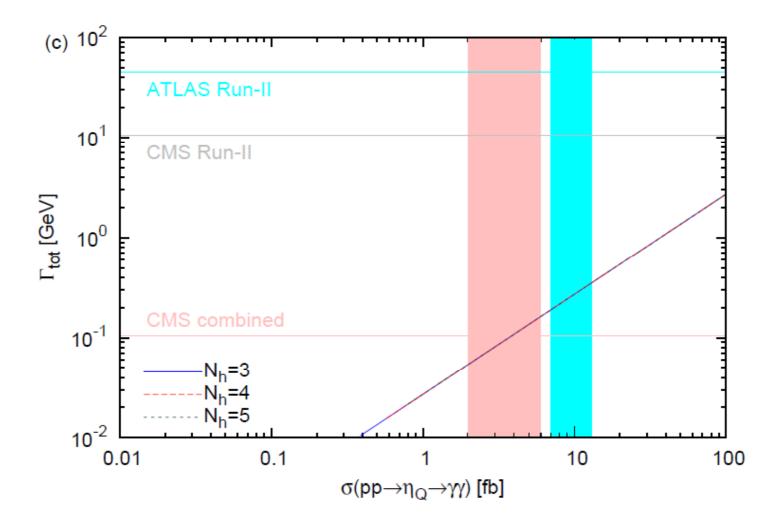
Discussions

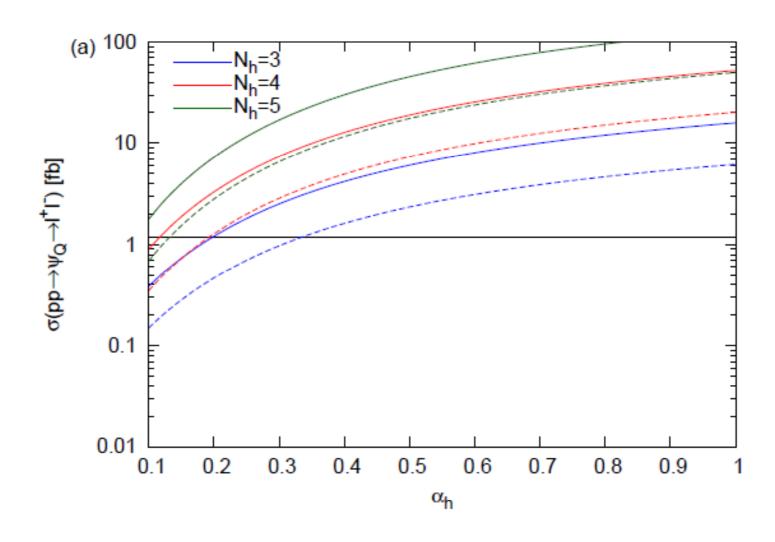

- QQbar bound state etaQ(750) is still consistent with DY constraint from psiQ (~750) at LHC 8 TeV, but could be in trouble at 13 TeV
- Q vs. scalar Q bound states can be distinguished from J^{PC} determination: 0^{-+} vs. 0^{++}

Color-octet states

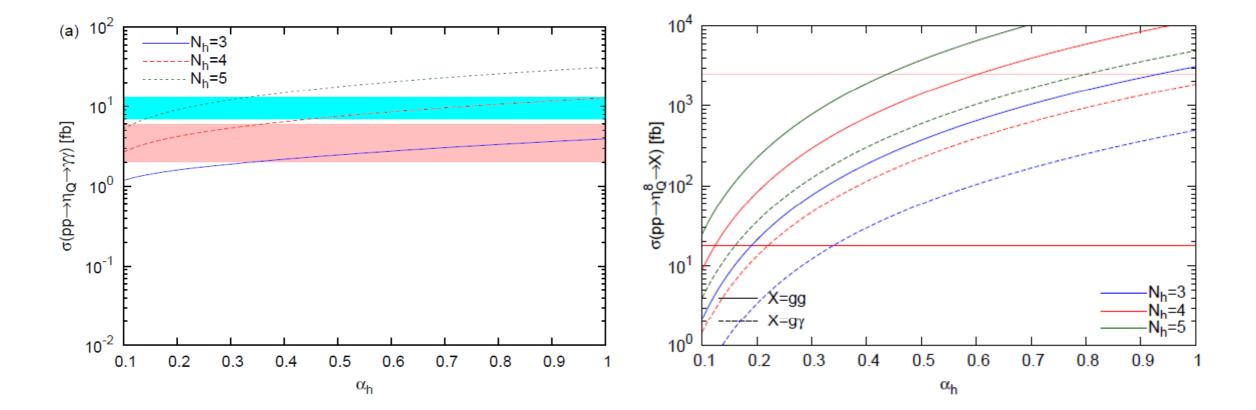
- Q Qbar can be in the color-octet state and in the hcolor singlet state (color-octet in J/psi: by Braaten, Bodwin, Lepage; Jungil Lee, Bodwin et al.)
- Wavefunction at the origin for the color-singlet and color-octet states are different
- gamma + g: important constraint (~excited quark search bound)

$$\eta_Q \not\rightarrow g_h g_h$$


$$e_Q = \frac{2}{3}$$

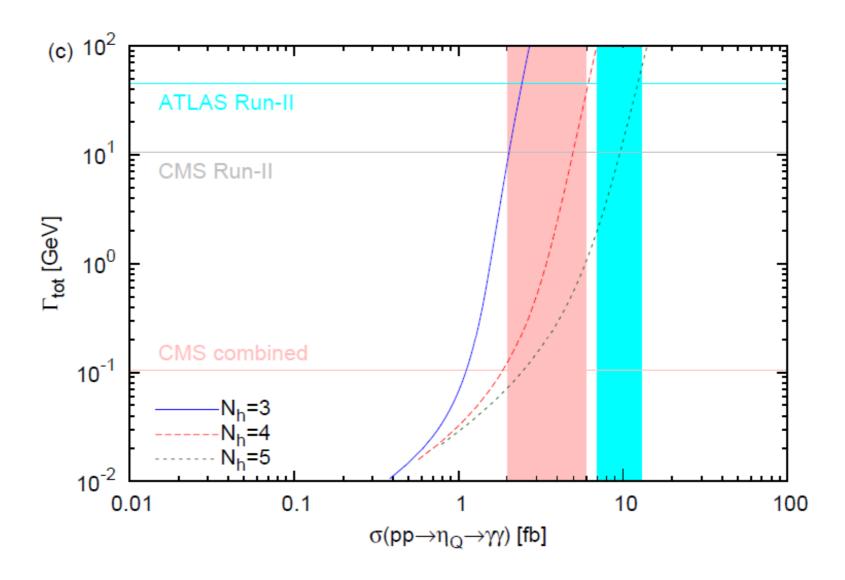

$$\eta_Q \not\rightarrow g_h g_h$$

$$e_Q = \frac{2}{3}$$

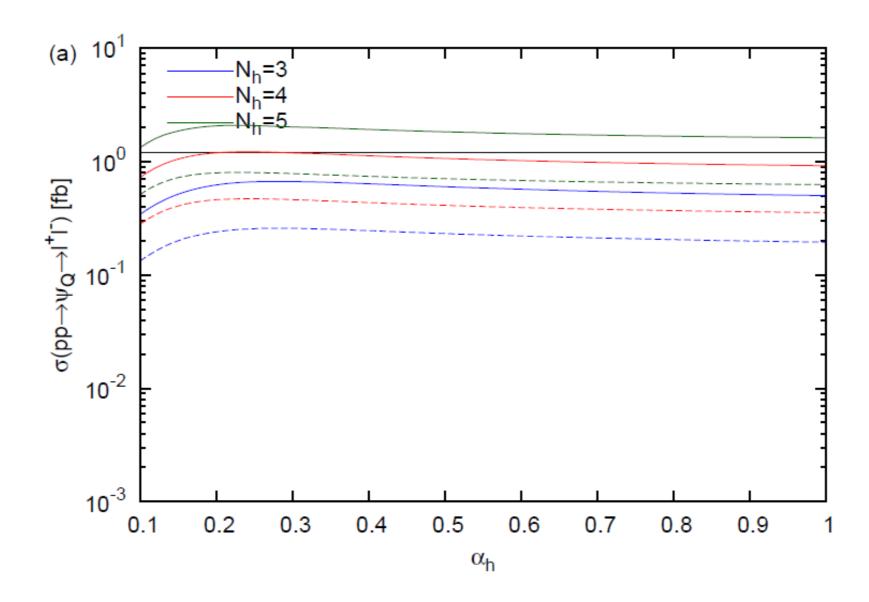


$$\eta_Q \not\rightarrow g_h g_h$$

$$e_Q = \frac{2}{3}$$



$$e_Q = \frac{2}{3}$$



In this case, we need to introduce new h-colored quarks which are SM singlets (h-pions ~(pseudo)DM)

$$e_{Q} = \frac{2}{3}$$

$$e_{Q} = \frac{1}{3}$$

Closing Remarks

- Diphoton excess needs to be confirmed this/next year
- If confirmed, this may be a signal of new gauge force and its Higgs boson, or new confining forces on new (s)quarks
- The width of the resonance is a crucial information for particle physics model buildings
- Not easy to have ~45 GeV width without conflict with the present constraints on other decay channels
- The easiest way is to allow new decay channels which are less constrained (dark photon pair, Hh, HA, etc..): but will eventually be constrained by the near future LHC data