# Signatures of heavy Higgses

in models with vectorlike fermions

Radovan Dermisek

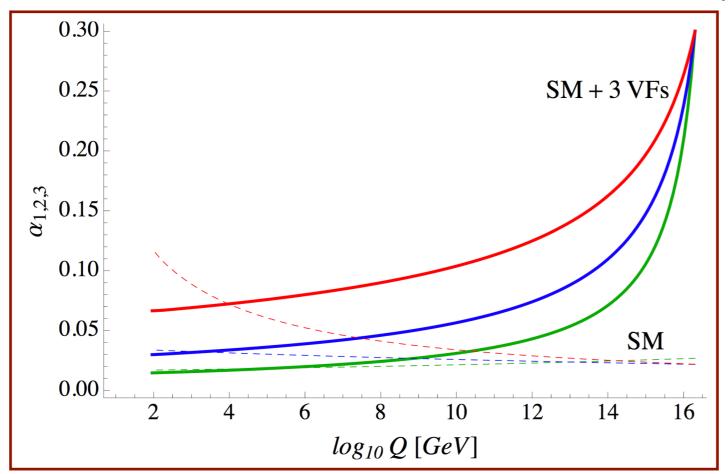
Indiana University, Bloomington Seoul National University

IBS-SNU joint workshop on particle physics, Seoul, May 3, 2016

## Motivation

### Simple extensions of the standard model:

- Models with extended Higgs sector
  - two Higgs doublets, singlets, ...
  - SUSY requires it


### Motivation

### Simple extensions of the standard model:

- Models with extended Higgs sector
  - two Higgs doublets, singlets, ...
  - SUSY requires it
- Models with more matter fields
  - vectorlike quarks and leptons, ...
  - in complete families easy to add to any GUT

## Gauge couplings in the SM + 3VFs

R.D., 1204.6533, 1212.3035



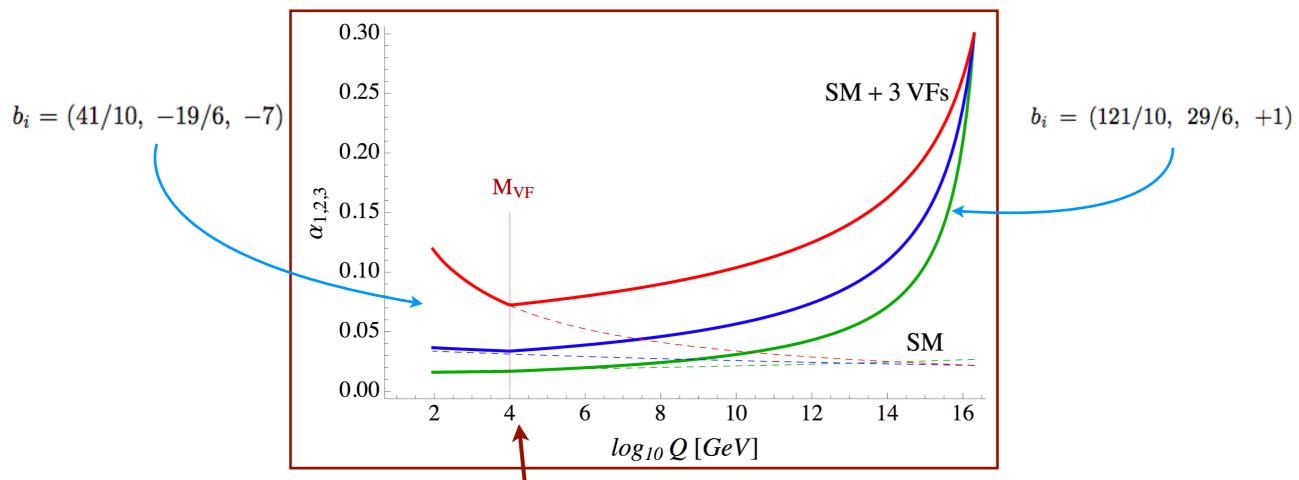
$$\frac{\alpha_i(M_Z)}{\alpha_j(M_Z)} \simeq \frac{b_j}{b_i}$$

#### gauge couplings understood from:

$$\alpha_i^{-1}(M_Z) \; = \; rac{b_i}{2\pi} \ln rac{M_G}{M_Z} + lpha_i^{-1}(M_G)$$

IR fixed point predictions (two parameter free predictions)

$$\sin^2\theta_W \equiv \frac{\alpha'}{\alpha_2 + \alpha'} = \frac{b_2}{b_2 + b'} = 0.193$$


$$\alpha_3|_{\alpha_{EM}^{exp}} \simeq 0.072$$

Maiani, Parisi, and Petronzio (1978)

(includes 2-loop)

## Gauge couplings in the SM + 3VFs

R.D.,1204.6533, 1212.3035



### gauge couplings understood from:

$$lpha_i^{-1}(M_Z) \; = \; rac{b_i}{2\pi} \ln rac{M_G}{M_Z} + lpha_i^{-1}(M_G)$$

- O IR fixed point predictions (two parameter free predictions)
- O threshold effects from masses of VFs

### Motivation

### Simple extensions of the standard model:

- Models with extended Higgs sector
  - two Higgs doublets, singlets, ...
  - SUSY requires it
- Models with more matter fields
  - vectorlike quarks and leptons, ...
  - in complete families easy to add to any GUT
  - their effects can be dialed by Yukawa couplings

## **Motivation**

### Simple extensions of the standard model:

- Models with extended Higgs sector
  - two Higgs doublets, singlets, ...
  - SUSY requires it
- Models with more matter fields
  - vectorlike quarks and leptons, ...
  - in complete families easy to add to any GUT
  - their effects can be dialed by Yukawa couplings

Sometimes searching for combined signatures of two extensions is more advantageous than separate searches

## Two Higgs doublet model - type II + VL

### VL mixing only with 2nd generation of leptons:

R.D., E. Lunghi and S. Shin, 1509.04292, 1512.07837

$$\mathcal{L} \supset -y_{\mu}\bar{\mu}_{L}\mu_{R}H_{d} - \lambda_{E}\bar{\mu}_{L}E_{R}H_{d} - \lambda_{L}\bar{L}_{L}\mu_{R}H_{d} - \lambda\bar{L}_{L}E_{R}H_{d} - \bar{\lambda}H_{d}^{\dagger}\bar{E}_{L}L_{R}$$

$$-\kappa_{N}\bar{\mu}_{L}N_{R}H_{u} - \kappa\bar{L}_{L}N_{R}H_{u} - \bar{\kappa}H_{u}^{\dagger}\bar{N}_{L}L_{R}$$

$$-M_{L}\bar{L}_{L}L_{R} - M_{E}\bar{E}_{L}E_{R} - M_{N}\bar{N}_{L}N_{R} + \text{h.c.} ,$$

$$\mu_{L} = \begin{pmatrix} \nu_{\mu} \\ \mu_{L}^{-} \end{pmatrix}, L_{L,R} = \begin{pmatrix} L_{L,R}^{0} \\ L_{L,R}^{-} \end{pmatrix}, H_{d} = \begin{pmatrix} H_{d}^{+} \\ H_{d}^{0} \end{pmatrix}, H_{u} = \begin{pmatrix} H_{u}^{0} \\ H_{u}^{-} \end{pmatrix}$$

## Two Higgs doublet model - type II + VL

### VL mixing only with 2nd generation of leptons:

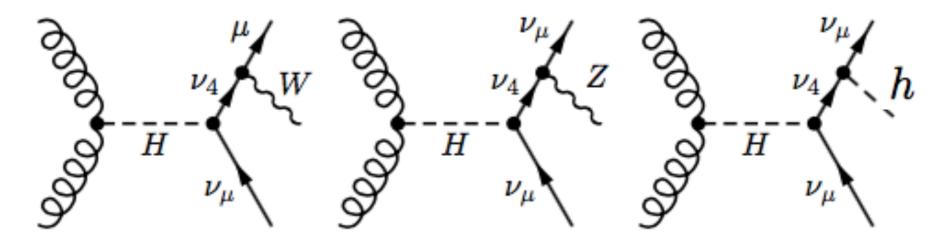
R.D., E. Lunghi and S. Shin, 1509.04292, 1512.07837

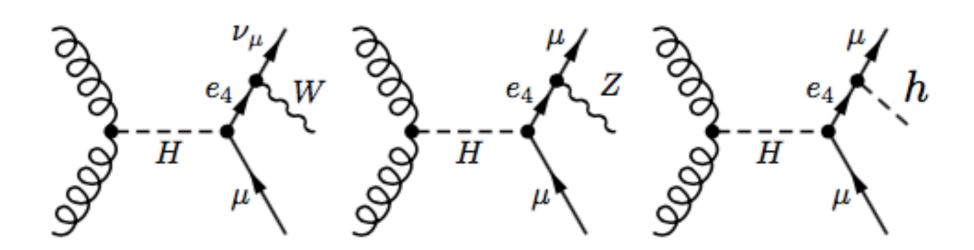
$$\mathcal{L} \supset -y_{\mu}\bar{\mu}_{L}\mu_{R}H_{d} - \lambda_{E}\bar{\mu}_{L}E_{R}H_{d} - \lambda_{L}\bar{L}_{L}\mu_{R}H_{d} - \lambda\bar{L}_{L}E_{R}H_{d} - \bar{\lambda}H_{d}^{\dagger}\bar{E}_{L}L_{R}$$

$$-\kappa_{N}\bar{\mu}_{L}N_{R}H_{u} - \kappa\bar{L}_{L}N_{R}H_{u} - \bar{\kappa}H_{u}^{\dagger}\bar{N}_{L}L_{R}$$

$$-M_{L}\bar{L}_{L}L_{R} - M_{E}\bar{E}_{L}E_{R} - M_{N}\bar{N}_{L}N_{R} + \text{h.c.} ,$$

$$\mu_{L} = \begin{pmatrix} \nu_{\mu} \\ \mu_{L}^{-} \end{pmatrix}, L_{L,R} = \begin{pmatrix} L_{L,R}^{0} \\ L_{L,R}^{-} \end{pmatrix}, H_{d} = \begin{pmatrix} H_{d}^{+} \\ H_{d}^{0} \end{pmatrix}, H_{u} = \begin{pmatrix} H_{u}^{0} \\ H_{u}^{-} \end{pmatrix}$$


couplings to gauge bosons are modified because SU(2) doublets mix with SU(2) singlets and couplings to Higgs are modified because of explicit vectorlike mass terms:

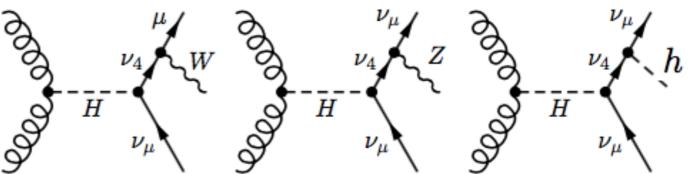

$$(\bar{\mu}_L, \bar{L}_L^-, \bar{E}_L) \begin{pmatrix} y_\mu v_d & 0 & \lambda^E v_d \\ \lambda^L v_d M_L & \lambda v_d \\ 0 & \bar{\lambda} v_d M_E \end{pmatrix} \begin{pmatrix} \mu_R \\ L_R^- \\ E_R \end{pmatrix} \qquad \begin{pmatrix} \bar{\nu}_\mu & \bar{L}_L^0 & \bar{N}_L \end{pmatrix} \begin{pmatrix} 0 & 0 & \kappa_N v_u \\ 0 & M_L & \kappa v_u \\ 0 & \bar{\kappa} v_u & M_N \end{pmatrix} \begin{pmatrix} \nu_R = 0 \\ L_R^0 \\ N_R \end{pmatrix}$$

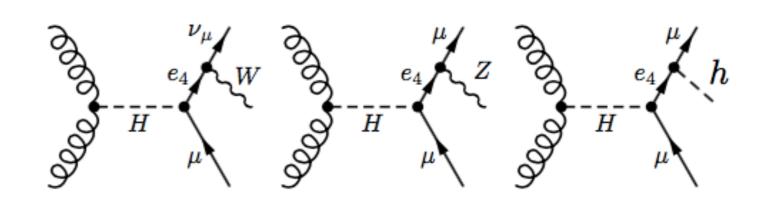
and flavor changing couplings are generated:  $e_4\mu(Z,h,H),\ 
u_4\nu(Z,h,H),\ (e_4
u,
u_4\mu)W$ 

## New (possibly discovery) decay modes

The flavor changing couplings lead to new decay modes of heavy Higgses:





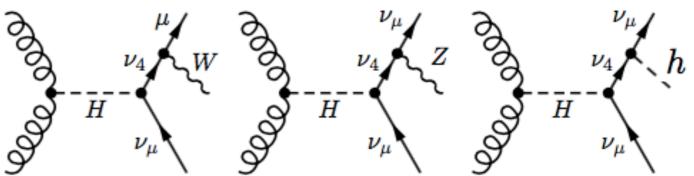


## New (possibly discovery) decay modes

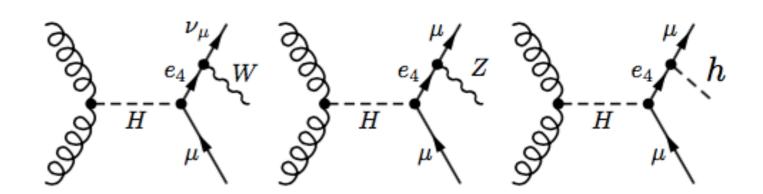
$$H \rightarrow WW, ZZ, \gamma\gamma, H, b\bar{b}, \tau\bar{\tau}, \dots$$

if h is SM-like and H (or A) is below ~350 GeV flavor changing decays can be dominant:

decays to pairs of heavy leptons also possible but limited to smaller mass ranges and lead to the same final states as pair-production







## New (possibly discovery) decay modes

$$H \rightarrow WW, ZZ, \gamma\gamma, H, b\bar{b}, \tau\bar{\tau}, \dots$$

if h is SM-like and H (or A) is below ~350 GeV flavor changing decays can be dominant:

decays to pairs of heavy leptons also possible but limited to smaller mass ranges and lead to the same final states as pair-production





they all look similar to WW, ZZ, hZ decay modes of H or ZZ, WW, Zh production!

## Scan over the parameter space

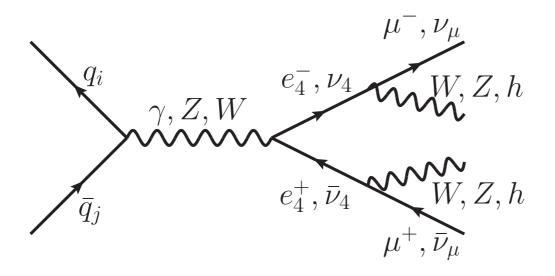
### We scan over parameters in the following ranges:

```
m_H \in [130, 340] \text{ GeV} ,
\tan \beta \in [0.3, 3] ,
\kappa_N, \kappa, \bar{\kappa} \in [-0.5, 0.5] \text{ or } \lambda_L, \lambda_E, \lambda, \bar{\lambda} \in [-0.5, 0.5] ,
M_{L,N} \in [100, 500] \text{ GeV} \text{ or } M_{L,E} \in [100, 500] \text{ GeV}
```

#### **Constraints:**

- Precision EW data (muon lifetime, Z-pole obs., S and T, ...)
- direct searches for new leptons
- searches for anomalous production of multi-lepton events
  R.D., J. Hall, E. Lunghi and S. Shin, arXiv:1408.3123
- searches for H → γγ and H → WW

R.D., E. Lunghi and S. Shin, 1503.0882, 1509.04292


## Limits on vectorlike leptons

### from searches for anomalous production of multi-lepton events

R.D., J. Hall, E. Lunghi and S. Shin, arXiv:1408.3123

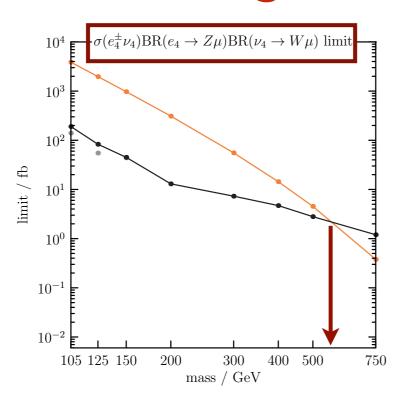
based on ATLAS-CONF-2013-070

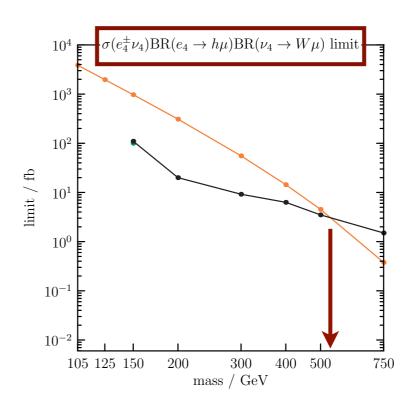
We set limits on 20 possible processed with at least 3 SM leptons in the final state (originating from 3 pair production processes, and 3 possible decay modes of each of the final state leptons)



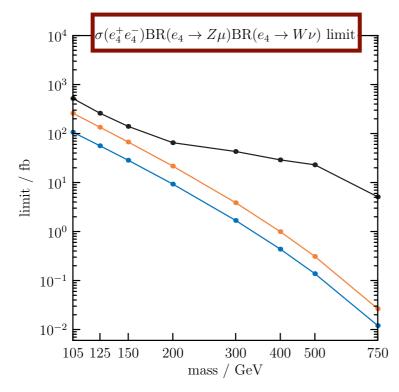
Assumption: The vector like leptons mix with only one SM lepton, namely the muon.

Limits for electron would be similar, and the current analysis is not sensitive to the tau case.


|                                                      | masses / GeV                             |      |      |      |      |         |       |        |         |
|------------------------------------------------------|------------------------------------------|------|------|------|------|---------|-------|--------|---------|
|                                                      | 105                                      | 125  | 150  | 200  | 300  | 400     | 500   | 750    | 1000    |
|                                                      | predicted production cross-sections / fb |      |      |      |      |         |       |        |         |
| $\sigma(e_4^+e_4^-)$ (singlet)                       | 426                                      | 225  | 114  | 37.2 | 6.73 | 1.75    | 0.552 | 0.0481 | 0.00573 |
| $\sigma(e_4^+e_4^-)$ (doublet)                       | 1040                                     | 538  | 269  | 86.6 | 15.5 | 3.98    | 1.24  | 0.106  | 0.0124  |
| $\sigma(e_4^{\pm}\nu_4)$ (doublet)                   | 3870                                     | 1970 | 973  | 310  | 55.5 | 14.4    | 4.53  | 0.378  | 0.0408  |
| $\sigma(\nu_4\nu_4)$ (doublet)                       | 372                                      | 185  | 88.9 | 27.4 | 4.64 | 1.15    | 0.35  | 0.0279 | 0.00306 |
|                                                      | 95% C.L. limits / fb and best cuts       |      |      |      |      |         |       |        |         |
| $\sigma(e_{4}^{+}e_{4}^{-}) \times$                  | 530                                      | 190  | 66   | 21   | 12   | 7.5     | 4.8   | 2.2    | 1.9     |
| $\mathrm{BR}(e_4 	o Z\mu)^2$                         | СЪ                                       | Af   | Af   | Af   | Af   | Ah      | Ah    | Am     | Am      |
| $\sigma(e_4^+e_4^-)\times$                           | 520                                      | 260  | 140  | 65   | 43   | 29      | 23    | 5.1    | 3.7     |
| $BR(e_4 \to Z\mu)BR(e_4 \to W\nu)$                   | СЪ                                       | Ср   | СЪ   | СЪ   | Cc   | Cc      | Cd    | Cr     | Cr      |
| $\sigma(e_4^+e_4^-)\times$                           |                                          |      | 100  | 19   | 8.4  | 5.5     | 3.1   | 1.3    | 1.1     |
| $BR(e_4 \to Z\mu)BR(e_4 \to h\mu)$                   |                                          |      | Aa   | Ag   | Ag   | Ah      | Ah    | Am     | Am      |
| $\sigma(e_4^+e_4^-)\times$                           |                                          |      | 370  | 130  | 67   | 41      | 28    | 11     | 7.2     |
| $BR(e_4 \to W\nu)BR(e_4 \to h\mu)$                   |                                          |      | Ab   | Ab   | Ab   | Ac      | Ac    | Am     | Am      |
| $\sigma(e_4^+e_4^-)\times$                           |                                          |      | 220  | 64   | 17   | 14      | 7.2   | 2.5    | 2.1     |
| $BR(e_4 \to h\mu)^2$                                 |                                          |      | Aa   | Ag   | Ag   | Ag      | Ah    | Am     | Am      |
| $\sigma(e_4^{\pm}\nu_4)\times$                       | 820                                      | 510  | 230  | 79   | 44   | 29      | 23    | 4.8    | 3.4     |
| $BR(e_4 \to Z\mu)BR(\nu_4 \to Z\nu)$                 | СЪ                                       | СР   | СЪ   | СР   | СЪ   | Cc      | Cd    | Cr     | Cr      |
| $\sigma(e_4^{\pm}\nu_4)\times$                       | 190                                      | 83   | 45   | 13   | 7.3  | 4.7     | 2.8   | 1.2    | 1       |
| $BR(e_4 \to Z\mu)BR(\nu_4 \to W\mu)$                 | Aa                                       | Aa   | Ag   | Ag   | Af   | Ah      | Ah    | Am     | Am      |
| $\sigma(e_4^{\pm}\nu_4)\times$                       | 2700                                     | 1800 | 1100 | 520  | 330  | 150     | 110   | 45     | 42      |
| $BR(e_4 \to W\nu)BR(\nu_4 \to Z\nu)$                 | СЪ                                       | СР   | СР   | СЪ   | СЪ   | Cc      | Cd    | Cd     | Cd      |
| $\sigma(e_4^{\pm}\nu_4)\times$                       | 420                                      | 400  | 260  | 110  | 57   | 32      | 21    | 11     | 7.1     |
| $BR(e_4 \to W\nu)BR(\nu_4 \to W\mu)$                 | Aa                                       | Aa   | Ab   | Ag   | Ab   | Ac      | Ac    | Am     | Am      |
| $\sigma(e_4^{\pm}\nu_4)\times$                       |                                          |      | 1100 | 280  | 110  | 64      | 51    | 9.8    | 7.7     |
| $BR(e_4 \rightarrow Z\mu)BR(\nu_4 \rightarrow h\nu)$ |                                          |      | Aa   | СР   | СЪ   | Cc      | Cr    | Cr     | Cr      |
| $\sigma(e_4^{\pm}\nu_4)\times$                       |                                          |      | 1400 | 250  | 110  | 75      | 53    | 9.3    | 7.1     |
| $BR(e_4 \rightarrow h\mu)BR(\nu_4 \rightarrow Z\nu)$ |                                          |      | Aa   | СЪ   | СЪ   | Cq      | Cr    | Cr     | Cr      |
| $\sigma(e_4^{\pm}\nu_4) \times$                      |                                          |      | 6400 | 5000 | 1800 | 1200    | 680   | 360    | 270     |
| $BR(e_4 \to W\nu)BR(\nu_4 \to h\nu)$                 |                                          |      | Ab   | Ap   | Ab   | Вс      | Ac    | Ac     | Вс      |
| $\sigma(e_4^{\pm}\nu_4)\times$                       |                                          |      | 110  | 20   | 9.2  | 6.3     | 3.5   | 1.5    | 1.2     |
| $BR(e_4 \to h\mu)BR(\nu_4 \to W\mu)$                 |                                          |      | Aa   | Ag   | Ag   | Ah      | Ah    | Am     | Am      |
| $\sigma(e_4^{\pm}\nu_4)\times$                       |                                          |      | 910  | 420  | 140  | 93      | 52    | 19     | 13      |
| $BR(e_4 \to h\mu)BR(\nu_4 \to h\nu)$                 |                                          |      | Aa   | Ap   | Ap   | Aq      | An    | Am     | Am      |
| $\sigma(\nu_4\nu_4)\times$                           | 5100                                     | 5700 | 4000 | 850  | 450  | 200     | 150   | 87     | 73      |
| $BR(\nu_4 \to Z\nu)^2$                               | Сс                                       | Cf   | СР   | СР   | Сс   | Сс      | Cd    | Cd     | Cd      |
| $\sigma(\nu_4\nu_4)\times$                           | 570                                      | 450  | 290  | 82   | 47   | 33      | 22    | 4.6    | 3.5     |
| $BR(\nu_4 \to Z\nu)BR(\nu_4 \to W\mu)$               | Ag                                       | Ag   | Ag   | СР   | СР   | Cc      | Cr    | Cr     | Cr      |
| $\sigma(\nu_4\nu_4)\times$                           | 67                                       | 52   | 25   | 9    | 5.4  | 3.1     | 1.9   | 0.82   | 0.72    |
| $BR(\nu_4 \to W\mu)^2$                               | Aa                                       | Aa   | Ag   | Ag   | Af   | Ah      | Am    | Am     | Am      |
| $\sigma(\nu_4\nu_4)\times$                           |                                          |      | 2800 | 830  | 380  | 220     | 160   | 79     | 72      |
| $BR(\nu_4 \to Z\nu)BR(\nu_4 \to h\nu)$               |                                          |      | Cb   | СЪ   | СЪ   | Cc      | Cc    | Cd     | Cd      |
| $\sigma(\nu_4\nu_4)\times$                           |                                          |      | 320  | 120  | 61   | 40      | 27    | 11     | 6.9     |
| $BR(\nu_4 \to W\mu)BR(\nu_4 \to h\nu)$               |                                          |      | Ag   | Ag   | Ag   | Ac 1700 | Ac    | Am     | Am      |
| $\sigma(\nu_4\nu_4)\times$                           |                                          |      | 9400 | 6900 | 2800 | 1700    | 930   | 460    | 380     |
| $\frac{BR(\nu_4 \to h\nu)^2}{DVan Dermisek}$         |                                          |      | Aa   | Ap   | Ab   | Вс      | Вс    | Вс     | Вс      |

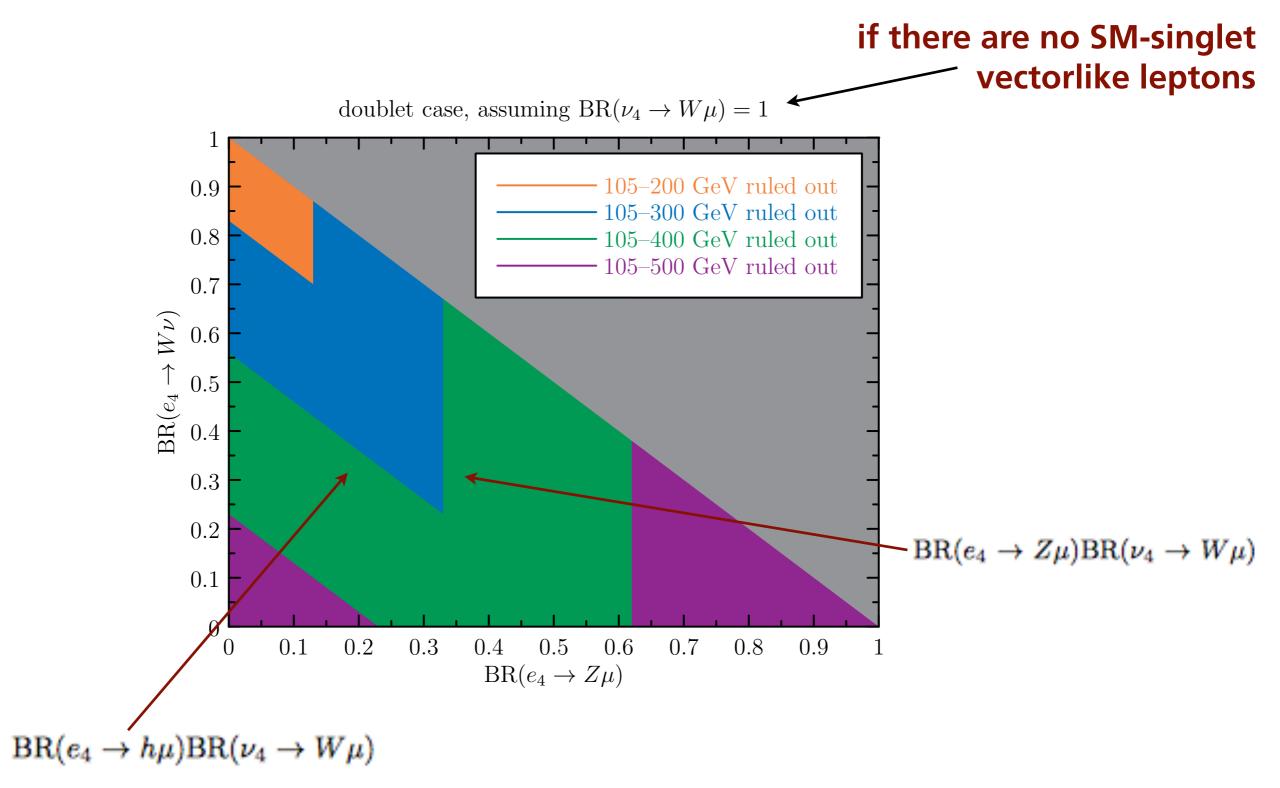

- indicates non-trivial limits assuming doublet production
- indicates, additionally, non-trivial limits assuming singlet production

#### **Search categories:**


| A | $\geq 3e/\mu$ off-Z                                       |
|---|-----------------------------------------------------------|
| В | $2e/\mu + 	au_h 	ext{ off-}Z$                             |
| C | $\geq 3e/\mu \text{ on-}Z$                                |
| D | $2e/\mu + 	au_h 	ext{ on-} Z$                             |
| a | $H_T^j < 150 \text{ GeV}$                                 |
| ъ | $H_T^j < 150 \text{ GeV}, E_T > 100 \text{ GeV}$          |
| С | $H_T^j < 150 \text{ GeV}, E_T > 200 \text{ GeV}$          |
| d | $H_T^j < 150 \text{ GeV}, E_T > 300 \text{ GeV}$          |
| f | $\min p_T^l > 50 \text{ GeV}$                             |
| g | $H_T^l > 200 \text{ GeV}$                                 |
| h | $H_T^l > 500 \text{ GeV}$                                 |
| m | $m_{ m eff} > 1000 { m ~GeV}$                             |
| n | $H_T^j > 150 \text{ GeV}, E_T > 200 \text{ GeV}$          |
| P | $E_T > 100 \text{ GeV}$                                   |
| q | $E_T > 100 \text{ GeV}, m_{\text{eff}} > 600 \text{ GeV}$ |
| 4 | 71 × 200 001, 11ten × 000 001.                            |

### Some of the strongest limits:

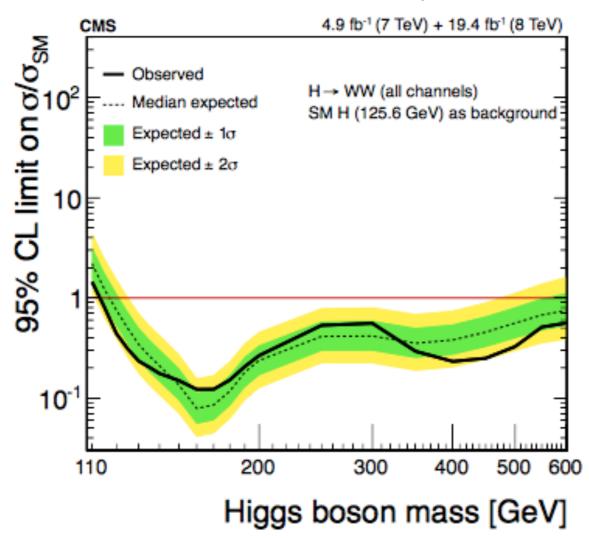




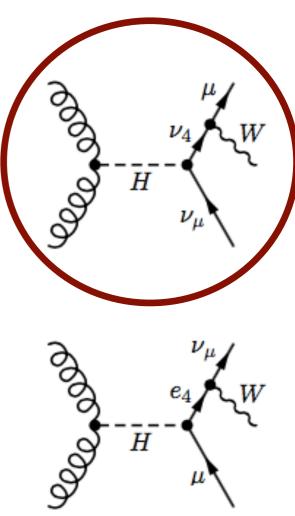

### Some of the weakest limits:



no constraints at all if both charged leptons decay through W


## Combined limits on simple scenarios



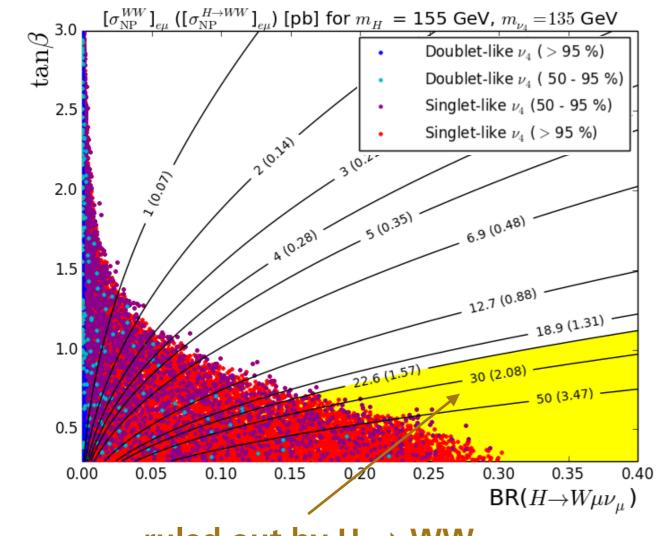

# $H \rightarrow v_4 v_\mu \text{ vs. } H \rightarrow WW \text{ and pp} \rightarrow WW$

#### constraints from H→WW:

CMS, 1312.1129



#### contributes more




naively SM production cross section for H is ruled out, but different kinematic distribution of final states leads to different acceptances

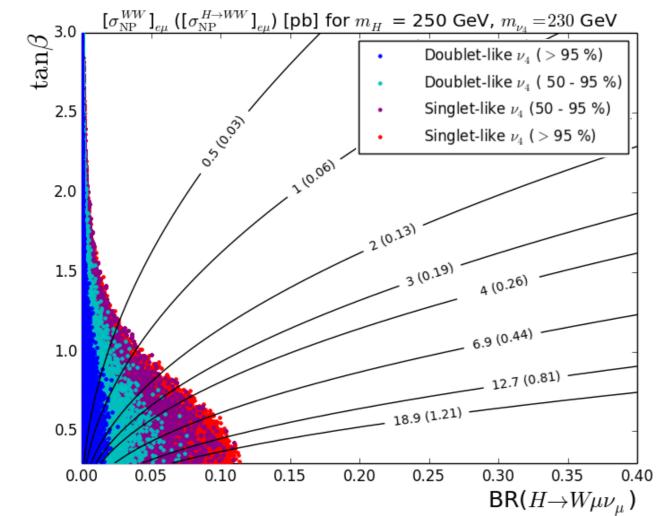
# $H \rightarrow v_4 v_\mu \text{ vs. } H \rightarrow WW \text{ and } pp \rightarrow WW$

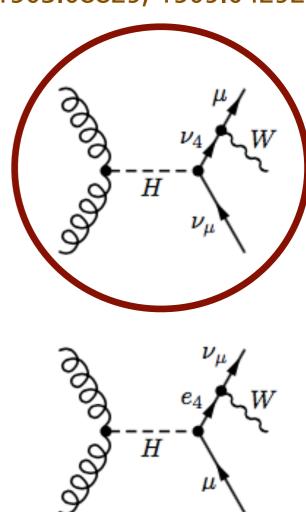
### contribution to pp $\longrightarrow$ WW consistent with H $\longrightarrow$ WW:

R.D., E. Lunghi and S. Shin, 1503.08829, 1509.04292



 $\begin{array}{c} \nu_{4} \\ \nu_{4} \\ \nu_{\mu} \end{array}$ 


ruled out by H → WW

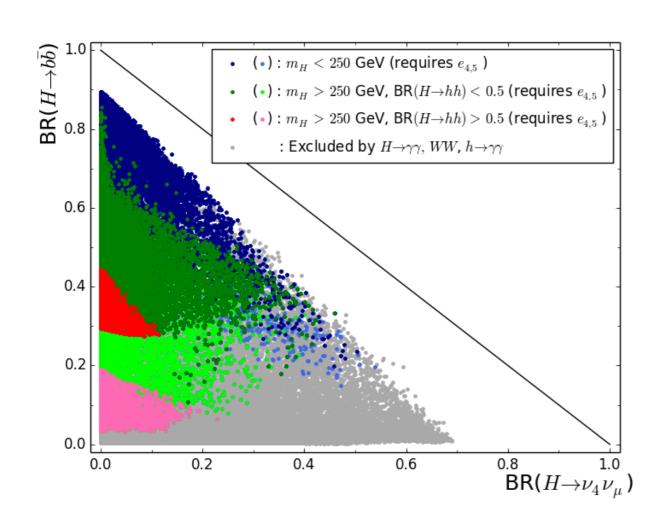

very large (even larger than H production cross section!) contributions to pp → WW are possible and consistent with H → WW constraints

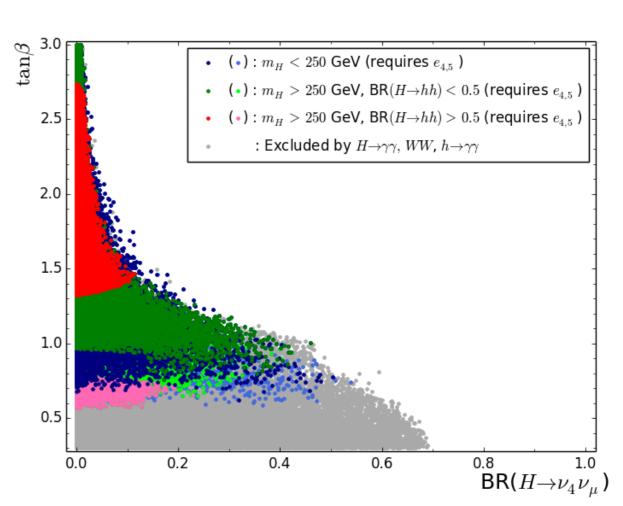
# $H \rightarrow v_4 v_\mu \text{ vs. } H \rightarrow WW \text{ and } pp \rightarrow WW$

### contribution to pp $\longrightarrow$ WW consistent with H $\longrightarrow$ WW:

R.D., E. Lunghi and S. Shin, 1503.08829, 1509.04292





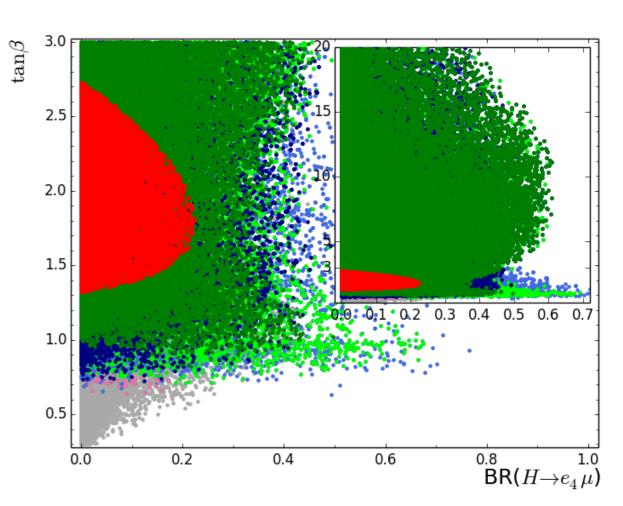


nothing ruled out by H → WW

very large (even larger than H production cross section!) contributions to pp → WW are possible and consistent with H → WW constraints

# Allowed ranges for $H \rightarrow v_4 v_\mu$

### Applying all the constraints:





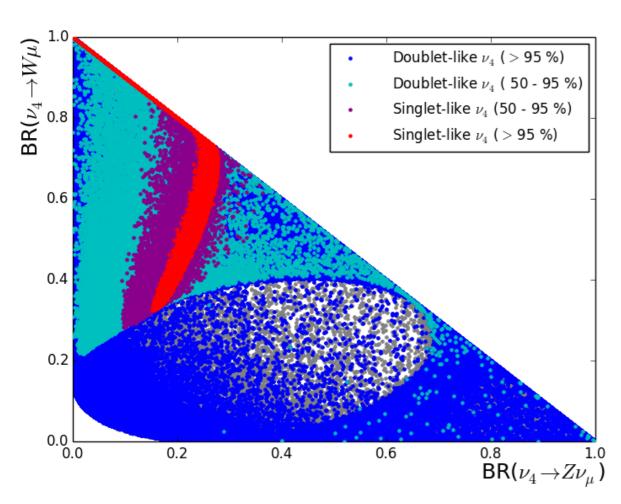

## $H \rightarrow v_4 v_\mu$ can be as large as 50%

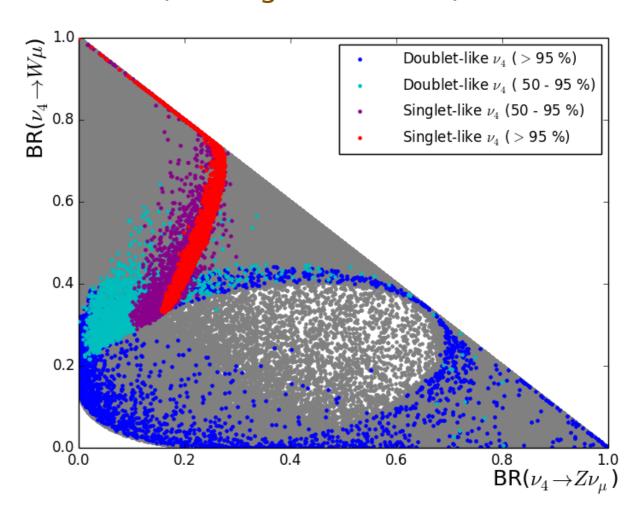
# Allowed ranges for $H \rightarrow e_4 \mu$

### Applying all the constraints:






## $H \rightarrow e_4 \mu$ can be larger than 50%


# Allowed branching ratios of $v_4$

## Impact of searches for anomalous production of multi-

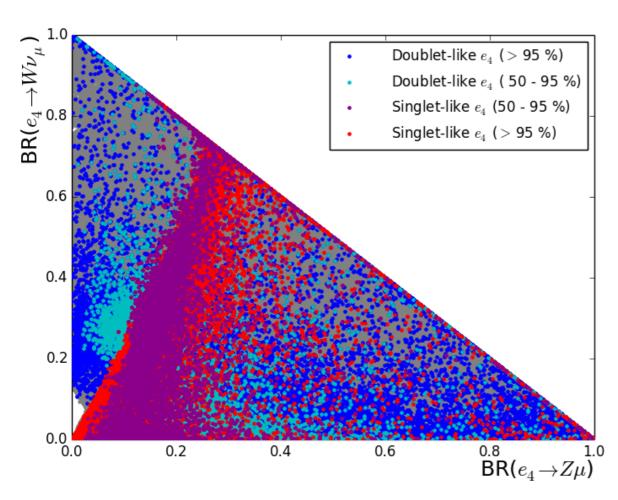
lepton events:

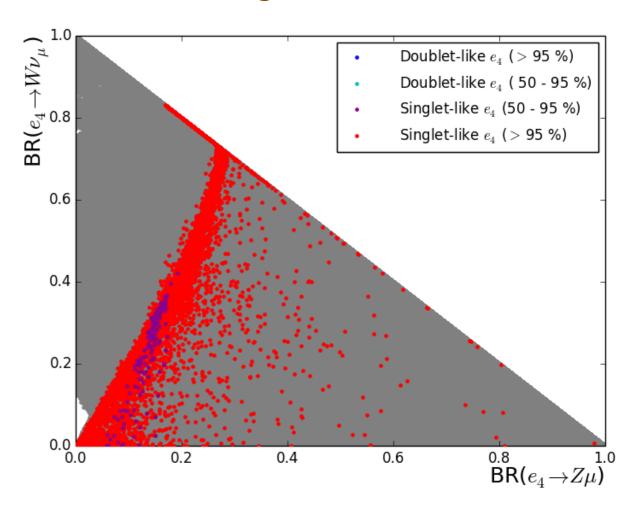
R.D., J. Hall, E. Lunghi and S. Shin, arXiv:1408.3123 R.D., E. Lunghi and S. Shin, 1512.07837





**EW** precision


**EW** precision + multilepton


# Allowed branching ratios of e<sub>4</sub>

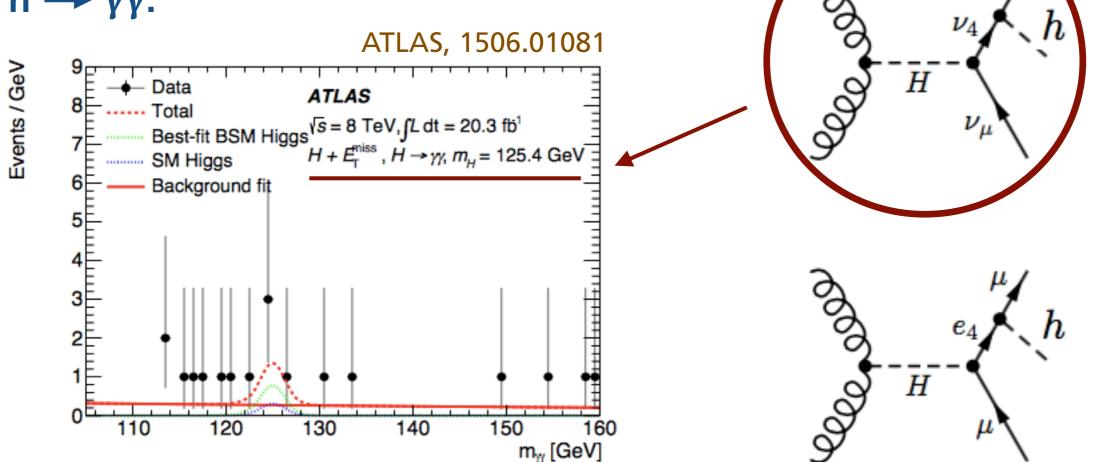
## Impact of searches for anomalous production of multi-

lepton events:

R.D., J. Hall, E. Lunghi and S. Shin, arXiv:1408.3123 R.D., E. Lunghi and S. Shin, 1512.07837



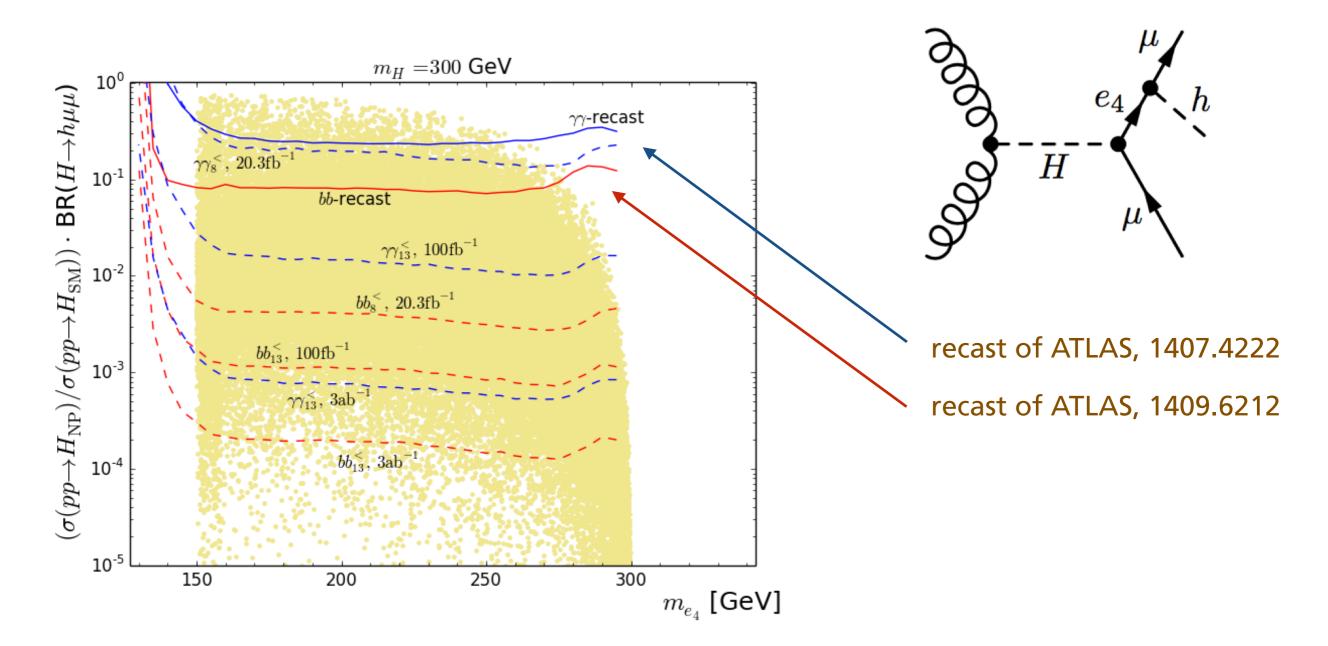



**EW** precision

**EW** precision + multilepton

## $H \rightarrow h\nu\nu$ and $H \rightarrow h\mu\mu$

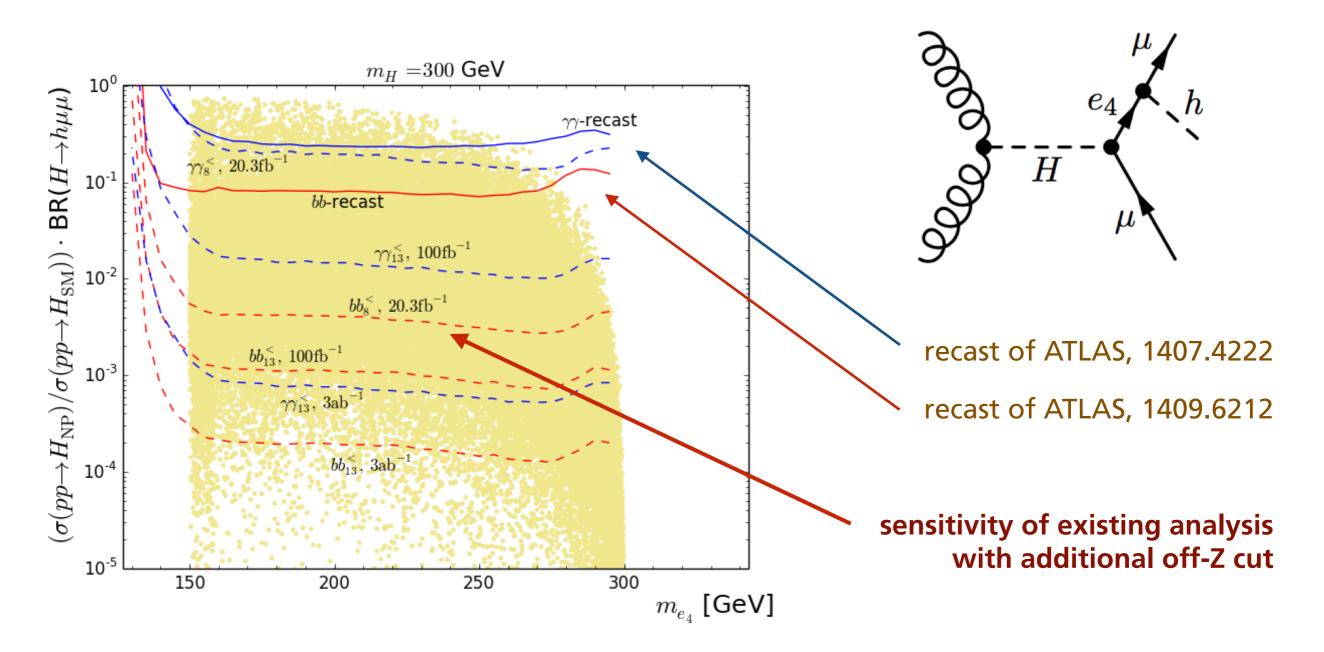
look like Zh production, with potentially much larger cross section, (no Z, but no penalty for 2 leptons)


R.D., E. Lunghi and S. Shin, in progress some decay modes almost background free, e.g.  $h \rightarrow \gamma \gamma$ :



## $H \rightarrow h\mu\mu$

### perhaps the most interesting channel, and no limits


R.D., E. Lunghi and S. Shin, in progress



## $H \rightarrow h\mu\mu$

### perhaps the most interesting channel, and no limits

R.D., E. Lunghi and S. Shin, in progress



## Conclusions

## Heavy Higgs decays in models with VL:

- Both heavy Higgses and VL independently motivated
- potentially large production cross section
- large branching ratios allowed
- Some of the decay modes are almost background free

### **Great discovery prospects!**