GNOME: Search for Topological Defect Dark Matter

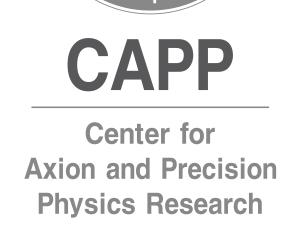
Dongok Kim

Dept. of Physics, Korea Advanced Institute of Science and Technology (KAIST)

Center for Axion and Precision Physics Research, Institute for Basic Science (IBS-CAPP)

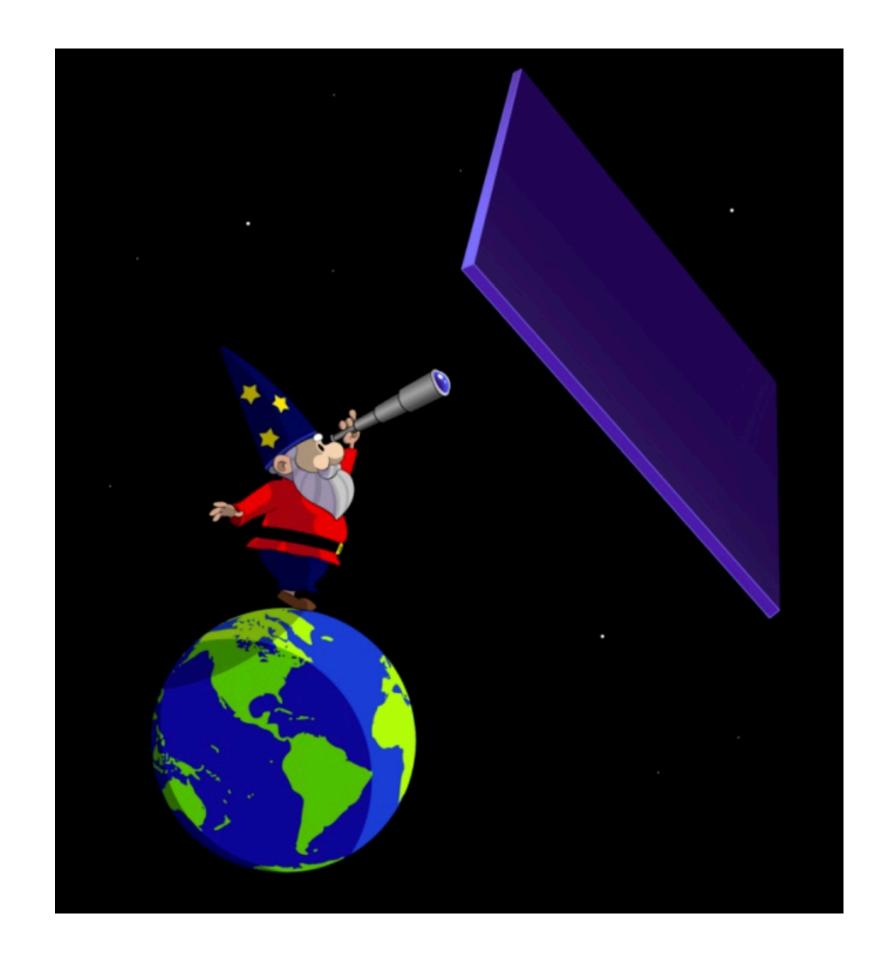
KAIST

5th TAU meeting



Contents

- Axion-like particles, domain walls, and GNOME
- Signal pattern of axion-like particle domain walls detected by the GNOME network
- Analysis method development by IBS-CAPP for identifying the signal pattern
- Performance and projected sensitivity



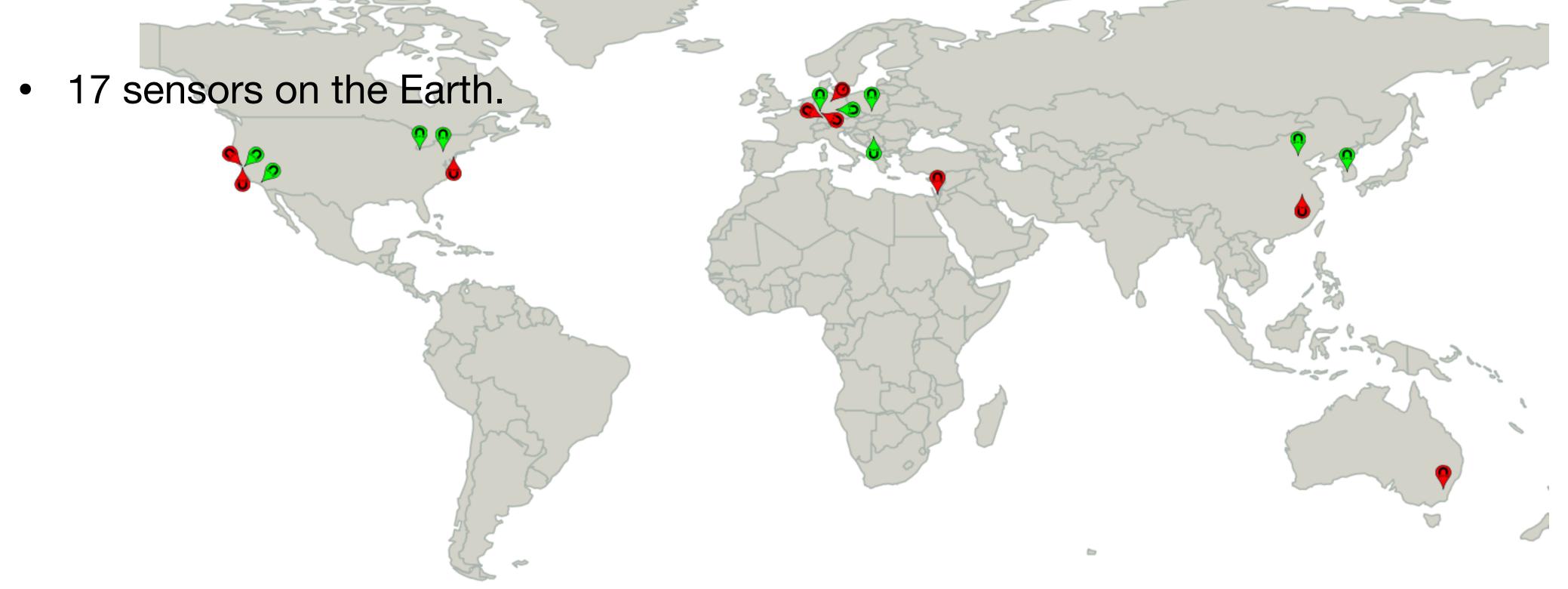
Axion-Like Particle Domain Walls

- Axions are pseudo-scalar boson from spontaneously broken from the Peccei-Quinn U(1) symmetry.
- Axion like-particles (ALPs) are generalized model of the axion, from spontaneously broken axial U(1) symmetry beyond the standard model.
- ALPs are similar to axion, but have less theoretical restrictions:
 - They do not have a relationship between the mass and coupling.
 - They can form a stable domain wall (DW) [1,2,3].
 - They can evade astrophysical observations (e.g. SN1987A) [4,5].
- ALPs can be a localized dark matter around the solar system as a form of DW.
 - [1] G. Lazarides and Q. Shafi. Axion models with no domain wall problem. Physics Letters B, 115(1):21 25, 1982.
 - [2] T. Hiramatsu, M. Kawasaki, K. Saikawa, and T. Sekiguchi. Axion cosmology with long-lived domain walls. Journal of Cosmology and Astroparticle Physics, 2013(01):001–001, jan 2013 [3] P. P. Avelino. Parameter-free velocity-dependent one-scale model for domain walls. Phys. Rev. D, 101:023514, Jan 2020.
 - [4] W. DeRocco, P. W. Graham, and S. Rajendran. Exploring the robustness of stellar cooling constraints on light particles. Phys. Rev. D, 102:075015, Oct 2020.
 - [5] N. Bar, K. Blum, and G. D'Amico. Is there a supernova bound on axions? Phys. Rev. D, 101:123025, Jun 2020.

GNOME

Global Network of Optical Magnetometers for Exotic physics searches [1,2,3]

GNOME collaboration consists of more than 20 institutions across 4 continents.



Dongok Kim (KAIST, IBS-CAPP)

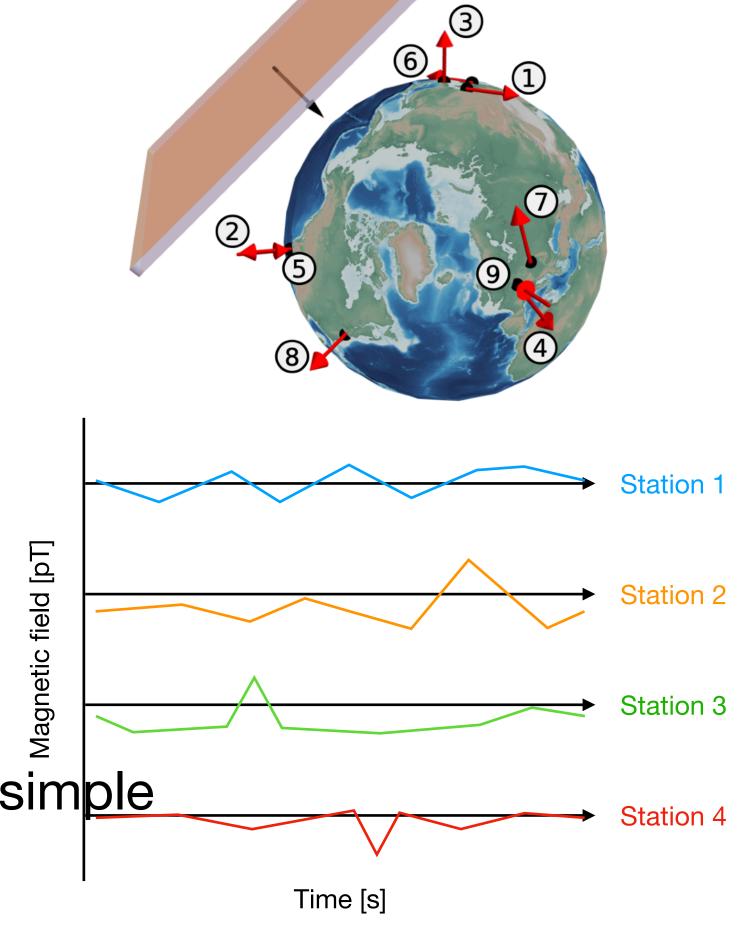
^[1] S. Pustelny, et al., The Global Network of Optical Magnetometers for Exotic physics (GNOME): A novel scheme to search for physics beyond the Standard Model. Annalen der Physik, 525:659–670, Sept. 2013.

^[2] S. Afach, et al., Characterization of the global network of optical magnetometers to search for exotic physics (gnome). Physics of the Dark Universe, 22:162 – 180, 2018.

^[3] S. Afach, et al., Search for topological defect dark matter using the global network of optical magnetometers for exotic physics searches (gnome), 2021.

GNOME for ALP DW Search

- We are looking for localized dark matter models such as ALP DW.
- Detector to test a localized dark matter density:
 - A synchronized network of geographically separated sensors
- Sensor to search for the dark matter:
 - Spin-dependent interaction with atomic magnetometers
- Why ALP DW?
 - Theoretical freedom, suitable mass range, and geometrically simple



Domain-wall Spin-dependent Interaction

- ALPs can have a spin-dependent interaction to atomic spins [1,2].

Interaction Hamiltonian of the atomic spin:
$$H_{\text{int}} = \frac{(\hbar c)^{\frac{3}{2}}}{f_{\text{int}}} \hat{S} \cdot \nabla a + \gamma \overrightarrow{S} \cdot \overrightarrow{B}$$
 Spin interaction due to magnetic field

• Rearrangement: $H_{\text{int}} = \gamma \overrightarrow{S} \cdot (\overrightarrow{B}_{\text{ALP}} + \overrightarrow{B})$

Spin interaction due to ALP field

Pseudo-magnetic field:

$$\overrightarrow{B}_{ALP} = \frac{4}{\mu_B} \frac{f_{SB}}{f_{int}} m_a c^2 \frac{\sigma_s}{g_{F,s}} \hat{x}$$

$$a(x) = \frac{4f_{\text{SB}}}{\sqrt{\hbar c}} \arctan\left(\exp\left(\frac{m_a c^2}{\hbar c}x\right)\right)$$

- This is not a real magnetic field, but a substitution having the tesla unit.
- Atomic magnetometer will detect it:

$$H_{\text{int}} = \gamma \overrightarrow{S} \cdot \left(\overrightarrow{B}_{\text{ALP}} + \overrightarrow{B} \right) \approx \gamma \overrightarrow{S} \cdot \overrightarrow{B}_{\text{ALP}}$$

magnetic shielding

[1] M. Pospelov, et al. Detecting Domain Walls of Axionlike Models Using Terrestrial Experiments. Physical Review Letters, 110(2):021803, [2] S. Afach, et al., Search for topological defect dark matter using the global network of optical magnetometers for exotic physics searches

Pseudo-magnetic Field from Interaction

What the magnetometer measured is a projected pseudo-magnetic field:

$$\overrightarrow{B}_{\text{ALP}} = \frac{4}{\mu_B} \frac{f_{\text{SB}}}{f_{\text{int}}} m_a c^2 \frac{\sigma_s}{g_{F,s}} \hat{x}$$

$$B_{\text{ALP}} = \frac{4}{\mu_B} \frac{f_{\text{SB}}}{f_{\text{int}}} m_a c^2 \frac{\sigma_s}{g_{F,s}} \cos \psi_s \quad \text{Compound factor}$$

ALP field factor Magnetometer factor

- There are further parameters to determine the domain-wall signal on a magnetometer:
 - Domain-wall density:

$$\rho_{\rm DW} \approx \frac{\sigma}{L} = \frac{1}{L} \int \frac{dx}{\hbar c} \left| \frac{da}{dx} \right|^2 = \frac{8f_{\rm SB}m_ac^2}{L\hbar^2c^2} \qquad \longrightarrow \qquad f_{\rm SB} \sqrt{m_ac^2} = \hbar c \sqrt{\frac{L\rho_{\rm DW}}{8}}$$

L Size of domain ρ_{DW} DW density

Domain-wall thickness

$$d = \frac{2\hbar c}{m_a c^2}$$

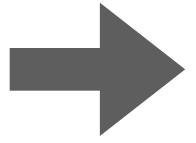
Domain-wall Signal

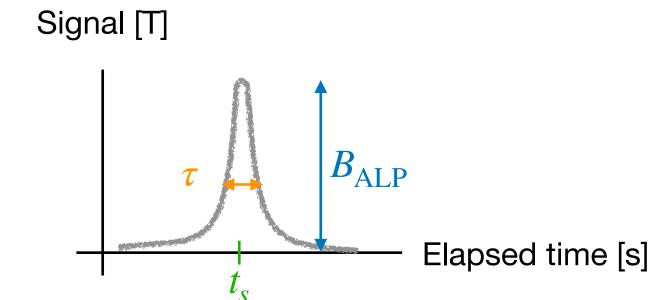
Amplitude

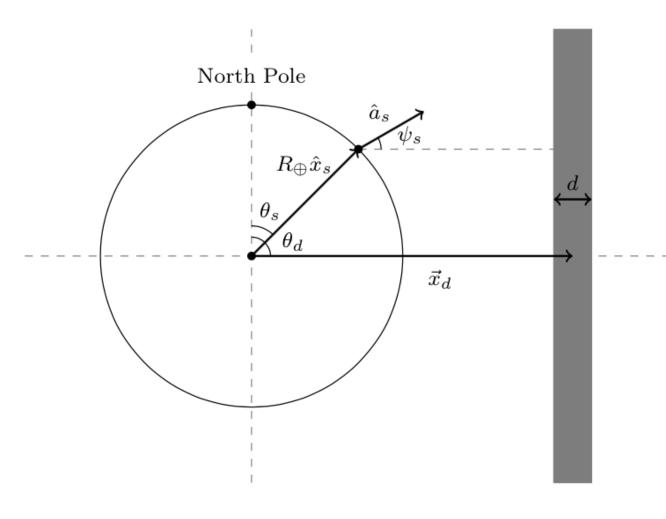
$$B_{\text{ALP}} = \frac{4}{\mu_B} \frac{f_{\text{SB}}}{f_{\text{int}}} m_a c^2 \frac{\sigma_s}{g_{F,s}} \cos \psi_s = B_s \frac{1}{f_{\text{int}}} \sqrt{m_a c^2} \cos \psi_s$$

Duration

$$\tau = \frac{d}{|v|} = \frac{2\hbar c}{m_a c^2 |v|}$$







Timing

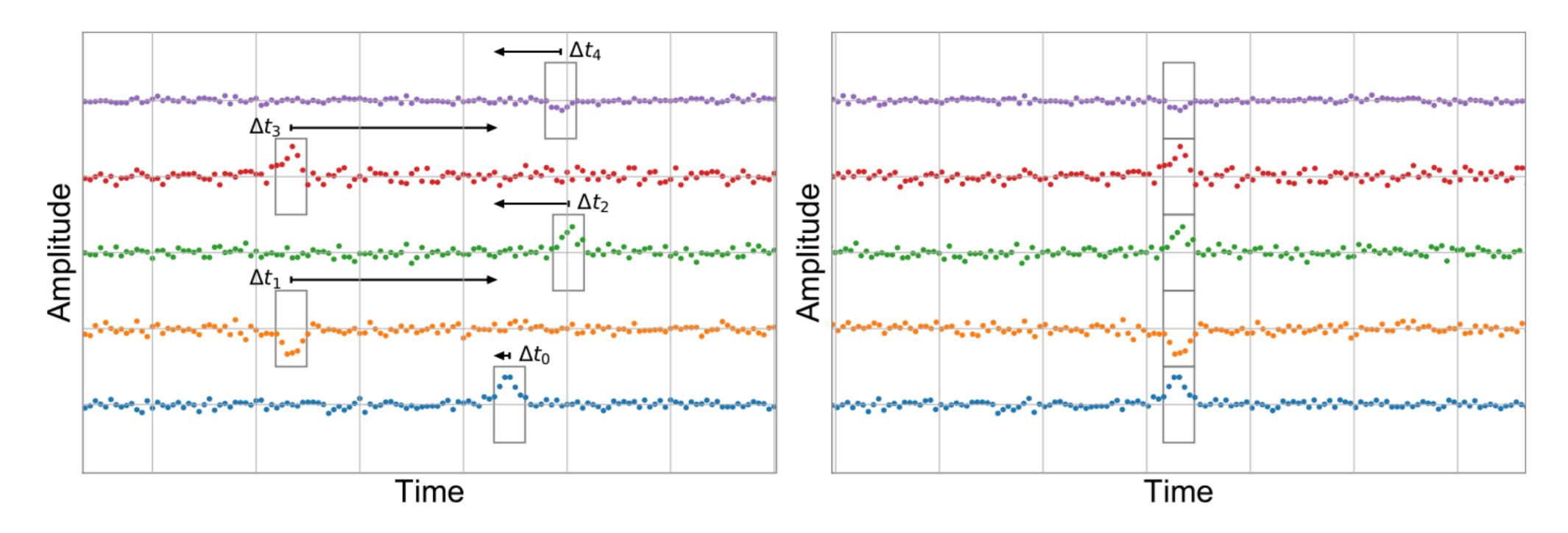
$$t_{s} = \frac{\left(\overrightarrow{x}_{d} - \overrightarrow{x}_{s}\right) \cdot \hat{x}_{d}}{|v|}$$

Amplitude and timing are unique to sensor

- GNOME has a number of magnetometer sensors in the world, installed at different locations.
- Pairs of the domain-wall signal amplitude and timing are all distinct for each sensor.

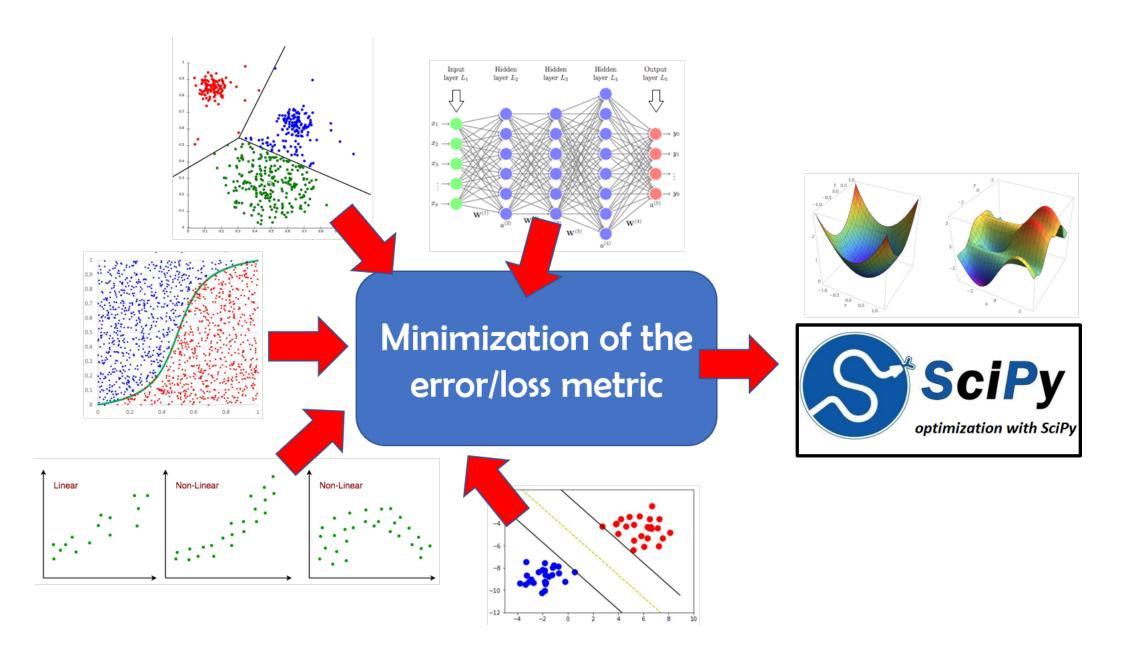
Former Analysis Method

- DW coincidence check with velocity scanning by time shifting among stations
- DW consistence check with DW orientation and sensitive directions of stations
- DW significance check with simulated false positive events



Signal Detection: Minimization Problem

- Minimization of $f(x_{i+1}) = f(x_i) \vec{\gamma} \cdot \vec{\nabla} f(x_i)$ where $\vec{\nabla} f = 0$ requires well-designed optimization setup.
 - Appropriate f(x): cost function
 - Appropriate x_0 : grid estimation
 - Appropriate $\vec{\gamma}$: adaptive momentum



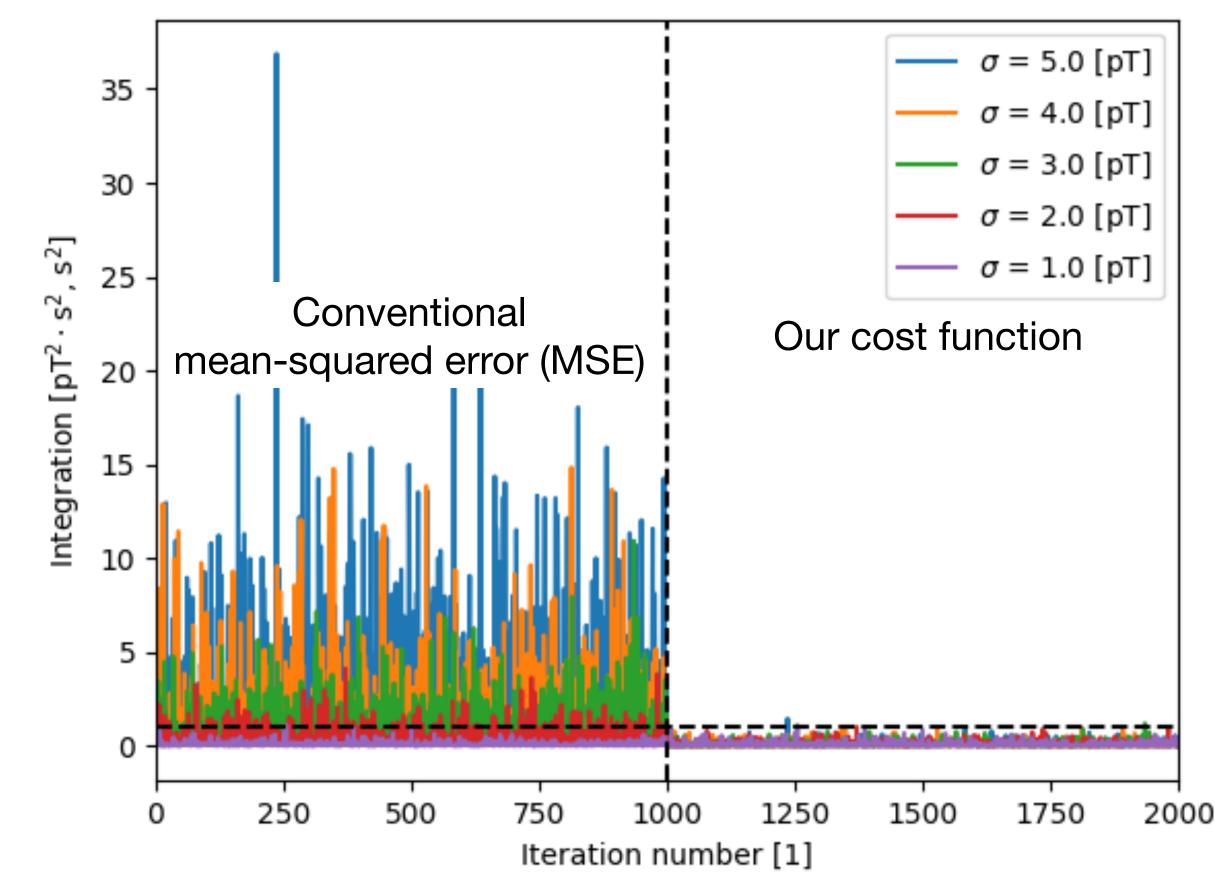
Minimization is a what Machine Learning does [1].

Cost function

- Minimization of $f(x_{i+1}) = f(x_i) \vec{\gamma} \cdot \vec{\nabla} f(x_i)$ where $\vec{\nabla} f = 0$ requires well-designed optimization setup.
 - Appropriate f(x): cost function

$$f(x) = \frac{1}{N} \sum_{s} \frac{1}{\left(\sigma_{s} \text{ s}\right)^{2} \mathcal{T}} \int_{0}^{\mathcal{T}} \left(\int_{0}^{t} \left(S_{s}(t') - \tilde{S}_{s}(t'; x) \right) dt' \right)^{2} dt$$

- Independent of
 - # of stations
 - Standard deviation of station



Simulations of cost function for Gaussian noises

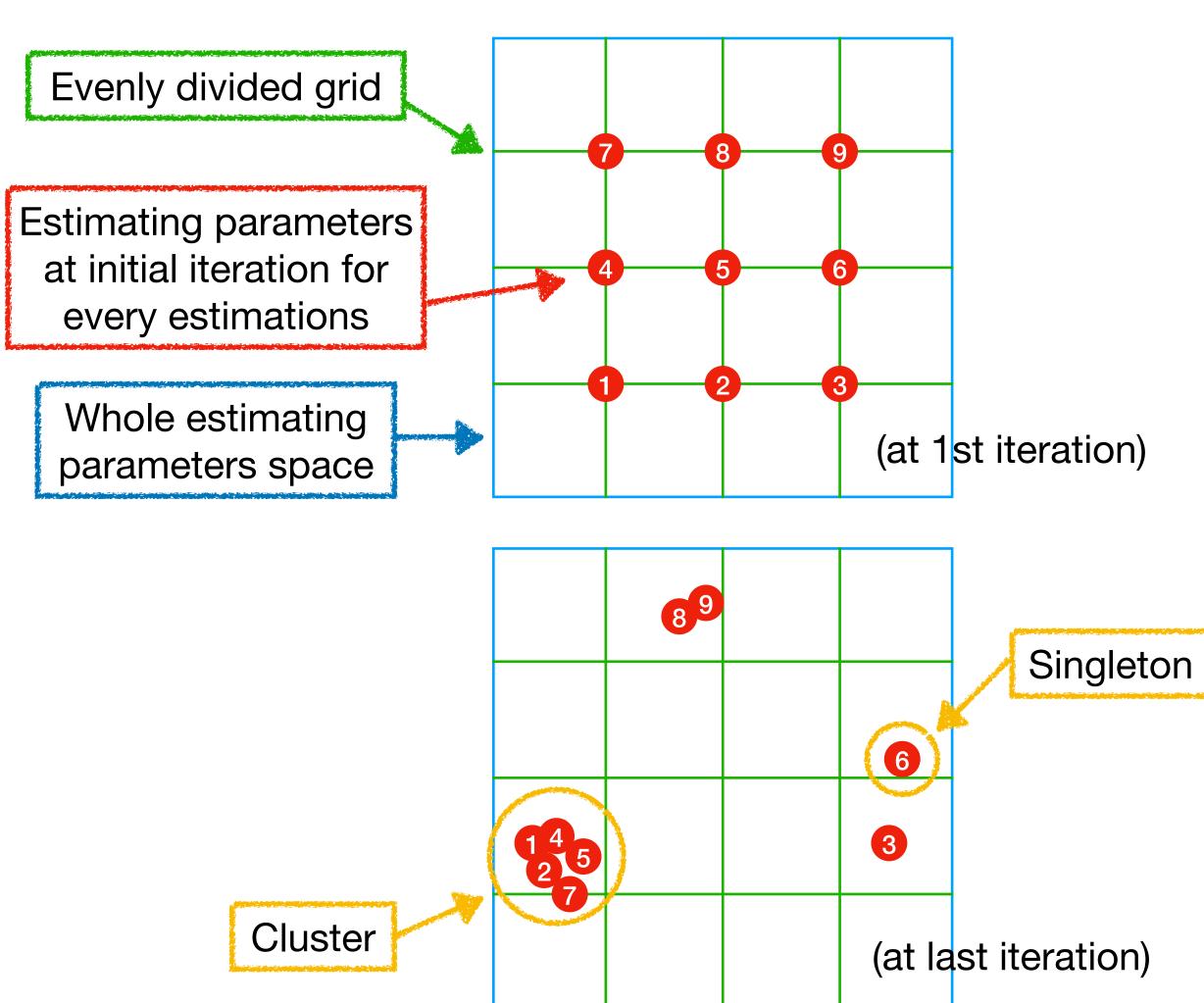
Grid Estimation

• Minimization of $f(x_{i+1}) = f(x_i) - \vec{\gamma} \cdot \vec{\nabla} f(x_i)$ where $\vec{\nabla} f = 0$ requires well-designed

optimization setup.

• Appropriate f(x): cost function

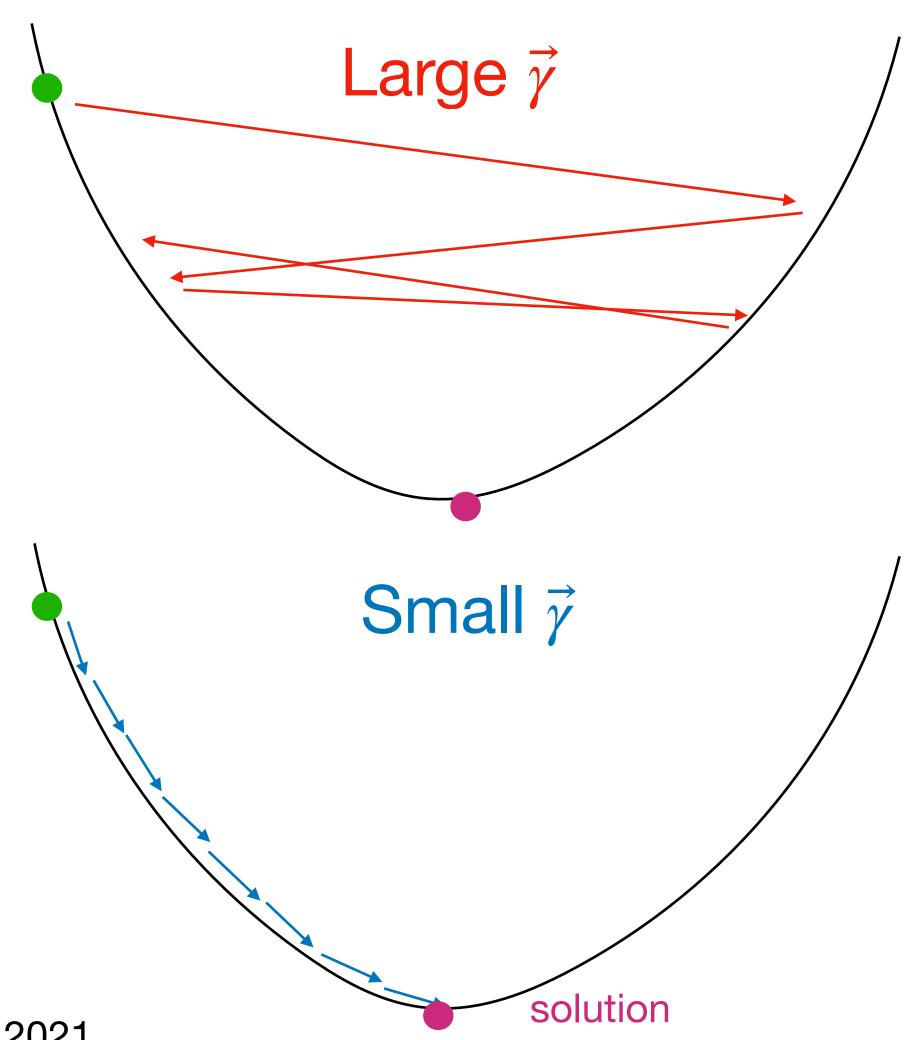
• Appropriate x_0 : grid estimation



Adaptive Momentum

- Minimization of $f(x_{i+1}) = f(x_i) \vec{\gamma} \cdot \vec{\nabla} f(x_i)$ where $\vec{\nabla} f = 0$ requires well-designed optimization setup.
 - Appropriate f(x): cost function
 - Appropriate x_0 : grid estimation
 - Appropriate $\vec{\gamma}$: adaptive momentum

$$\vec{\gamma} = \vec{\gamma}(i)$$



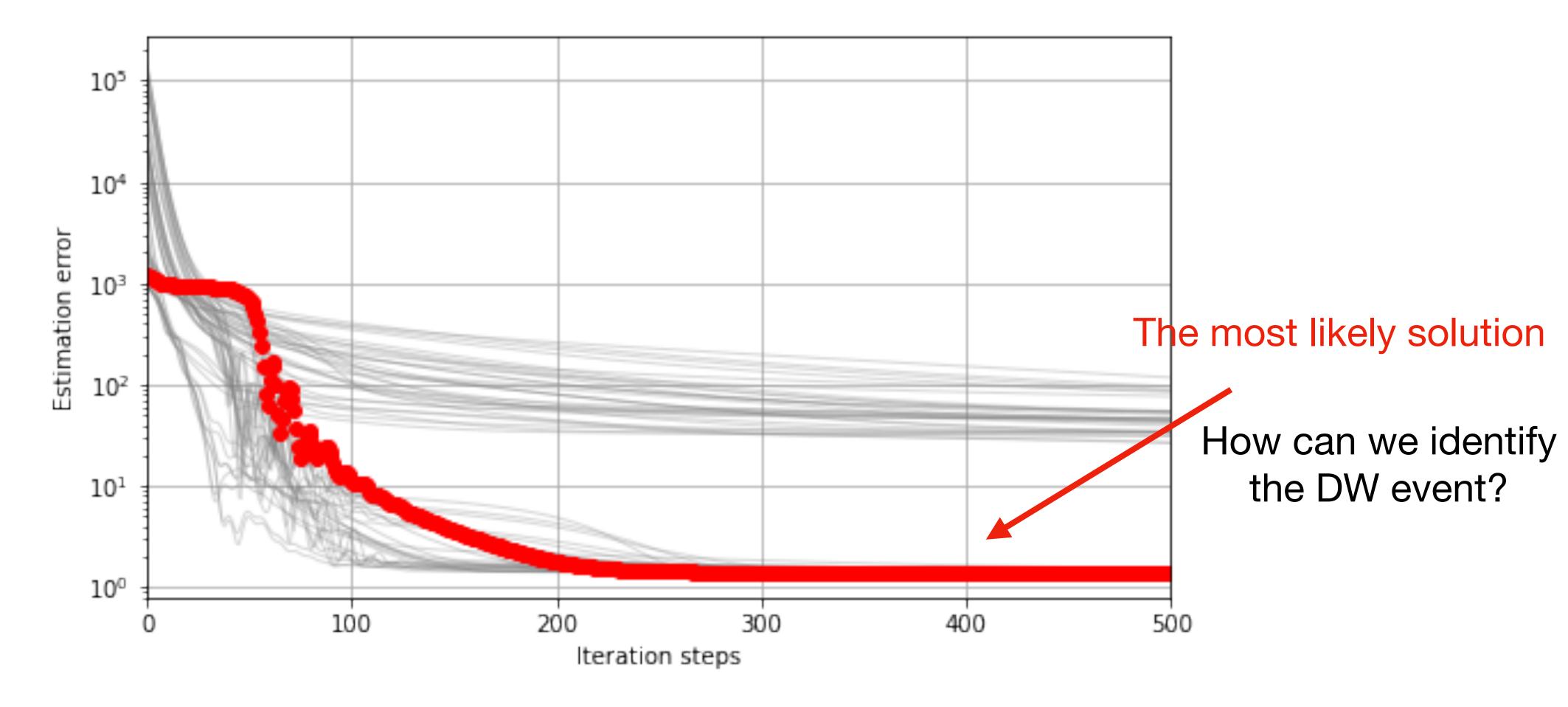
Estimation of Optimization Parameters

- The cost function is minimized when the optimization parameters correspond to the ALP DW crossing event IF exists.
- The optimization process estimates the ALP parameters.

	Parameters	Symbols	Estimation ranges	Normalization maps $f(x): x \mapsto f(x)$
ALP	mass	$m_a c^2$	$(10^{-15} \text{ eV}, 10^{-11} \text{ eV})$	$(\log_{10}(x/\text{eV}) + 15)/4$
	interaction scale	$f_{ m int}$	$\left(10^4~{\rm GeV}, 10^8~{\rm GeV}\right)$	$(\log_{10}(x/{ m GeV})-4)/4$
Direction	polar angle azimuthal angle	θ_d	$[0,\pi]$	x/π
	azimuthal angle	ϕ_d	$[0,2\pi)$	$x/2\pi$
Timing	relative speed	$ \vec{v}_d $	(100 kmps, 550 kmps)	(x-100 kmps)/450 kmps
	relative position	$ ec{p}_d $	$\left(6.4\times10^3~\mathrm{km},12\times10^3~\mathrm{km}\right)$	$(x - 6.4 \times 10^3 \text{ km})/5.6 \times 10^3 \text{ km}$

Tracing Estimation Error

 Estimation error with respect to the optimization iteration step for each grid point (2 grid lines for each parameter):



Criterion for Estimation Errors

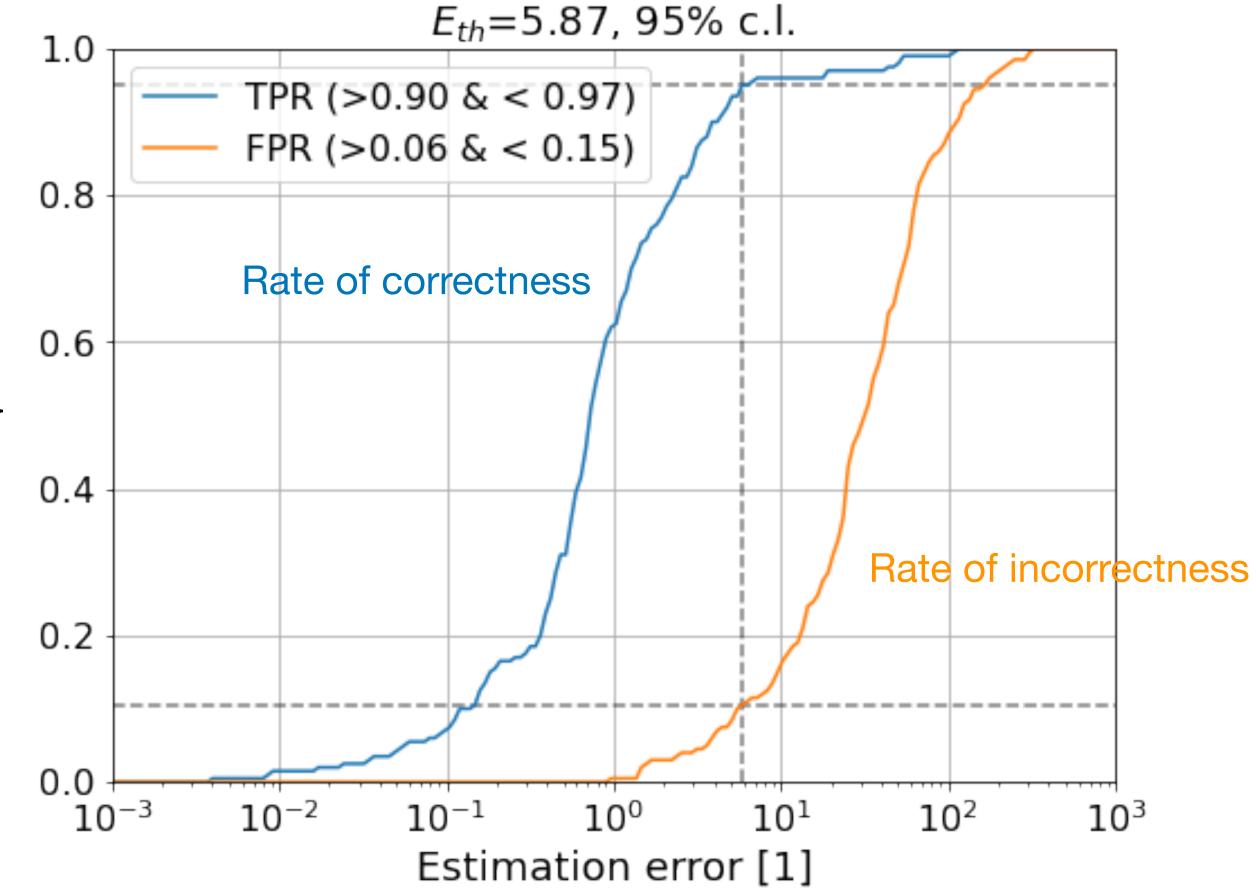
- This analysis method is tested under simulations: w/ and w/o domain-wall crossing events.
- 400 simulations with random variables.
- Confidence interval by Wilson score [1,2]

$$CL_{-} = \max \left\{ 0, \frac{2np + z^{2} - (z\sqrt{z^{2} - \frac{1}{n}} + 4np(1 - p) + (4p - 2) + 1}{2(n + z^{2})} \right\}$$

$$CL_{+} = \min \left\{ 1, \frac{2np + z^{2} + (z\sqrt{z^{2} - \frac{1}{n}} + 4np(1 - p) - (4p - 2) + 1}{2(n + z^{2})} \right\}$$

$$n = 400, \quad p_{TPR} = 0.95, p_{FPR} = 0.10, \quad z = 1.96$$

Binary classification of the analyzed result



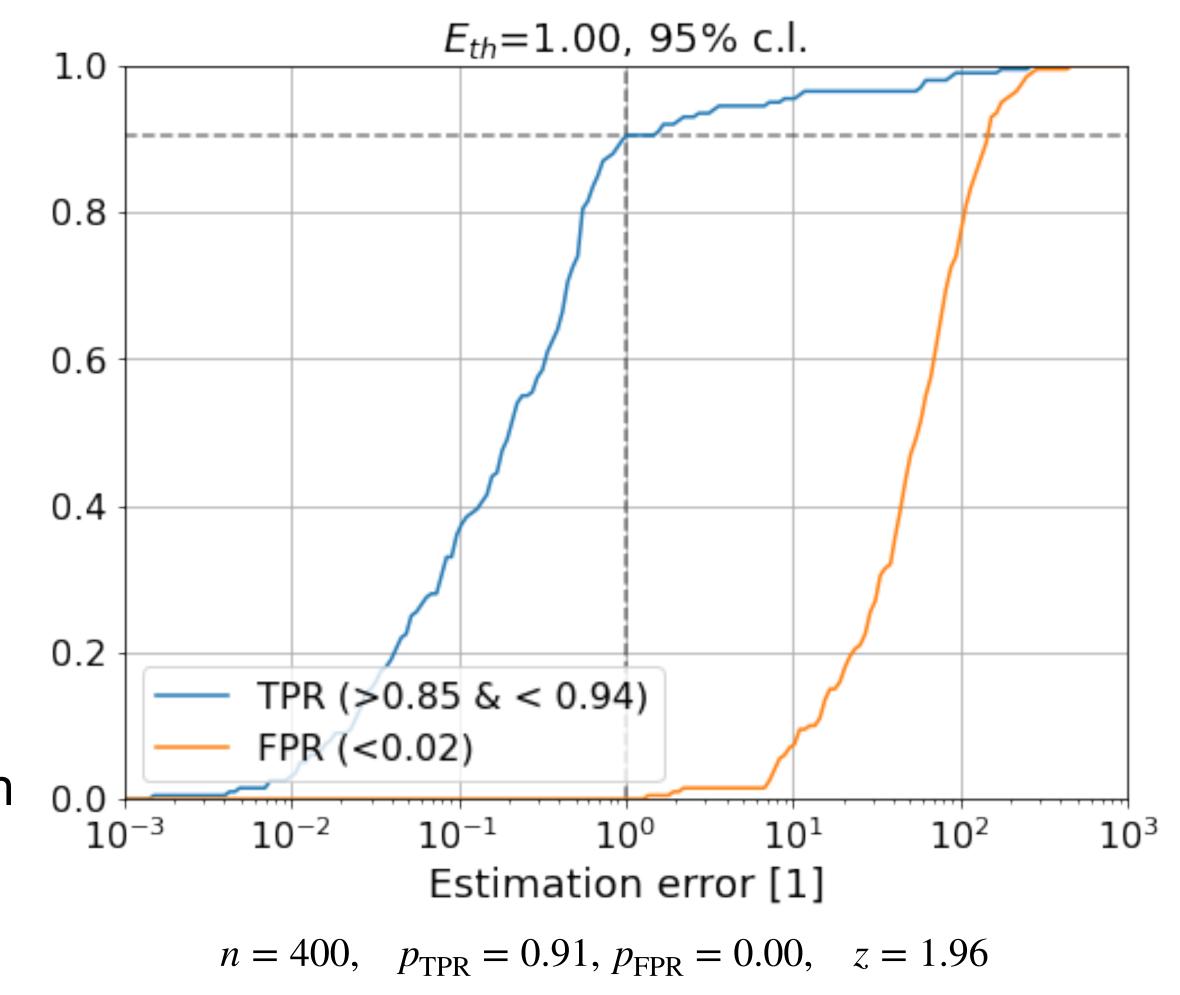
[1] E. B. Wilson and G. N. Lewis. The space-time manifold of relativity. the non-euclidean geometry of mechanics and electromagnetics. Proceedings of the American Academy of Arts and Sciences, 48(11):389–507, 1912. [2] R. G. Newcombe, Statistics in Medicine 17, 857 (1998)

Parameter Space Optimization

- Recall: the optimization process estimates the ALP parameters.
- True positives: how well they are estimated

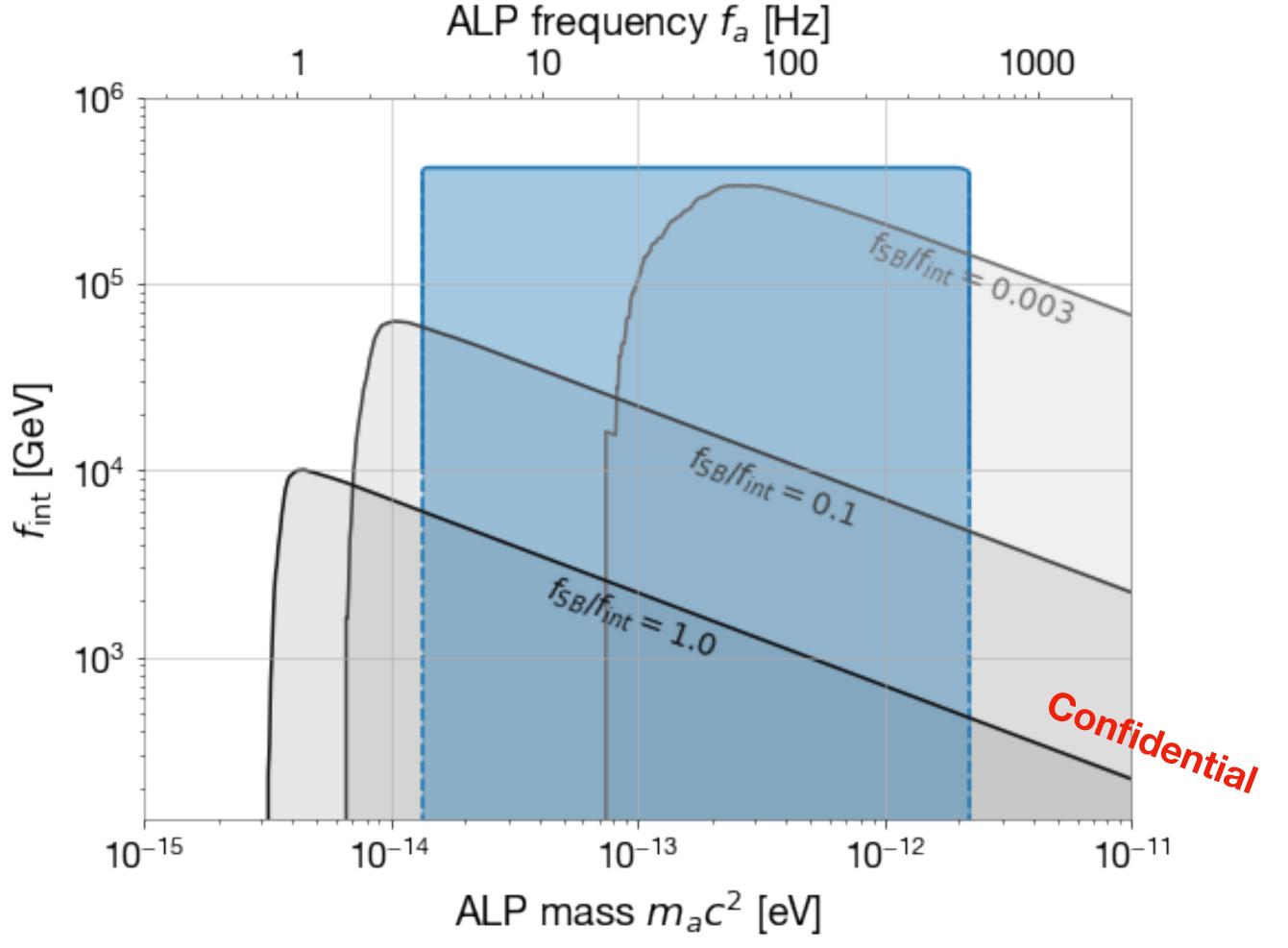
distance =
$$\sqrt{\left(\left(m_a c^2\right)_{\text{sol}} - \left(m_a c^2\right)_{\text{est}}\right)^2 + \left(\left(f_{\text{eff}}\right)_{\text{sol}} - \left(f_{\text{eff}}\right)_{\text{est}}\right)^2}$$

- Figure of merits:
 - # of fractions for distance < 0.02 ×
 - Area of the parameter space
- TPR and FPR are separated by optimization



Projected Parameter Space

Projected parameter space which can be covered by this analysis method (95% C.L.):



[1] S. Afach, et al., Search for topological defect dark matter using the global network of optical magnetometers for exotic physics searches (gnome), 2021.