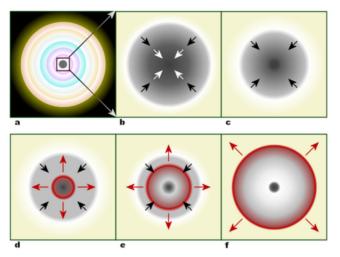

IBS-ICTP Workshop on Axion-Like Particles, 28^{th} October 2021

Supernovae as axion factories: the latest developments

Pierluca Carenza OKC, Stockholm University

Brief introduction to axions and ALPs

Axions and ALPs are a window on high-energy physics


This hot topic is a motivation for interdisciplinary searches

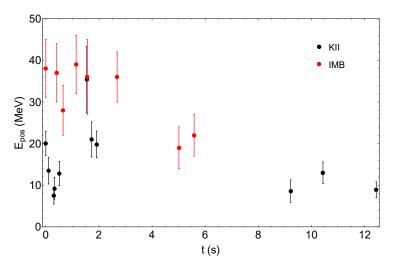
Supernova axions

-

Core-Collapse Supernovae


For massive stars ($M>8M_{\odot}$) the nuclear fusion produces heavy elements in an onion structure and a degenerate iron core

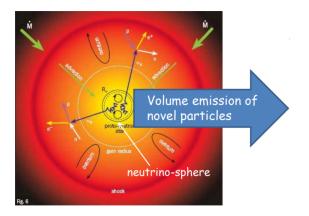
Iron in the core cannot be burnt and the star starts to collapse


Orders of magnitude for SNe

The SN core is an extreme environment

SN1987A: neutrino signal

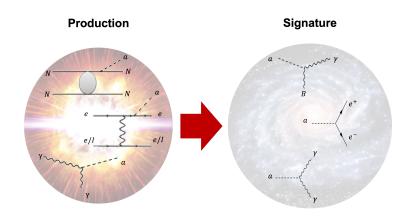
From the few $\bar{\nu}_e p o n e^+$ events of SN 1987A we know that...



 $\sim 10^{53}\, {
m erg}$ emitted as neutrinos with energy $\sim {\it O}(15\, {
m MeV})$ in $\sim 10\, {
m s}$

The energy-loss argument

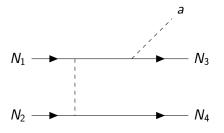
G. Raffelt, Lect. Notes Phys. 741 (2008)


Stars produce axions which escape, draining energy from the core

Axions affect strongly the SN neutrino burst if

$$L_a > L_{\nu} = 2 \times 10^{52} \, \mathrm{erg \, s^{-1}}$$

SN axion phenomenology: the cooling bound

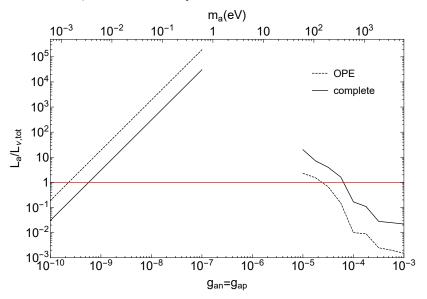


Axion production in nuclear matter

Axion-nucleon bremsstrahlung in SNe

M. S. Turner, Phys. Rev. Lett. 60 (1988)

SN axions are produced by nucleon-axion bremsstrahlung

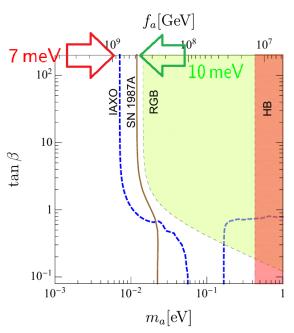


where we have to include detailed nuclear physics and many body effects

ç

The SN axion bound

From the $L_a/L_
u$ criterion at $t_{
m pb}=1$ s we obtain

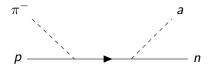


The bound: KSVZ axion bound PC, T. Fischer *et al.*, JCAP **05** (2020) no.05, E01

- Literature: m_a < 12 meV OPE+MS G. G. Raffelt, Lect. Notes Phys. **741** (2008), 51-71
- Our bound:

$C_{ap} = -0.47$; $C_{an} = 0$	$g_{ap} \ (\times 10^{-10})$	$m_a~({ m meV})$	$f_a(\times 10^8 \text{ GeV})$
OPE	4	5	10.4
OPE+MS	5	6	9.7
OPE+corr. (no MS)	11	14	4.2
OPE+corr +MS	12	15	4.0

The bound: DFSZ axion bound



Axion production by pionic processes

The pion-axion conversion

- M. S. Turner, Phys. Rev. D 45 (1992), 1066-1075
- G. Raffelt and D. Seckel, Phys. Rev. D 52 (1995), 1780-1799

This process was found to be dominant for $n_\pi \sim O(n_B)$, but ...

... lost in literature because nobody knows the pion abundance

How much is the pion abundance?

Virial expansion

B. Fore and S. Reddy, Phys. Rev. C 101 (2020) no.3, 035809

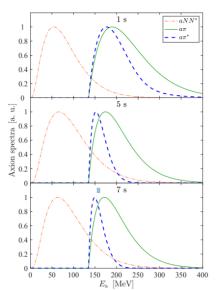
The pion abundance is $\mathcal{O}(1\%)$ negligible thermal abundance

$$n_{\pi^{-}} = \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} e^{(\hat{\mu}-E)/T} + \boxed{n_{\pi^{-}}^{\text{int}}}$$

nucleons produce pions

Pion-axion conversion in SNe PC, B. Fore *et al.*, Phys. Rev. Lett. **126** (2021) no.7, 071102

SN axions are produced by pion-axion conversion



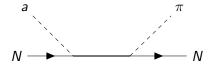
This is the leading axion production process in a SN!!

Flux from pion-axion conversion

T. Fischer, PC et al. [arXiv:2108.13726 [hep-ph]].

The harder spectrum is due to the pion rest mass

Consequences on the SN cooling


The SN cooling is accelerated by this new process, then the SN1987A bound is a factor 2 stronger

ho		$ar{g}_{aN}$	m_a	f_a
		$(\times 10^{-9})$	(meV)	$(imes 10^8 \; { m GeV})$
$\overline{\rho_0}$	only <i>NN</i>	0.81	21.02	2.71
	π N + NN	0.46	11.99	4.75
$ ho_0/2$	only NN	0.93	24.11	2.36
	$\pi N + NN$	0.42	10.96	5.20

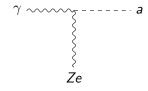
Bound on the effective axion-nucleon coupling \bar{g}_{aN} for KSVZ axions.

Detection perspectives in Cherenkov detectors work in progress

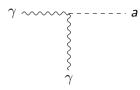
Axions absorbed via the Δ resonance

We estimate at most \sim 1000 events from a SN at 1 kpc

- \blacktriangleright $\pi^0 \rightarrow 2\gamma \rightarrow 2e^+e^-$
- \blacktriangleright π^- absorbed by nuclear capture

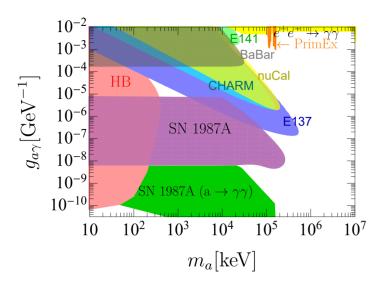

Axion-Like Particles from Supernovae: the photon coupling

ALP production channels

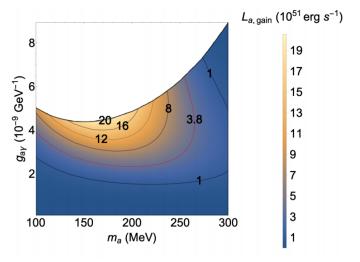

G. Lucente, PC et al., JCAP 12 (2020), 008

ALPs are coupled with photons and are produced by:

Primakoff conversion

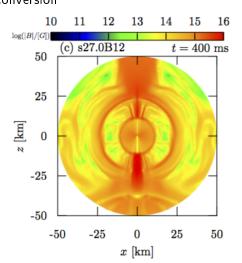


Inverse Decay


SN1987A ALP bound

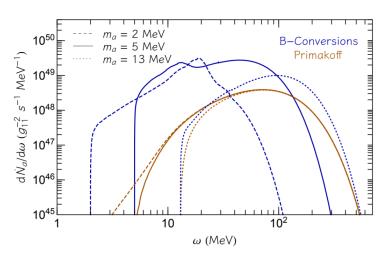
Nice complementarity with other bounds

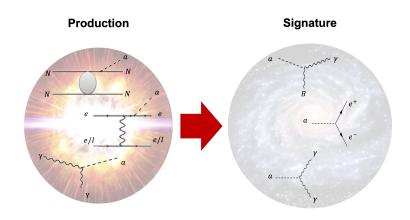
Can ALP revitalize the SN shock?


Massive ALP could decay inside the SN revitalizing the shock

Energy deposited at $t_{
m pb}=0.3\,{
m s},$ the red line indicates where the ALP deposit the same energy as neutrinos

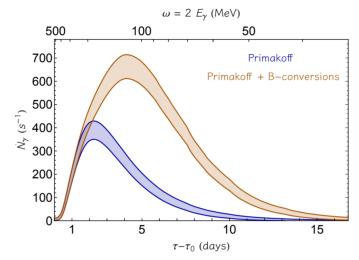
Another ALP production mechanism in hypernovae


J. Matsumoto et al., Mon. Not. Roy. Astron. Soc. 499 (2020) no.3, 4174-4194
The huge magnetic field in hypernovae allows for the resonant photon-ALP conversion


Another ALP production mechanism in hypernovae

A. Caputo, PC et al., [arXiv:2104.05727 [hep-ph]].

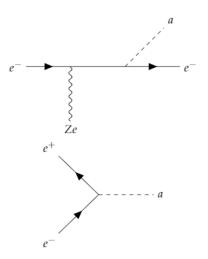
The flux is comparable or larger than the standard mechanism


SN axion phenomenology: γ -ray signal for heavy axions

Observational signature in Fermi-LAT

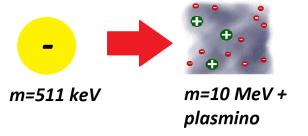
The γ -ray signal would probe:

- ► B fields in a SN
- ▶ the existence of an ALP
- ▶ the ALP mass



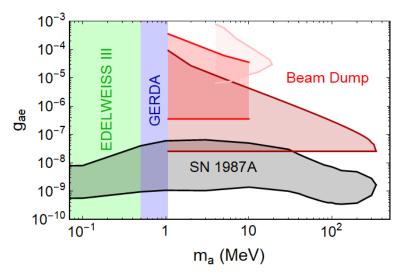
Axion-Like Particles from Supernovae: the electron coupling

ALP production channels

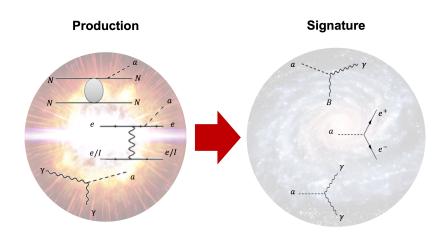

G. Lucente and PC, [arXiv:2107.12393 [hep-ph]].

ALPs are coupled with electrons and are produced by:

The electron (and positron) dispersion relation

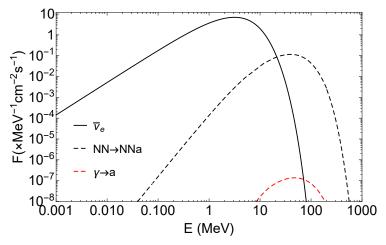

The plasma affects the electron (and positron) propagation

We proved that the plasmino contribution is negligible


The SN bound and laboratory experiments

Also in this case the SN bound is complementary to beam dumps

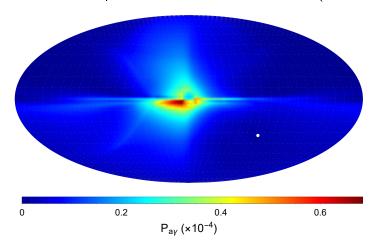
Direct signatures from the Diffuse SN ALP Background


SN axion phenomenology: conversion of light axions

DSNALPB

F. Calore, PC et al., Phys. Rev. D 102 (2020) no.12, 123005

The nucleon coupling is less constrained, larger flux with NN



DSNALPB with $g_{ap}=1.2\times 10^{-9}$ and $g_{a\gamma}=5.3\times 10^{-12}\, {\rm GeV}^{-1}$

ALP conversion into photons

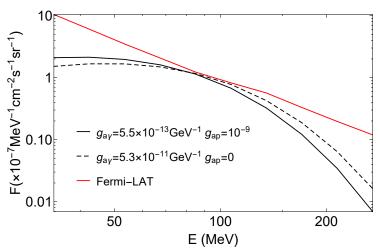
D. Horns et al., Phys. Rev. D 86 (2012), 075024

The Galactic magnetic field will convert into photons both the DSNALPB and the point-like ALP flux from SN1987A (white dot)

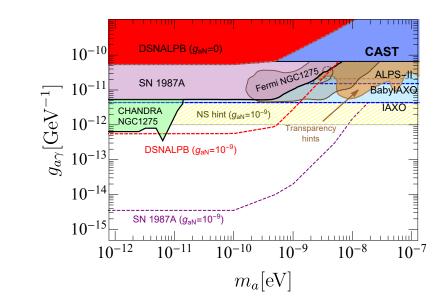
Conversion probability for $m_a \ll E = 50 \, \text{MeV}$, $g_{a\gamma} = 3 \times 10^{-13} \, \text{GeV}^{-1}$

SN1987A bound

The γ -ray flux must be smaller than 0.6 cm⁻² measured by the Solar Maximum Mission

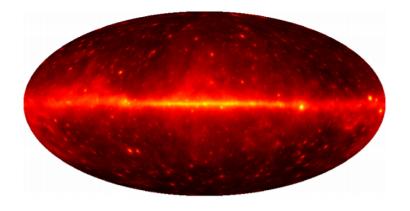

The bound on $g_{a\gamma}$ for $m_a < 4 \times 10^{-10} \, \mathrm{eV}$ is strongly improved by the nucleon coupling

The case $g_{ap}=0$ agrees with A. Payez et al., JCAP **02** (2015), 006

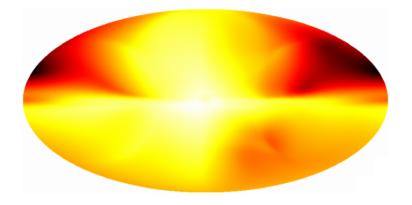

DSNALPB bound

M. Ackermann et al. [Fermi-LAT], Astrophys. J. 799 (2015), 86

The converted DSNALPB must be smaller than the diffuse $\gamma-{\rm ray}$ background measured by Fermi-LAT

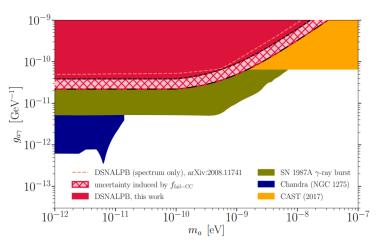


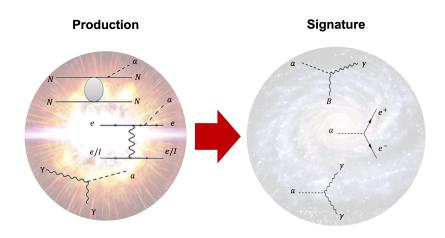
Overview plot



Improving the DSNALPB bound: Fermi-LAT data

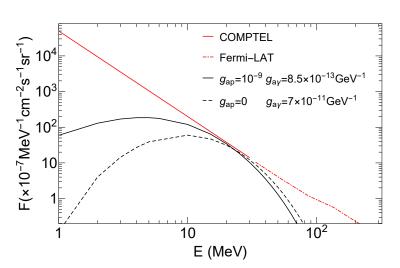
Skymap of gamma-rays observed by Fermi-LAT


Improving the DSNALPB bound: the ALP signal

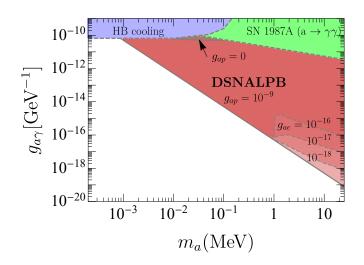

The bound

F. Calore, PC et al., [arXiv:2110.03679 [astro-ph.HE]].

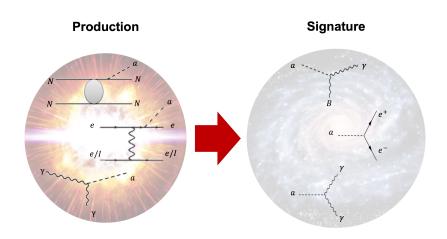
The bound is stronger than CAST and can be improved by future $\gamma\text{-ray}$ measurements


SN axion phenomenology: decay of heavy axions

DSNALPB for massive ALPs

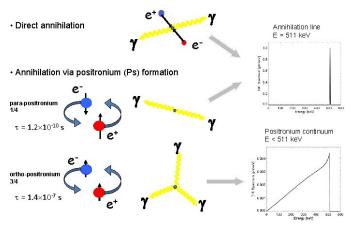

S. C. Kappadath, PhD thesis (U. of New Hampshire, 1998)

The DSNALPB produces a γ -ray background by decaying ALPs constrained by Fermi-LAT and COMPTEL ($m_a = 5 \text{ keV}$ in the plot)


Coupling with electrons

If ALPs decay into e^+e^- , the $\gamma-$ ray background is reduced

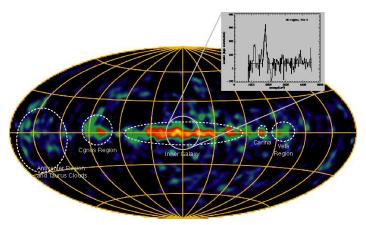
44


SN axion phenomenology: decay into electron-positron pairs

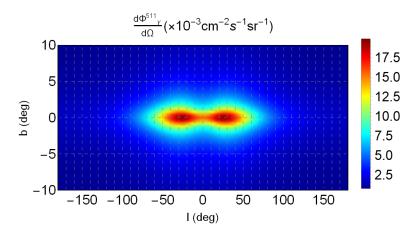
$a \rightarrow e^+e^-$ is not invisible

Positrons lose energy in $10^3 - 10^6$ yrs

Electron Positron Annihilation

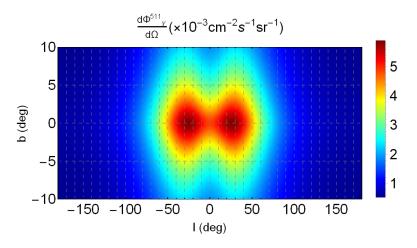


Is it possible to explain a fraction of the 511 keV line with ALPs? Agaronyan, F. A., and A. M. Atoyan, 1981, Sov. Astr. Letters 7, 395

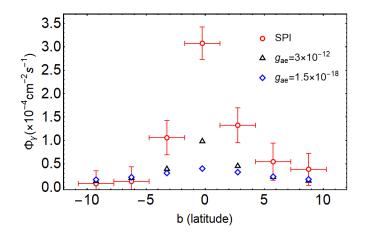

The 511 keV line

N. Prantzos et al. Rev. Mod. Phys. 83 (2011), 1001-1056

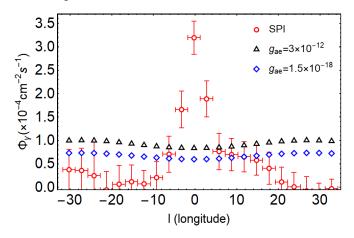
The Galactic flux at 511 keV is partially unexplained



511 keV photon skymap for $g_{ae} = 4 \times 10^{-12}$ F. Calore, PC *et al.*, Phys. Rev. D **104** (2021) no.4, 043016


ALPs decay very close to the SN and positrons are trapped by $B \sim O(\mu G)$

511 keV photon skymap for $g_{ae} = 2 \times 10^{-19}$ F. Calore, PC *et al.*, Phys. Rev. D **104** (2021) no.4, 043016

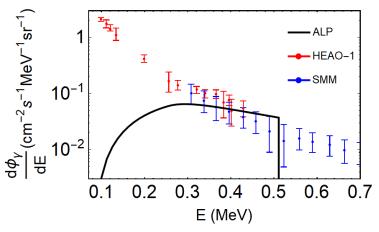

ALPs decay far from to the SN, smeared distribution

Let's compare with SPI data...

Very good agreement for the vertical distribution...

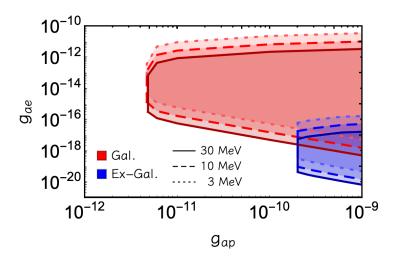
... much less agreement with the horizontal one

No ccSN-based mechanisms explains the 511 keV line!!


ALPs escaping from the Galaxy

Positrons trapped in the intergalactic medium ($B \sim \rm nG$) annihilate in $\sim \rm Gyr$ and photons are redshifted

Extragalactic X-ray diffuse flux


The extragalactic flux is redshifted, no more 511 keV line

Diffuse flux for $g_{ae} = 7 \times 10^{-21}$


Overwiev plot

F. Calore, PC et al., Phys. Rev. D 104 (2021) no.4, 043016

Conclusions

Supernovae are the best axion factories... waiting the next SN explosion

THANKS FOR YOUR ATTENTION