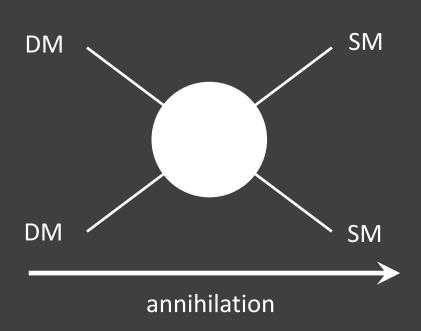
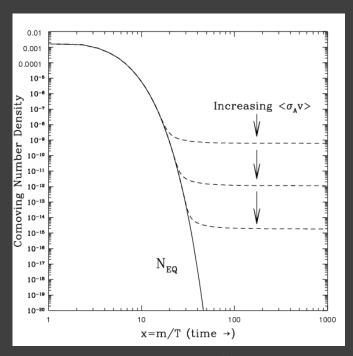
Dark World to Swampland 2021

Exploring nearly degenerate higgsinos using mono-Z/W signal

Junichiro Kawamura

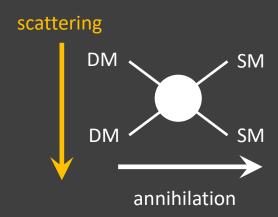

Institute for Basic Science, CTPU

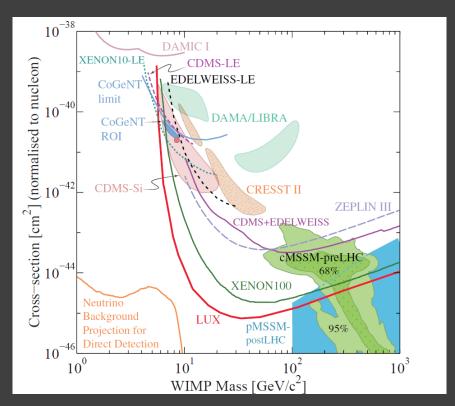

arXiv:2110.04185

in collaboration with

L.Carpenter and H.Gilmer [Ohio State U.]

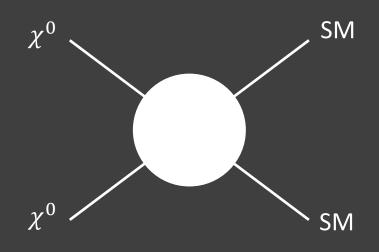
WIMP DM

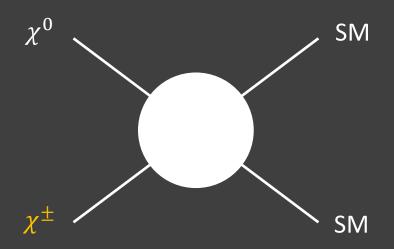



E.W.Kolb, M.S.Turner, The Early Universe, `89

- DM decouples from thermal bath and "freeze-out"
- Electro-Weak [EW] coupling and mass can explain relic density
- realized in many BSM models including supersymmetry [SUSY]

Direct detection

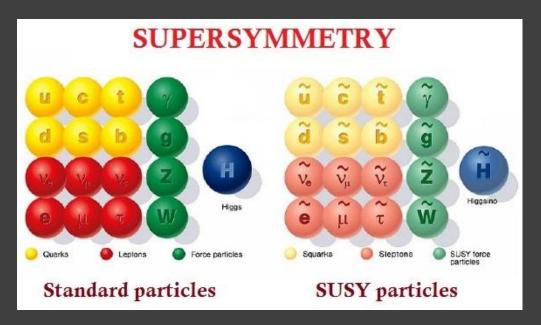



PDG2014

- null results in direct detections
- many interested parameter space has been excluded

Co-annihilating DM

 χ^0 : DM, χ^{\pm} : new particle


ightharpoonup If $m_{\chi^0} \simeq m_{\chi^\pm}$

"co-annihilation" $\chi^0 \chi^\pm \to SM^2$ turns on during freeze-out

- \rightarrow $\sigma_{\rm ann} \gg \sigma_{\rm scat}$ effectively due to co-annihilation
- avoid direct detection limits

Higgsino

Supersymmetry [SUSY]

- solve hierarchy problem
- GUT/superstring
- Higgs potential
- neutralino DM*mixture of gaugino/higgsino

- > Higgsino
 - fermionic superpartners of Higgs bosons
 - neutral component is a part of neutralino DM

Higgsino

Co-annihilating DM

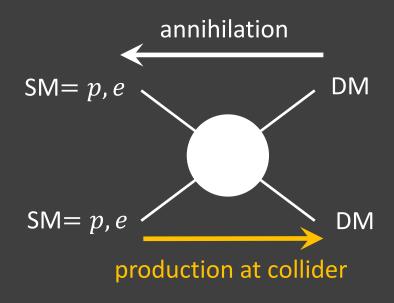
there are two Higgs doublets in Minimal SUSY SM [MSSM]

- two neutral states: χ_1^0 , χ_2^0 and two charged states χ_1^\pm
- the lightest state χ_1^0 can be DM
 - mass differences are typically less than few GeV
- co-annihilation works!
- Origin of EW scale

$$m_Z^2 \sim -2|\mu|^2 - 2m_{H_y}^2$$

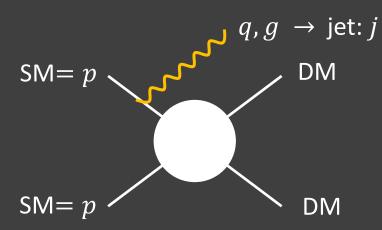
$$m_Z = 91.2 \text{ GeV},$$

 μ : Higgsino mass,


 m_{H_u} : Higgs mass term

understanding the origin of EW scale!

Outline

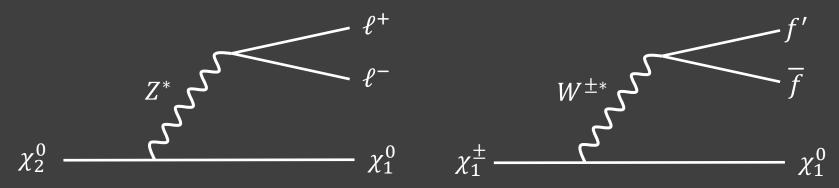

- 1. Introduction
- 2. Higgsino searches at LHC
- 3. Mono-Z/W signal
- 4. Summary

Conventional DM search

- DM may be produced at collider
- However, DM is invisible

$$\triangleright$$
 mono-jet $1j + E_T^{\text{miss}}$ signal

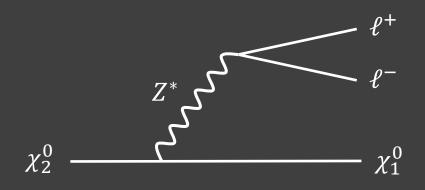
$$E_T^{ ext{miss}} \sim |-\vec{p}_T^j|$$


- jet from initial state radiation [ISR]
- suffered from large bkg.
- no limits to Higgsinos at LHC

Higgsino search: higgsino decays

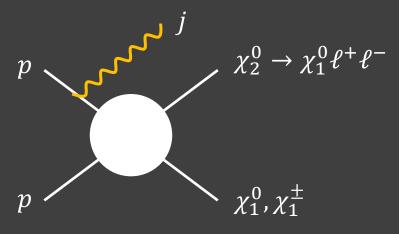
mass differences of higgsinos

$$\Delta m_{\chi_2^0} \sim 2\Delta m_{\chi_1^{\pm}} \sim 2.1 \text{ GeV} \times \left(\frac{4 \text{ TeV}}{M_{\text{wino}}}\right)$$
 $\Delta m_{\chi_2^0} := m_{\chi_2^0} - m_{\chi_1^0}$ $\Delta m_{\chi_1^{\pm}} := m_{\chi_1^{\pm}} - m_{\chi_1^0}$

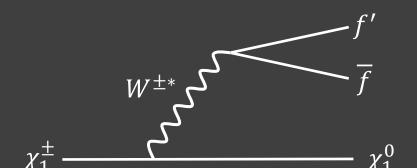

 \triangleright decays of heavier higgsinos: χ_2^0 , χ_1^{\pm}

- productions of heavier states are expected
- daughter particles are "soft" due to small mass diff.

Higgsino search: soft leptons


1401.1235 Han, Kribs, Martin Menon 1409.7058, Baer, Mustafayev, Tata

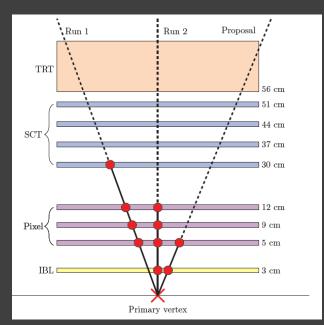
di-leptons are visible


if
$$\Delta m_{\chi_2^0} \gtrsim 10 \text{ GeV}$$

$$> j + \ell^+ \ell^- + E_T^{\text{miss}}$$

- productions $pp \to \chi_2^0 \chi_1^0$, $\chi_2^0 \chi_1^{\pm}$
- ISR jet is necessary to trigger
- $m_{\ell^+\ell^-}^2 < 10$ GeV cut is effective

Higgsino search: disappearing tracks

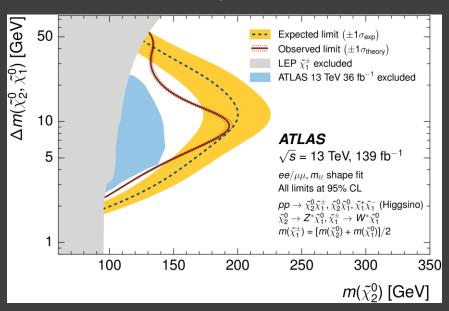


0610277 Ibe, Moroi, Ynagida 1703.05327 Mahbubani, Schwaller, Zurita 1703.09675 Fukuda, Nagata, Otono, Shirai

charged state χ_1^{\pm} is long-lived

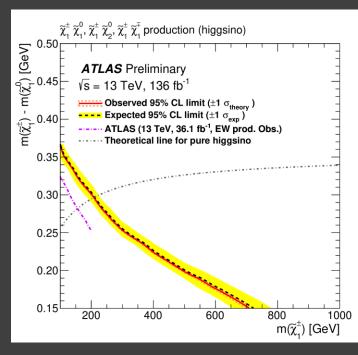
if
$$\Delta m_{\chi_1^{\pm}} \sim \mathcal{O}(100 \text{ MeV})$$

disappearing track search



flight length of O(cm)

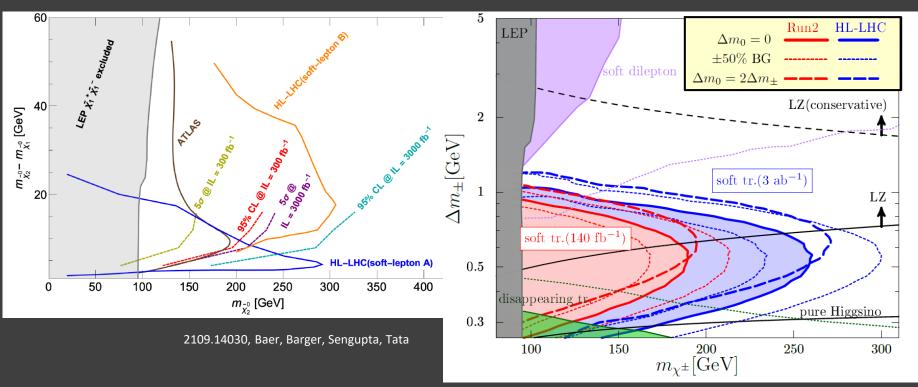
- charged track disappear in detector
- ISR jet is required to trigger


Higgsino search: current limits

soft leptons

 $m_\chi \gtrsim 100~{
m GeV}$ limits for $\Delta m_{\chi_1^\pm} \sim \Delta m_{\chi_2^0}/2 \gtrsim 1.3~{
m GeV}$

disappearing track



for $\Delta m_{\chi_1^{\pm}} \gtrsim 0.35 \text{ GeV}$

- limits are at most 200 GeV
- no limits for $m_\chi \gtrsim 100~{
 m GeV}$ from LHC for $\Delta m_{\chi_1^\pm} \sim 1~{
 m GeV}$

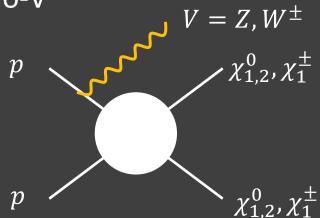
Higgsino search: future limits

1910.08065, Fukuda, Nagata, Oide, Otono, Shirai

- limits are at most about 300 GeV at HL-LHC
- limits are $\sim 100~{
 m GeV}$ for $\Delta m_{\chi_1^\pm} \sim 1~{
 m GeV}$, the gap remains

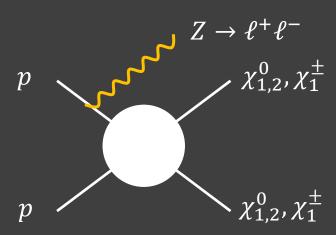
Summary

- generic mono-jet search is not efficient for higgsinos
- soft leptons are available for relatively large mass diffs. $\Delta m_{\chi_1^\pm} \gtrsim 3~{\rm GeV}$
- disappearing tracks are available for very small mass diffs. $\Delta m_{\chi_1^\pm} \lesssim 0.8~{
 m GeV}$
- there is a gap at $\Delta m_{\chi_1^\pm} \sim 1~{
 m GeV}$ corresponding to $M_{
 m wino} \sim 4~{
 m TeV}$
- known searches use ISR jet to trigger


Outline

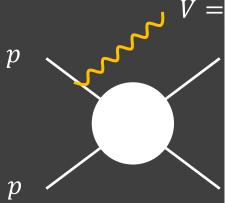
- 1. Introduction
- 2. Higgsino searches at LHC
- 3. Mono-Z/W signal
- 4. Summary

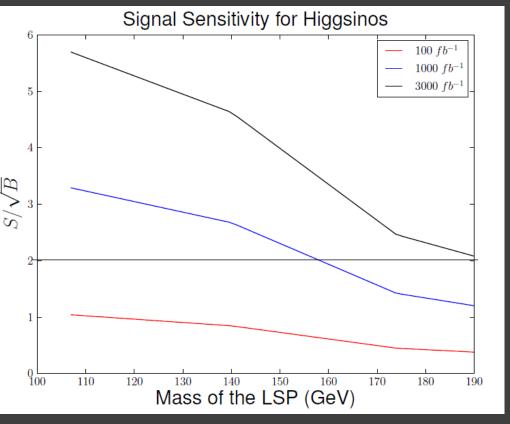
mono-Z/W signal


what if we use Z/W boson instead of jet?

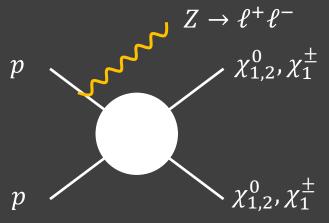
> mono-V

- ✓ less production cross section
- (much) less backgrounds

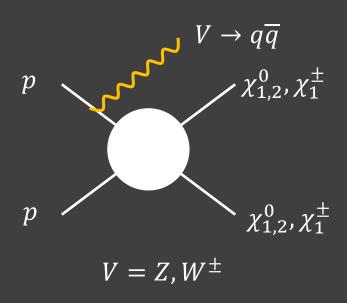

> leptonic mono-Z

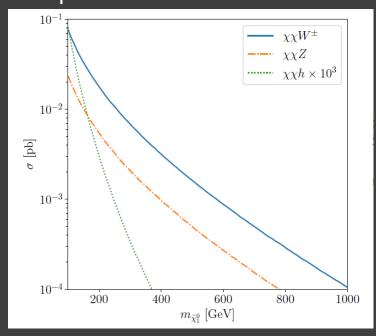

mono-Z/W signa

what if we use Z/


> mono-V

leptonic mono-Z


1407.1833, Anandakrichnan, Carpenter, Raby

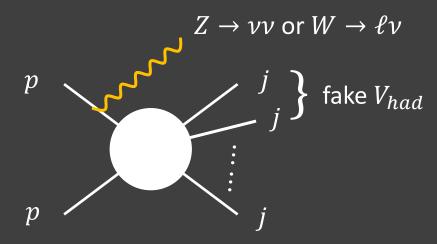

- ✓ limit is about 190 GeV at HL-LHC
- ✓ not large production x-section

mono-Z/W signal

hadronic mono-V

production cross section

- W associated production is much larger than prod. with Z
- hadronic BRs $\sim 70\%$ are larger than leptonic BRs $\sim 10~(30)\%$ for Z (W)
 - significantly large production rate!


mono-Z/W signal

are backgrounds small?

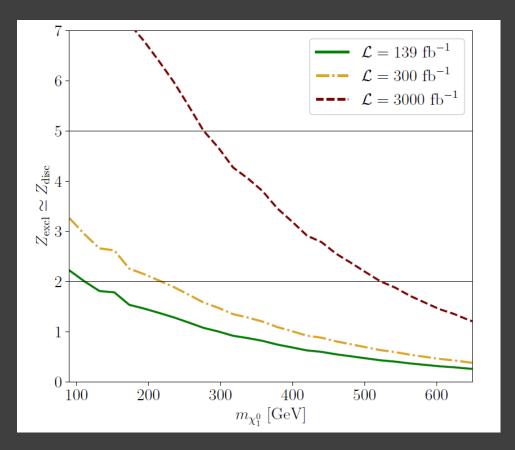
$$V=Z$$
, W^{\pm}

- \triangleright bkg. for $j + E_T^{\rm miss}$
- V+jets is dominant bkg.
- topologically same signal

 \triangleright bkg. for $V_{had} + E_T^{
m miss}$

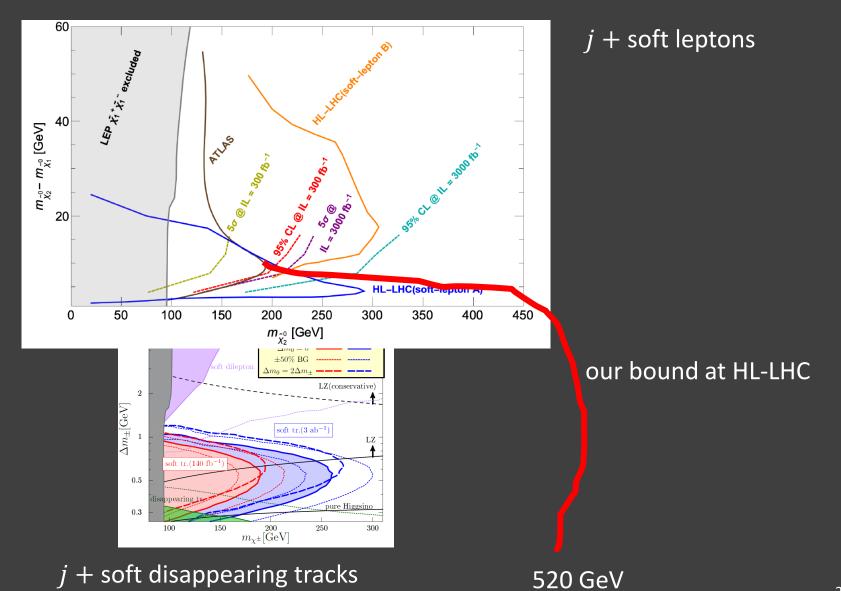
- V+jets is dominant bkg.
- V_{had} should be found from jets

 V_{had} -tag efficiency $\sim 50\%~(1.7\%)$ for true W/Z jets (QCD jets)


well discriminate signal/bkg.

Analysis

- \triangleright Recast ATLAS analysis w/ 36.1 fb⁻¹data _{1807.11471, ATLAS}
 - one V_{had} jet with $p_T > 250$ GeV and $E_T^{
 m miss} > 200$ GeV
 - 50% efficiency for $V_{\rm had}$ tagging
 - cuts for multi jet bkg. are applied
 - leptons with $p_T > 7$ GeV are vetoed


Assumptions

- all of higgsino states $\chi_{1,2}^0$, χ_1^\pm are invisible $\iff \Delta m_{\chi_1^\pm} \lesssim 3.5 \text{ GeV}$
- large R jet from Z/W is V-tagged with 50% efficienty
- events simulated by Madgraph5, pythia8 and Delphes
- only uncertainties in background are taken into account

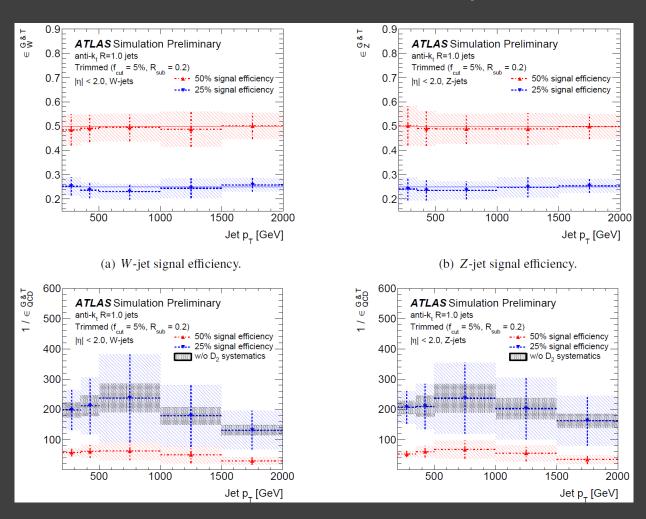
- even LHC constraints 110 (210) GeV higgsinos at Run-2 (3)
- HL-LHC can probe higgsinos up to 520 GeV

Results: comparison

22

Summary

- higgsino search
 - hadronic mono-V signal is efficient for higgsinos searches
 - can fill the gap at $\Delta m_{\chi_1^\pm} \sim 1~{
 m GeV}$
 - can test higgsinos up to 520 GeV at HL-LHC
- discussions
 - V + soft leptons/disappearing tracks may work
 - may be applicable to other co-annihilating DM


Thank you! 감사합니다! Gracias!

backups

V_{had} tagging

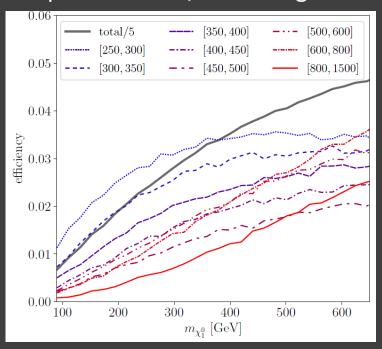
ATLAS-PHYS-PUB-2015-033

tagging by jet mass $m_{J} \sim 90~{\rm GeV}$ and D_{2}

V-tag rate from Z/W


~ 50 % (med.)

V-tag rate from jets


 $\sim 60^{-1} \sim 1.7 \%$ (med.)

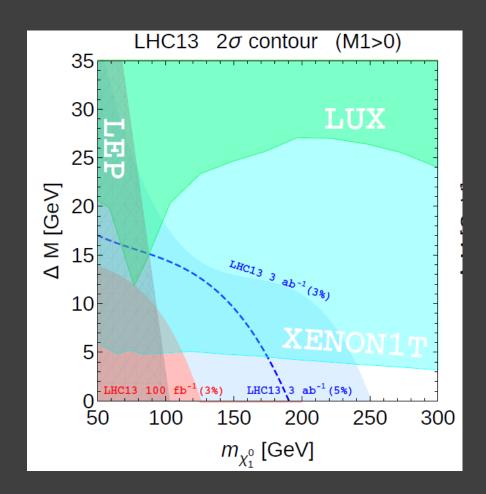
E_T^{miss} distribution

 $E_T^{
m miss}$ distribution

efficiency = # pass the cuts/# events generated

- signals are O(0.1 1%) of the SM bkg.
- higher E_T^{miss} is expected for heavier masses

V_{had} jet and D_2


$$V$$
 where $\begin{cases} j \\ j \end{cases}$ large-R (= 1.0) jet: J

mass of large R jet : m_I should be around $m_V \sim 90~{\rm GeV}$

$$P D_2 = e_3/e_2^3$$

$$e_2 = \frac{1}{p_{TJ}^2} \sum_{i < j \le n_j} p_{Ti} p_{Tj} R_{ij} \qquad e_3 = \frac{1}{p_{TJ}^3} \sum_{i < j < k \le n_j} p_{Ti} p_{Tj} p_{Tk} R_{ij} R_{ik} R_{jk}$$

- e_2 , e_3 are smaller when more soft/collinear pair exists
- $e_3 \ll e_2$ is expected for V_{had} since there two hard jets

limits about 250 GeV at HL-LHC

backgrounds

> number of events 1807.11471, ATALS

	Merged topology				
Process	0 <i>b</i> -HP	0b-LP	1 <i>b</i> -HP	1 <i>b</i> -LP	2b
Vector-mediator model,					
$m_{\chi} = 1 \text{ GeV}, m_{Z'} = 200 \text{ GeV}$	814 ± 48	759 ± 45	96 ± 18	99 ± 16	49.5 ± 4.3
m_{χ} =1 GeV, $m_{Z'}$ =600 GeV	280.9 ± 9.0	268.5 ± 8.8	34.7 ± 3.6	33.8 ± 3.1	15.38 ± 0.84
Invisible Higgs boson decays ($m_H = 125 \text{ GeV}, \mathcal{L}$	$B_{H \to \text{inv.}} = 100\%$			
VH	408.4 ± 2.1	299.3 ± 2.0	52.06 ± 0.85	44.06 ± 0.82	27.35 ± 0.52
ggH	184 ± 19	837 ± 35	11.7 ± 3.8	111 ± 30	12.3 ± 4.2
VBF	29.1 ± 2.5	96.0 ± 4.6	2.43 ± 0.36	5.83 ± 0.43	0.50 ± 0.07
W+jets	3170 ± 140	10120 ± 380	218 ± 28	890 ± 110	91 ± 12
Z+jets	4750 ± 200	15590 ± 590	475 ± 52	1640 ± 180	186 ± 12
$tar{t}$	775 ± 48	937 ± 60	629 ± 27	702 ± 34	50 ± 11
Single top-quark	159 ± 12	197 ± 13	89.7 ± 6.7	125.5 ± 8.7	16.1 ± 1.7
Diboson	770 ± 110	960 ± 140	88 ± 14	115 ± 18	54 ± 10
Multijet	12 ± 35	49 ± 140	3.7 ± 3.3	15 ± 13	9.3 ± 9.4
Total background	9642 ± 87	27850 ± 150	1502 ± 31	3490 ± 52	407 ± 15
Data	9627	27856	1502	3525	414

Statistics

ATLAS, CMS and LHC Higgs Combination Group Collab. "Procedure for the Higgs boson search combination in Summer 2011"

test statistics

$$q_\mu^n:=-2\log\frac{L(n|\mu,\hat{\hat{b}})}{L(n|\hat{\mu},\hat{b})}, \qquad \qquad n_i\text{: \# data, } s_i\text{: \# signal, } b_i\text{: \# bkg.}$$

$$\lambda_i=s_i\mu+b_i$$

likelihood

$$L(n|\mu, b) := \prod_{i}^{N_{\text{bin}}} \frac{\lambda_i^{n_i}}{n_i!} e^{-\lambda_i} \times \frac{1}{\sqrt{2\pi}\Delta b_i} \exp\left(-\frac{(b_i - b_i^0)^2}{2(\Delta b_i)^2}\right),$$

CLs and significances

$$CL_s = \frac{1 - \Phi\left(\sqrt{q_1^{n_{\text{obs}}}}\right)}{\Phi\left(\sqrt{q_1^{b_0}} - \sqrt{q_1^{n_{\text{obs}}}}\right)}, \quad Z_{\text{excl}} = \sqrt{q_1^{b_0}}, \quad \text{and} \quad Z_{\text{disc}} = \sqrt{q_0^{s+b_0}},$$