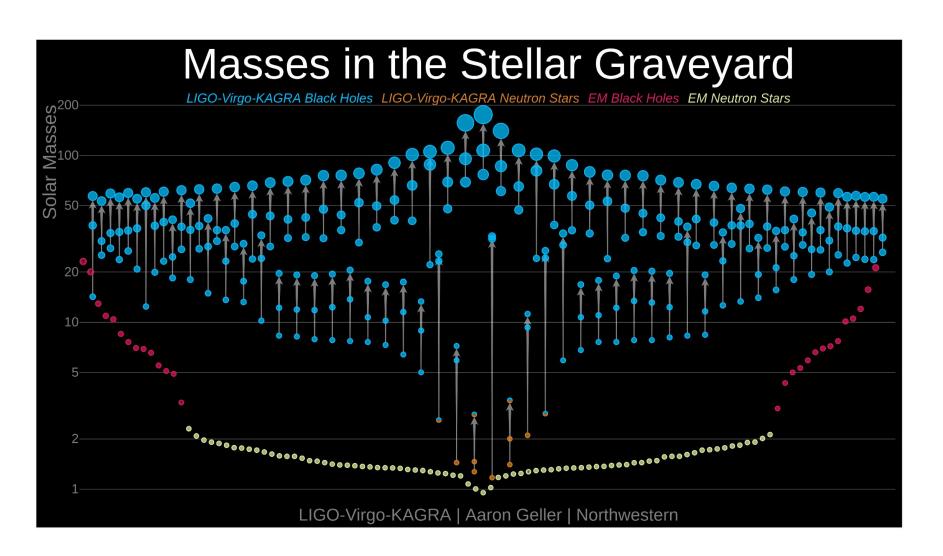
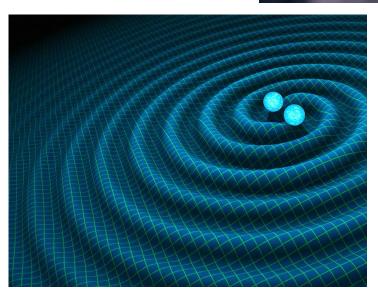

Update on gravitational wave signals in LIGO/Virgo

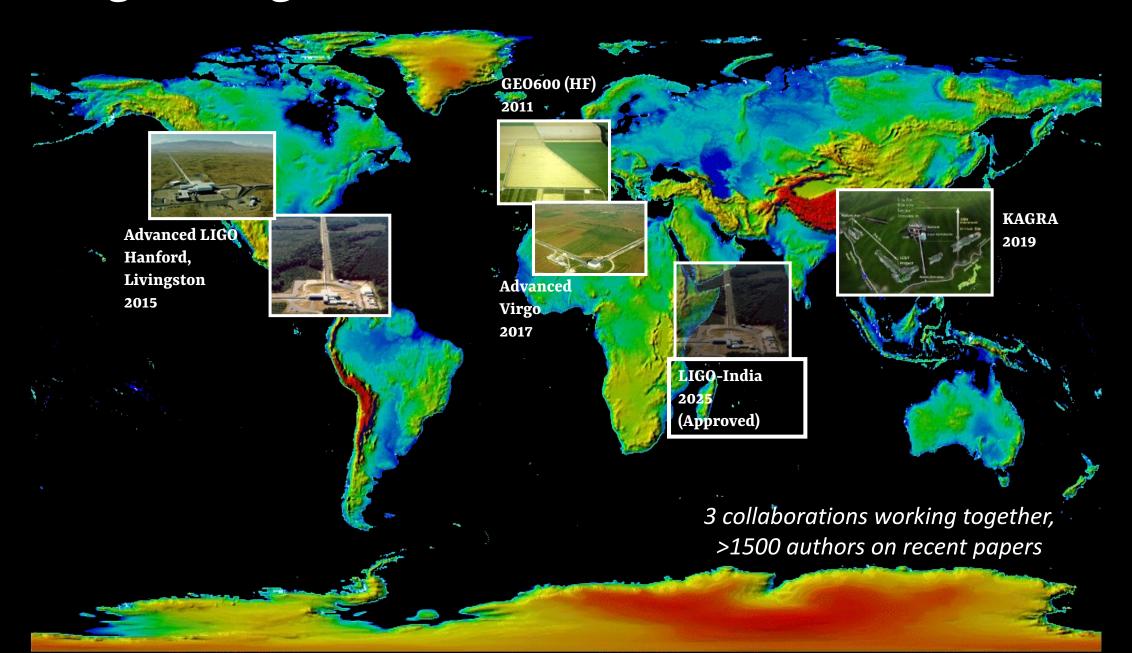
insights from a rapidly growing observational field



David Keitel, Marta Colleoni, Sascha Husa, Alicia Sintes (Universitat de les Illes Balears)

Universitat de les Illes Balears Applied Computing & Community Code.


6 years after the first detection, this is where we are:


Gravitational Waves - the long road to observational reality

- general relativity: "Spacetime tells matter how to move, and matter tells spacetime how to curve."
- time-varying quadrupolar mass distributions
 - → propagating ripples in spacetime: <u>GWs</u>.
- spacetime is "a very stiff fabric"
 - → only extreme astrophysical sources yield detectable GWs

The growing network of advanced GW detectors

LIGO-Virgo groups in Spain

Spanish GW community is growing, contributing to...

- both LIGO and Virgo collaborations
- future detectors (LISA, Einstein Telescope, ...)
- many theoretical, observational and instrumentation areas of GW science

LIGO Scientific Collaboration:

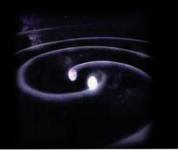
- Universitat de les Illes Balears (UIB)
- Instituto Galego de Física de Altas Enerxías (IGFAE)

Virgo Collaboration:

- Universitat de València (UV)
- Instituto de Ciencias del Cosmos, Universidad de Barcelona (ICCUB)
- Institut de Física d'Altes Energies (IFAE), Barcelona
- Instituto de Física Teórica (IFT), Universidad Autónoma de Madrid-CSIC

UIB Gravitational Physics Group

3 faculty (Sintes, Husa, Keitel), 4 post-docs, 6 PhD, 2 master and 4 undergrad students


- part of LSC, GEO, LISA, ET
 (A. Sintes founding member of the LSC in 1997)
- We focus on data analysis for GWs from binary black holes and neutron stars (including continuous waves), and the computational modeling needed to identify them.
- IMRPhenom models used for analysing all GW events so far, latest generation developed at UIB: XPHM and TPHM
- leadership on several LVC/LVK O3 projects: continuous waves, gravitational lensing, tests of GR

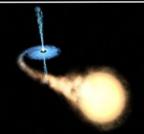
Recap on GW sources

Compact Binary Coalescing systems (CBC), well modeled waveforms -> numerical and analytical relativity, phenomenological models

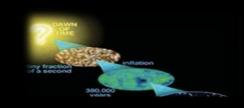
Two Black Holes (BHs)

Two Neutron Stars (NSs)

BH-NS

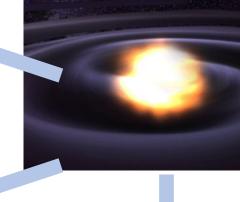


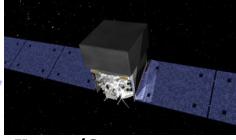
Supernovae, GRBs (bursts), unmodeled waveforms; short-duration GW events in coincidence with signals in electromagnetic (EM) radiation/neutrinos



Fast-spinning NSs in our galaxy (either isolated or in binary systems); monochromatic waves; modeled waveform

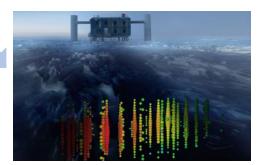
Cosmological GW (stochastic background); A background of primordial and/or astrophysical GWs; unmodeled waveform



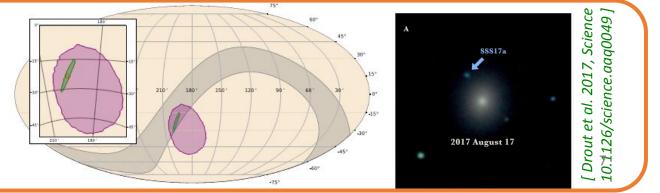

GWs and multi-messenger astronomy

Binary Neutron Star Merger

Gravitational Waves


X-rays/Gamma-rays

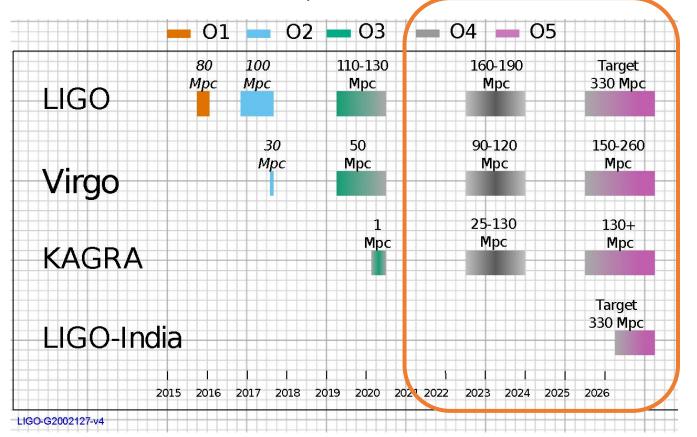
Visible/Infrared Light


Radio Waves

Neutrinos

GW170817 multi-messenger breakthrough

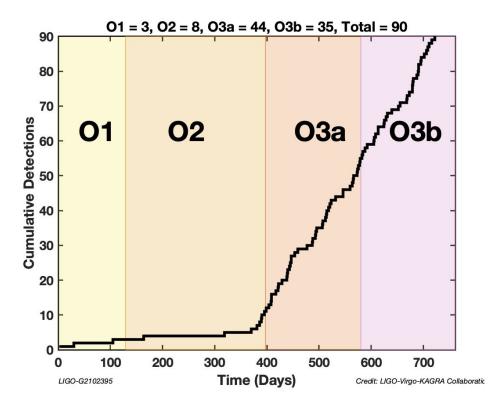
[LVC: PRL119,161101 / ApJL848:L13 / ApJL848:L12]


not the end of the road yet:

On-going Advanced LIGO+ ("A+")/adVirgo+ upgrades in two main steps:

O4: frequency-dependent squeezing, higher power

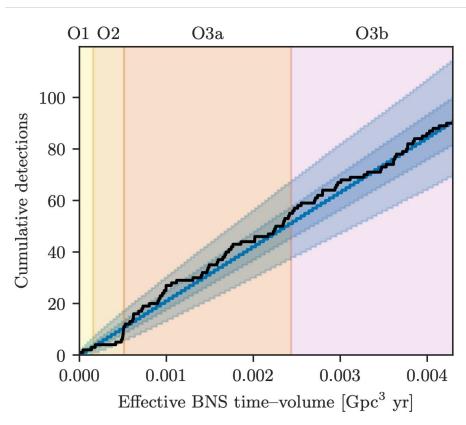
O5: improved mirror coatings, full power, ...



Latest update: O4 start planned for December 2022.

Work in progress to define the "post-O5" timeline.

LIGO-Virgo-KAGRA observing scenarios: LRR23,3 (2020)


focus today: third Observing Run (O3)

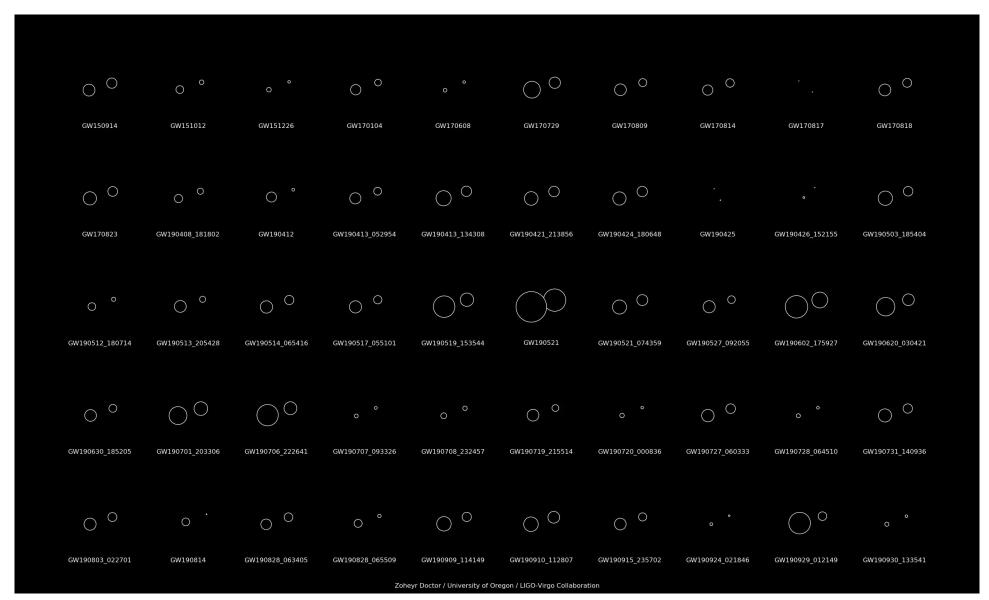


LVK: arXiv:2111.03606

O3GK (GEO-KAGRA joint run April 7-21, 2020)

KAGRA in Japan: underground & cryogenic

KAGRA achieved ~1 Mpc in March 2020, shortly after completing installation of the main interferometer components

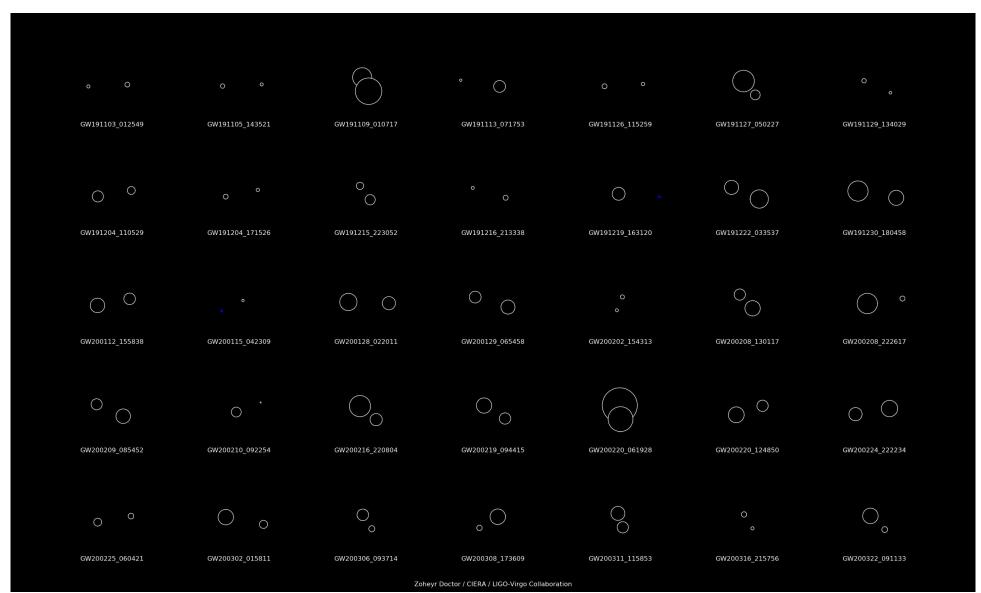


GEO600 in Germany:

robust continuous operations even during the pandemic

Gravitational-Wave Transient Catalog, GWTC-2

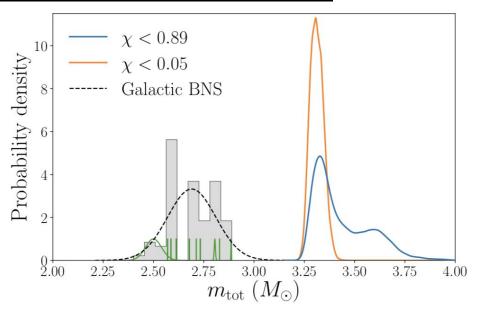
Compact binary coalescences observed by LIGO &Virgo during the first half of the third observing run LVC PRX11,021053 (2021)


50 events total:

3 from O1 8 from O2 39 from O3a

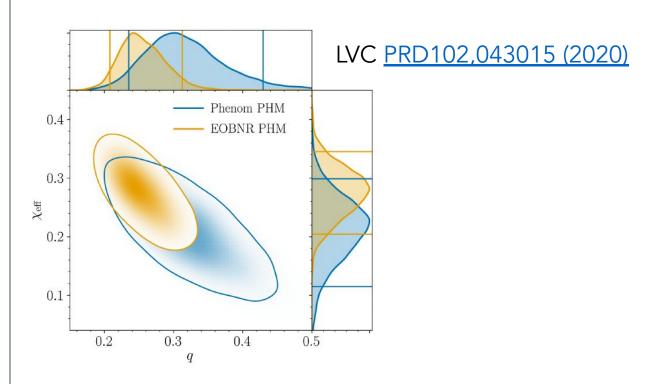
(+8 in GWTC-2.1, arXiv:2108.01 045)

Gravitational-Wave Transient Catalog, GWTC-3


Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run LVK arXiv:2111.03606

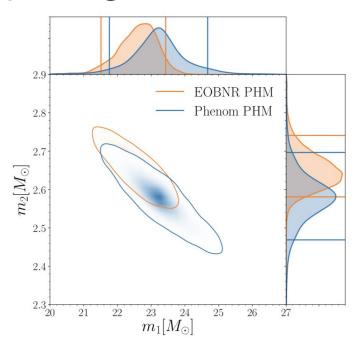
35 new events from O3b

highlights of O3a


massive BNS: GW190425

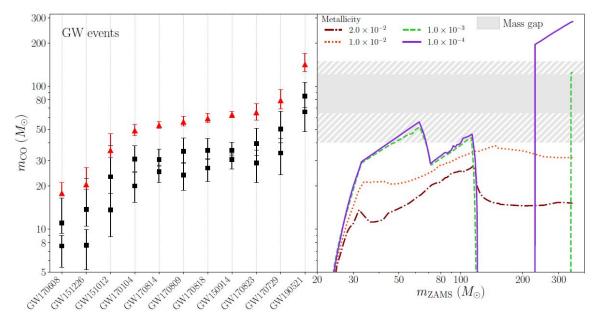
LVC ApJL892:L3 (2020)

- both components in "normal" neutron star range
- total mass much higher than GW170817 or known galactic BNS
- 159⁺⁶⁹₋₇₂ Mpc distant
- no EM counterpart, post-merger signal, tidal constraints

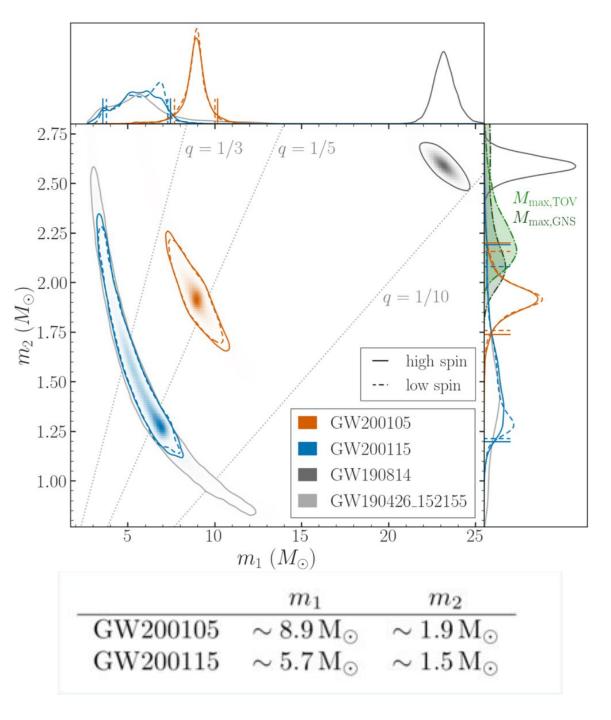

unequal-mass BBH: GW190412

- asymmetric → strong higher GW multipoles
- other asymmetric detections since then, but this was the first clear one
- detailed reanalysis: Colleoni+ PRD103,024029 (2021)

highlights of O3a


mystery merger: GW190814

LVC ApJL896:L44 (2020)


- mass ratio ~10:1; primary: normal BH
- secondary: either heaviest NS or lightest BH so far
- outlier to population analysis (1 similar O3b event)
- challenging for standard formation scenarios
- great for testing GR thanks to high mass ratio → strong higher multipoles

massive BBH: GW190521

LVC PRL125,101102 (2020) / ApJL900:L13 (2020)

- ~ 7 Glyr distant (some O3b events further away)
- first detection of "intermediate mass" black hole (its remnant)
- at least one progenitor black hole (85 Msun) in pair instability supernova mass gap (50–120 Msun)
- challenging for standard formation scenarios
- could be e.g. a 2nd generation merger
- detailed reanalysis: Estellés+ <u>arXiv:2105.06360</u> (ApJ accepted)

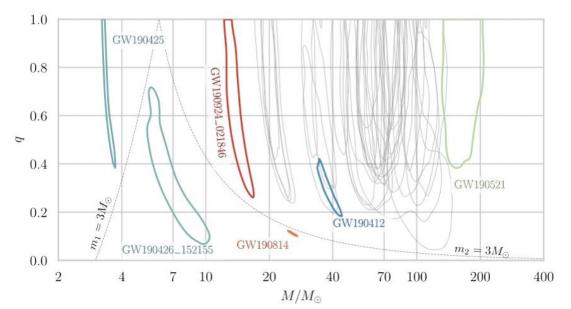
highlight of O3b: GW200105 & GW200115

Observation of Gravitational Waves from Two Neutron Star-Black Hole Coalescences

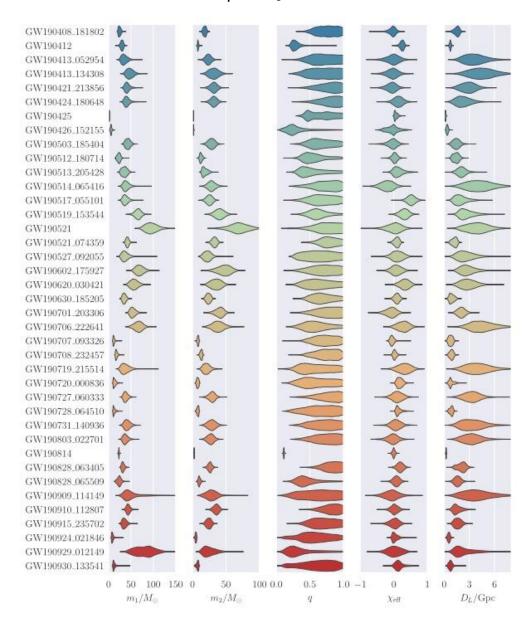
LVK <u>ApJL915:L5 (2021)</u>

- first detections of neutron star black hole systems
- no EM counterpart observed (as expected)
- luminosity distances 280 and 300 Mpc
- some of the most expensive parameter estimation runs done by UIB group on MareNostrum cluster

GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run


R. Abbott *et al.** (LIGO Scientific Collaboration and Virgo Collaboration)

- most events: binary black holes
- wide range of masses
- redshifts up to ~0.8
- spins:
 - key signatures for formation channels



$$\chi_{\text{eff}} = \frac{(m_1 \vec{\chi}_1 + m_2 \vec{\chi}_2) \cdot \hat{L}_N}{M}$$

• some events with positive $X_{\rm eff}$

39 compact binary coalescences from O3a (FAR<1/2yr) 3x more than before, thanks to upgraded detectors, enhanced data quality and better searches.

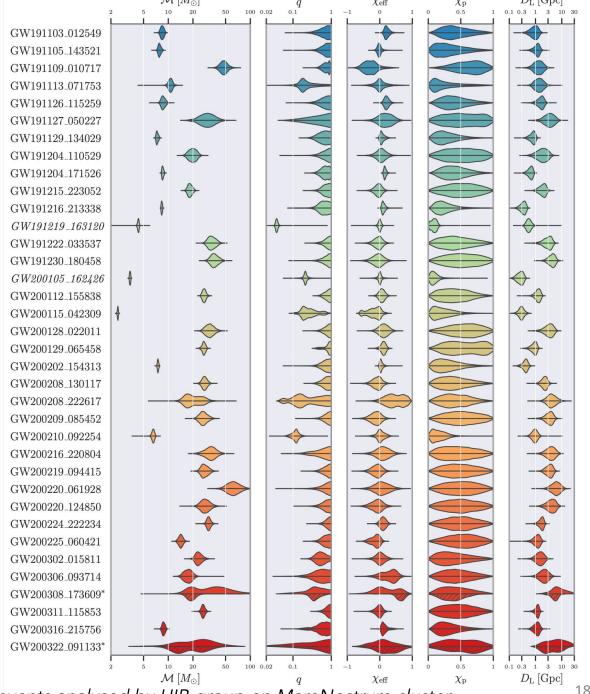
GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run

LVC <u>arxiv:2108.01045</u>

 \bullet 8 new events that were not in GWTC-2 with probability of astrophysical origin $p_{\rm astro} > 0.5$

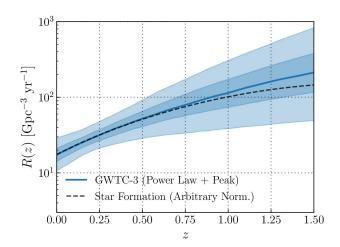
Event	$_{(M_{\odot})}^{M}$	$\stackrel{\mathcal{M}}{(M_{\odot})}$	$^{m_1}_{(M_{\odot})}$	$^{m_2}_{(M_{\odot})}$	$\chi_{ m eff}$	$D_{ m L}$ (Gpc)	z	$M_{ m f} \ (M_{\odot})$	$\chi_{ m f}$	$\frac{\Delta\Omega}{(\deg^2)}$
GW190403_051519	$110.5^{+30.6}_{-24.2}$	$36.3^{+14.4}_{-8.8}$	$88.0^{+28.2}_{-32.9}$	$22.1^{+23.8}_{-9.0}$	$0.70^{+0.15}_{-0.27}$	$8.00^{+5.88}_{-3.99}$	$1.14^{+0.64}_{-0.49}$	$105.2^{+29.1}_{-24.1}$	$0.92^{+0.04}_{-0.11}$	5600
GW190426_190642	$184.4_{-36.6}^{+41.7}$	$77.1^{+19.4}_{-17.1}$	$106.9^{+41.6}_{-25.2}$	$76.6^{+26.2}_{-33.6}$	$0.19^{+0.43}_{-0.40}$	$4.35^{+3.35}_{-2.15}$	$0.70^{+0.41}_{-0.30}$	$175.0^{+39.4}_{-34.3}$	$0.76^{+0.15}_{-0.15}$	8200
GW190725_174728	$18.2^{+4.2}_{-1.8}$	$7.4^{+0.6}_{-0.5}$	$11.5^{+6.2}_{-2.7}$	$6.4^{+2.0}_{-2.0}$	$-0.04^{+0.26}_{-0.14}$	$1.05^{+0.57}_{-0.46}$	$0.21^{+0.10}_{-0.09}$	$17.4^{+4.4}_{-1.8}$	$0.65^{+0.08}_{-0.07}$	2300
GW190805_211137	$80.1^{+22.5}_{-16.1}$	$33.5^{+10.1}_{-7.0}$	$48.2^{+17.5}_{-12.5}$	$32.0^{+13.4}_{-11.4}$	$0.35^{+0.30}_{-0.36}$	$5.31^{+4.10}_{-2.95}$	$0.82^{+0.48}_{-0.40}$	$75.8^{+21.2}_{-15.3}$	$0.81^{+0.09}_{-0.15}$	3900
GW190916_200658	$68.9^{+21.0}_{-14.0}$	$27.3_{-5.5}^{+9.3}$	$44.3_{-13.3}^{+21.2}$	$23.9^{+12.7}_{-10.2}$	$0.18^{+0.33}_{-0.29}$	$4.46^{+3.79}_{-2.52}$	$0.71^{+0.46}_{-0.36}$	$65.7^{+19.8}_{-13.4}$	$0.73^{+0.14}_{-0.23}$	4500
GW190917 ₋ 114630	$11.4^{+3.0}_{-2.9}$	$3.7^{+0.2}_{-0.2}$	$9.3^{+3.4}_{-4.4}$	$2.1_{-0.5}^{+1.5}$	$-0.11^{+0.24}_{-0.49}$	$0.72^{+0.34}_{-0.31}$	$0.15^{+0.06}_{-0.06}$	$11.2^{+3.0}_{-2.9}$	$0.42^{+0.12}_{-0.06}$	2100
GW190925_232845	$37.0^{+3.8}_{-2.6}$	$15.8^{+1.1}_{-1.0}$	$21.2^{+6.9}_{-3.1}$	$15.6^{+2.6}_{-3.6}$	$0.11^{+0.17}_{-0.14}$	$0.93^{+0.38}_{-0.35}$	$0.19^{+0.07}_{-0.07}$	$35.2^{+3.8}_{-2.4}$	$0.72^{+0.07}_{-0.06}$	1200
GW190926_050336	$62.9_{-11.9}^{+22.7}$	$25.6^{+8.8}_{-5.3}$	$39.8^{+20.6}_{-11.1}$	$23.2^{+10.8}_{-9.7}$	$-0.04^{+0.28}_{-0.33}$	$3.78^{+3.17}_{-2.00}$	$0.62^{+0.40}_{-0.29}$	$60.5^{+21.8}_{-11.6}$	$0.65^{+0.14}_{-0.19}$	2500

1201 marginal candidates passing a false-alarm rate threshold of 2 per day

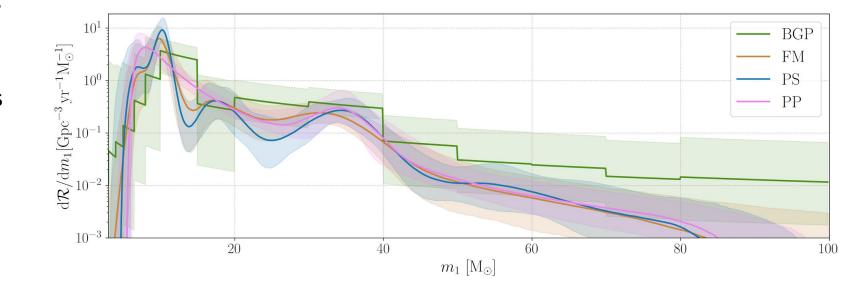

arXiv.org > gr-qc > arXiv:2111.03606

General Relativity and Quantum Cosmology

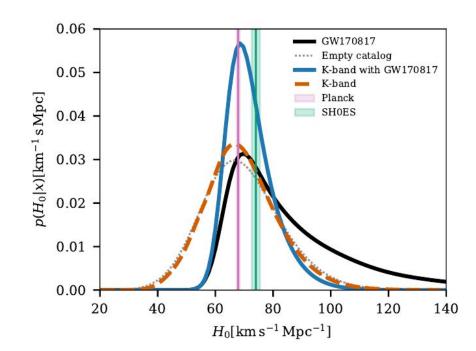
[Submitted on 5 Nov 2021]


GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run

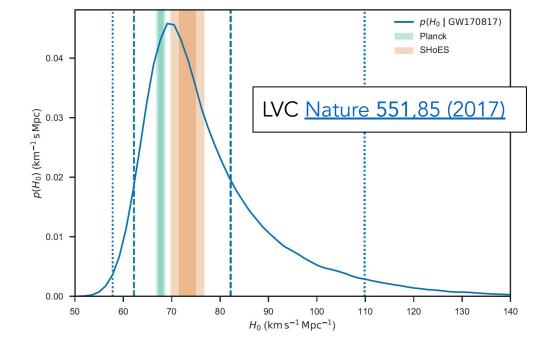
- 35 new events with p_{astro} > 0.5
- again, mostly BBHs with similar masses and low spins
 - some more with unequal masses and/or nonzero spins
 - new high-mass events but not quite rivaling GW190521
 - approaching *z*~1
 - all analysed with multiple updated waveforms, including UIB's IMRPhenoMXPHM
- no BNS
- NSBHs:
 - GW200115_042309 still loud and clear
 - GW200105_162426 *not* included (p_{astro} <0.5) but still "candidate of interest"
 - GW191219_163120: some uncertainty in $p_{\rm astro}$
 - GW200210_092254: borderline NSBH/BBH
 - We're *sure* we've found *some* of them, but they are tricky beasts to analyse and categorise!

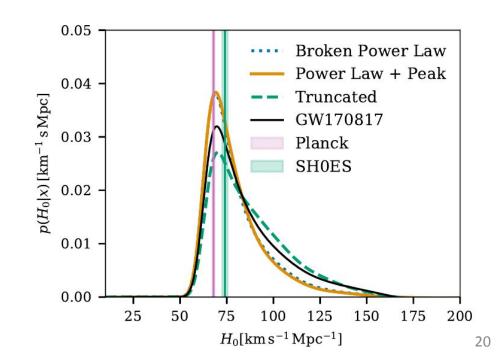

BBH, BNS, and NSBH population inference from GWTC-3 (O1,O2,O3a+O3b)

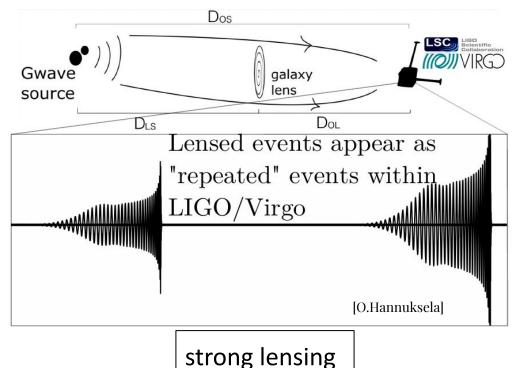
- In just 5 years we've come from a singular first detection to population astronomy.
- New paper supersedes previous results, e.g. ApJL913:L7 (2021).
- hierarchical Bayesian inference over various mass, spin and redshift distributions
- BBH population increasingly constrained, BNS and NSBH still very low number statistics


LVK <u>arXiv:2111.03634</u>

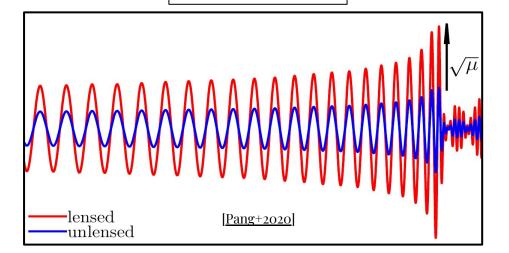
y -	BNS	NSBH	ВВН	NS-Gap	BBH-gap	Full
	$m_1 \in [1, 2.5] M_{\odot}$	$m_1 \in [2.5, 50] M_{\odot}$	$m_1 \in [2.5, 100] M_{\odot}$	$m_1 \in [2.5, 5] M_{\odot}$	$m_1 \in [2.5, 100] M_{\odot}$	$m_1 \in [1, 100] M_{\odot}$
	$m_2 \in [1, 2.5] M_{\odot}$	$m_2 \in [1, 2.5] M_{\odot}$	$m_2 \in [2.5, 100] M_{\odot}$	$m_2 \in [1, 2.5] M_{\odot}$	$m_2 \in [2.5, 5] M_{\odot}$	$m_2 \in [1, 100] M_{\odot}$
PDB (pair)	960^{+1700}_{-700}	59^{+81}_{-38}	25^{+10}_{-7}	41^{+69}_{-30}	$9.3^{+19.0}_{-7.6}$	1100^{+1700}_{-750}
PDB (ind)	250^{+640}_{-200}	170^{+150}_{-89}	22^{+9}_{-6}	29^{+55}_{-23}	10^{+15}_{-8}	470^{+830}_{-300}
MS	470^{+1400}_{-410}	57^{+120}_{-42}	42^{+88}_{-20}	$3.7^{+20}_{-3.4}$	$0.17^{+56}_{-0.16}$	650^{+1600}_{-460}
BGP	99^{+260}_{-86}	32^{+62}_{-25}	33^{+16}_{-10}	$2.1^{+33}_{-2.1}$	$5.1_{-4.0}^{+12}$	180^{+260}_{-110}
MERGED	13 - 1900	7.4 - 320	16 - 130	0.029 - 84	0.01 - 56	71 - 2200


GW cosmology

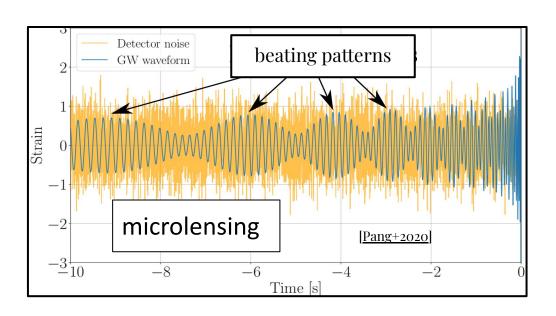

- CBCs are "standard sirens": can measure luminosity distance directly from signal waveform
- distance and redshift → measure Hubble constant
- best constraints from "bright sirens" like GW170817 with electromagnetic counterpart for redshift
- statistical "dark sirens" approach for GWs without counterpart:
 - compare with galaxy catalogs
 - jointly infer cosmology with population model


latest results based on GWTC-3 events:

LVK arXiv:2111.03634



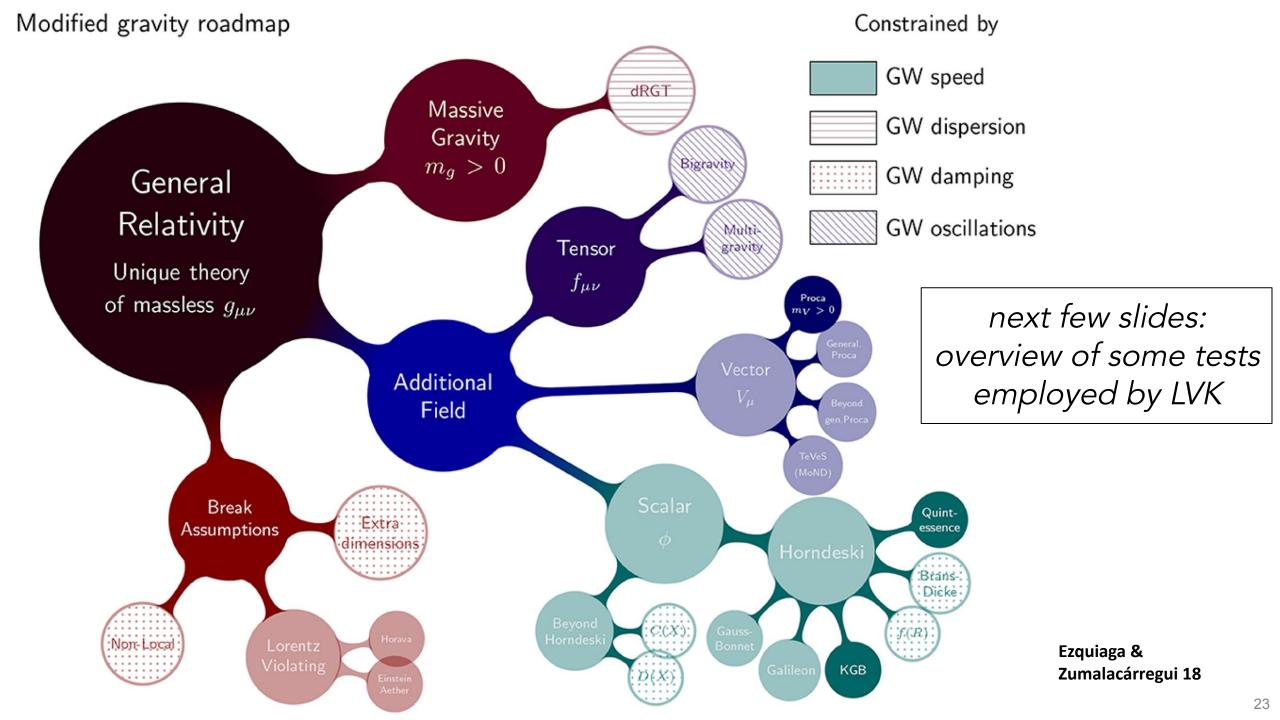
Are any of our detections gravitationally lensed?



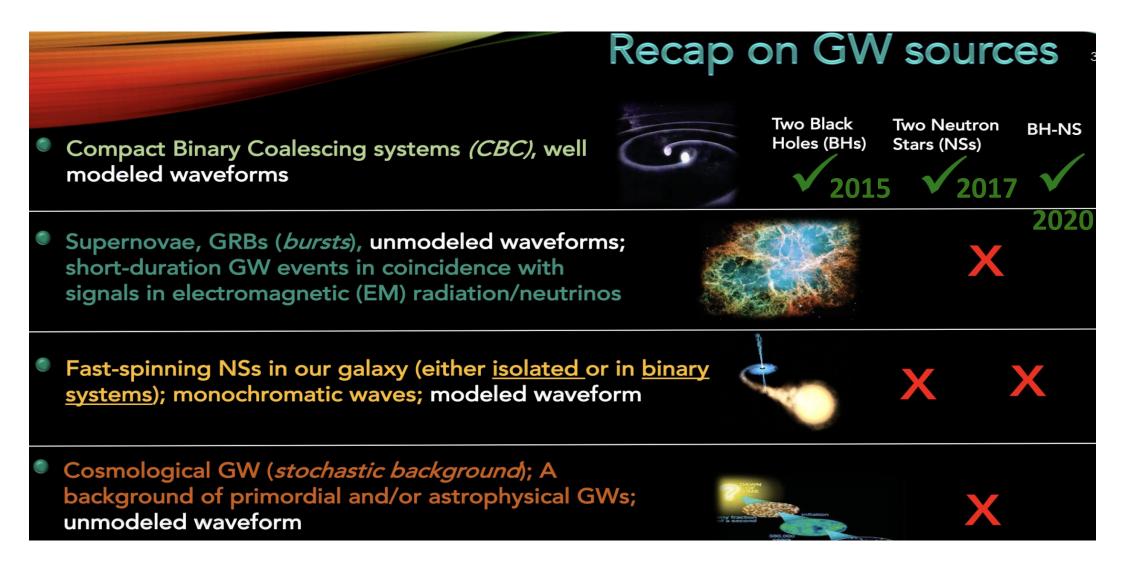
strong lensing

LVC <u>arxiv:2105.06384</u>

- search for magnification, multiple images, and microlensing signatures on O3a events
- no compelling evidence for gravitational lensing


lensing results from O3b (GWTC-3): stay tuned

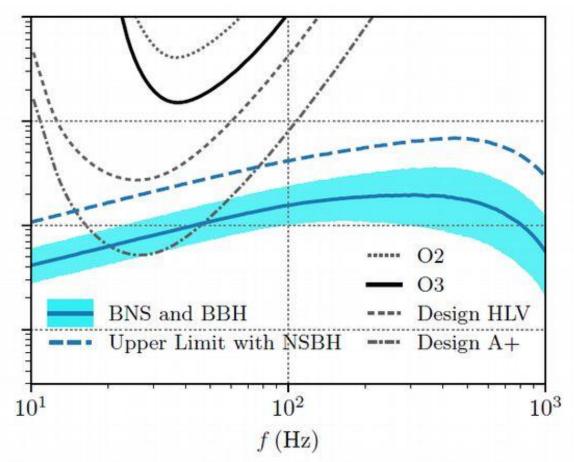
Search for deviations from general relativity


Learning about gravity with LIGO and Virgo – results from first half of O3 (GWTC-2) LVC PRD103,122002 (2021)

Observations

- Residuals from best-fit waveforms consistent with noise
- Consistency of parameters inferred from inspiral and merger-ringdown phases
- No evidence for deviations from the PN coefficients predicted by GR
- Consistency with no dispersion of GWs and massless graviton
- BH spin-induced quadrupole moments are consistent with their Kerr values
- Ringdown frequencies and damping times consistent with GR
- No detection of echoes
- No evidence for pure scalar or pure vector polarizations
- New bound on mass of graviton: $m_g \leq 1.76 \times 10^{-23} {\rm eV/c^2}$

other LVC/LVK searches: GWs beyond compact binary coalescence



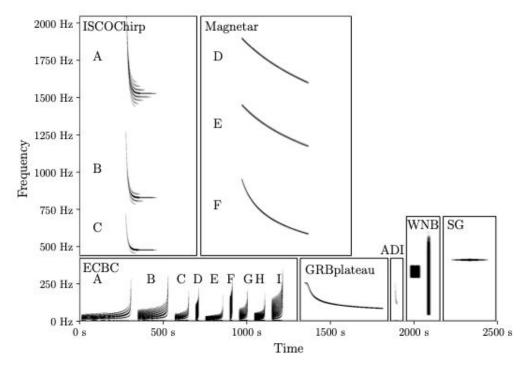
Searches for stochastic GW backgrounds

PRD104,022004 (2021) / PRD104,022005 (2021) / PRL126,241102 (2021) / arXiv:2110.09834

Searches for astrophysical and cosmological backgrounds, isotropic or directional; for cosmic strings, and any unmodelled long-duration signals:

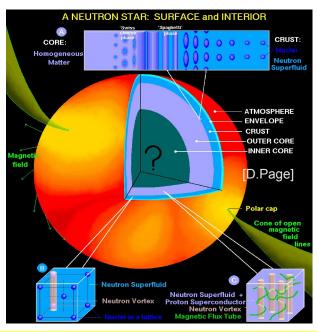
- so far no significant evidence
- O3 upper limits much improved,
 e.g. factor ~6 below previous bounds
 for a flat isotropic background
- cosmological backgrounds:
 probes of early universe high-energy physics

Isotropic background search: fiducial model predictions for the GWB from BBHs, BNSs, and NSBHs, along with current and projected sensitivity curves


unmodelled bursts of GWs

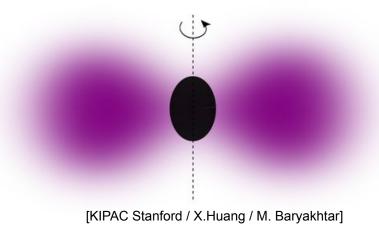
 Could include BBHs, allowing for deviations from standard waveform models.

 other types of sources: CCSNe, cosmic strings, pulsar glitches, ...


LVK O3 searches so far:

- short transients (<1s) <u>arXiv:2107.03701</u>
- long transients (<1000s) <u>PRD104,102001 (2021)</u>
- IMBH binaries <u>arXiv:2105.15120</u>
- cosmic strings <u>PRL126,241102 (2021)</u>

• No new candidates found apart from CBC sources.

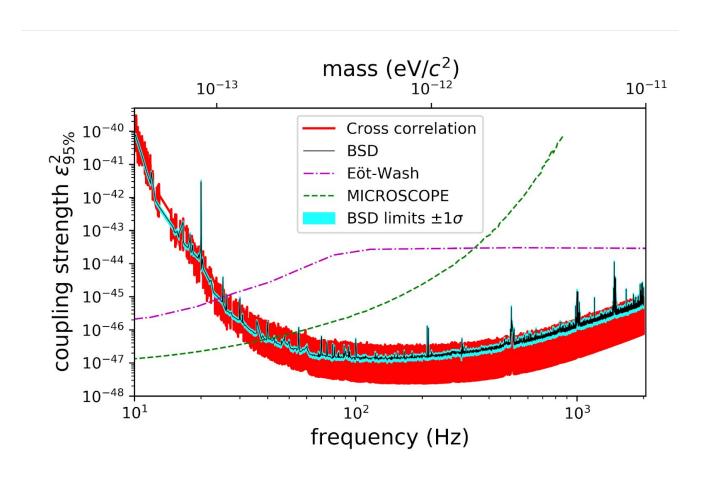

Continuous Gravitational Waves

- prime targets: neutron stars, probing high-density QCD
- expected signals extremely weak, but can integrate over long time


$$h_0 \cong 10^{-27} \left(\frac{I_{zz}}{10^{38} \, kg \cdot m^2} \right) \left(\frac{10 kpc}{d} \right) \left(\frac{f}{100 Hz} \right)^2 \left(\frac{\varepsilon}{10^{-6}} \right)$$

 also: boson clouds around spinning BHs

LVC/LVK O3 searches so far, no detections:


- targeted searches for Crab, Vela, MSPs <u>ApJL902:L21 (2020)</u>
- J0537-6190 <u>ApJL913:L27 (2021)</u>, <u>arxiv:2104.14417</u>
- supernova remnants <u>ApJ921:80 (2021)</u>
- all-sky search for isolated NSs <u>arXiv:2107.00600</u>
- all-sky search for NSs in binaries PRD103,064017 (2021)
- AMXPs <u>arXiv:2109.09255</u>

CWs and fundamental physics: constraints on dark photon dark matter using O3

LVK <u>arxiv:2105.13085</u>

- •Dark matter could interact directly with detector mirrors via dark photons.
- monochromatic signals,
 frequency depending on particle mass.
- •explored dark photon mass range: $10^{-14} 10^{-11} \text{ eV/c}^2$
- •improvement of O(100) w.r.t. dark matter direct detection experiments in the range $[2-4] \cdot 10^{-13} \text{ eV/c}^2$

Gravitational Wave Open Science Center

Software - Online Tools -

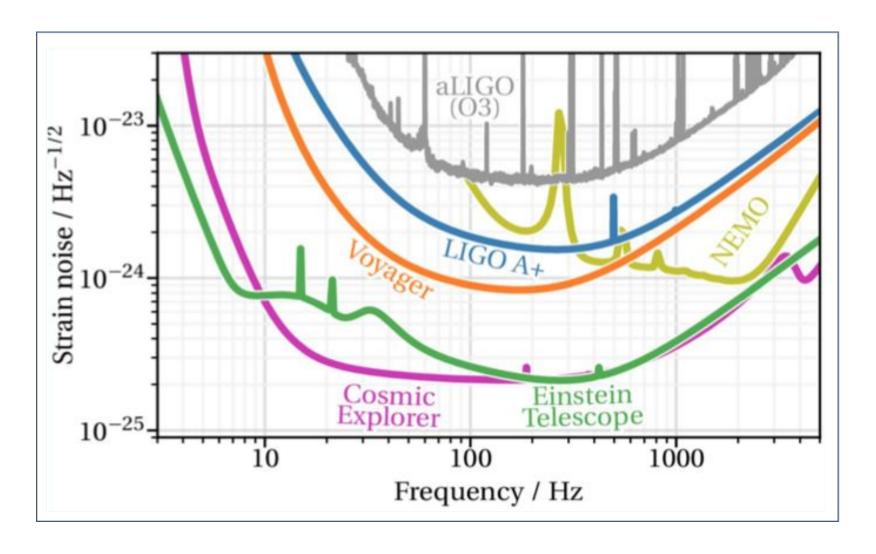
About GWOSC+

The Gravitational Wave Open Science Center provides data from gravitational-wave observatories, along with access to tutorials and software tools.

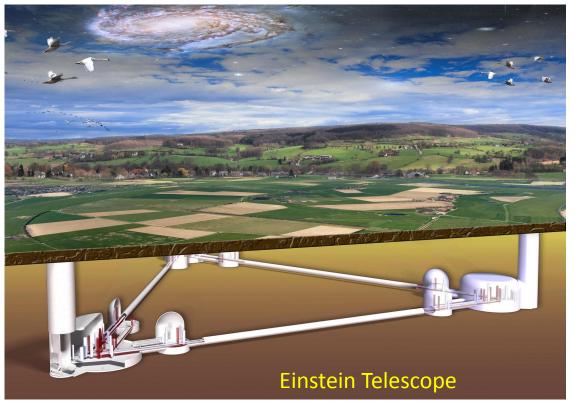
LIGO Hanford Observatory, Washington (Credits: C. Gray)

LIGO Livingston Observatory, Louisiana (Credits: J. Glaime)

(Credits: Virgo Collaboration)


- **O3b Bulk Data Now Avaliable**
- **GWTC-3 Catalog Data Now Avaliable**
- Start with a Learning Path
- **Browse the Event Portal**
- **Download data**
- Join the email list
- **Open Data Workshops**
- **Attend Office Hours**

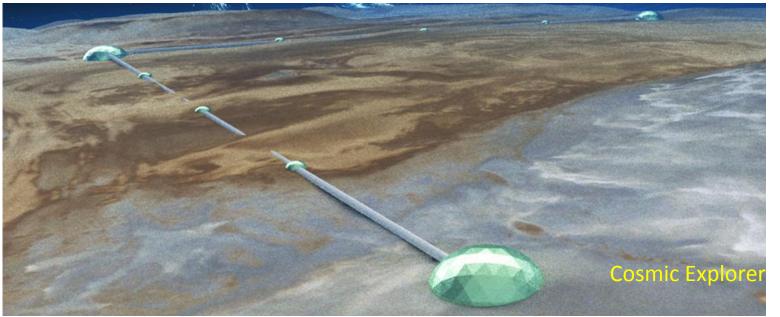
open data from all of O1, O2, O3:

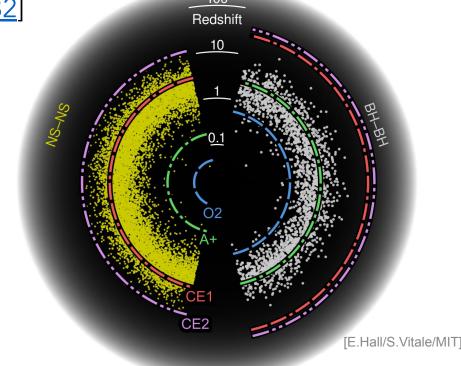

https://www.gw-openscience.org/

- bulk data download
- per-event 1-hour time-series data
- pointers to papers, data behind figures, posterior samples, ...
- pointers to analysis codes
- workshop materials

What does the future hold?

second-generation instruments (2G) \rightarrow next-generation instruments (3G)


third-generation GW detectors


Einstein Telescope placed on Europe's ESFRI Roadmap on 2021-06-30 ET Consortium Agreement signed by 41 institutions, coordinated by INFN and Nikhef

Cosmic Explorer conceptual design study submitted

to NSF in the USA

arXiv:2109.09882

Gravitational Wave Periods

Milliseconds

Minutes to Hours

Years to Decades Billions of Years

Summary and Outlook

- □ O3 detector sensitivities significantly better than O1/O2
- \square as of last week, <u>90 detections published;</u> many BBHs, some BNS and NS-BH
- \square waveform modelling is crucial for these results, and at UIB we are at the forefront of it
- For a quick overview of all LVC/LVK papers, see our Science Summaries available in multiple languages: https://www.ligo.org/science/outreach.php
- O1, O2 & O3a+b bulk data have been released: https://www.gw-openscience.org/data/
- ☐ O4 currently planned to start December 2022
- If you'd like to receive alerts about new GW detections in O4, see the Public Alerts User Guide https://emfollow.docs.ligo.org/userguide/ and the app from chirp.sr.bham.ac.uk

- ☐ Firm plans for 3G (third-generation) ground-based GW detectors + LISA; funding committed for ET+LISA!
- Order-of-magnitude better strain sensitivities are feasible, and the science case is very strong.

Acknowledgments

D. Keitel is supported by the Spanish Ministry of Science and Innovation (ref. BEAGAL 18/00148) and cofinanced by the Universitat de les Illes Balears. This work is supported by European Union FEDER funds; the Spanish Ministry of Science and Innovation and the Spanish Agencia Estatal de Investigación grants PID2019-106416GB-I00/MCIN/AEI/10.13039/501100011033, RED2018-102661-T, RED2018-102573-E, FPA2017-90566-REDC; the Comunitat Autònoma de les Illes Balears through the Direcció General de Política Universitària i Recerca with funds from the Tourist Stay Tax Law ITS 2017-006 (PRD2018/24); the Conselleria de Fons Europeus, Universitat i Cultura del Govern de les Illes Balears; the Generalitat Valenciana (PROMETEO/2019/071); and EU COST Actions CA18108, CA17137, CA16214, and CA16104.

Universitat de les Illes Balears

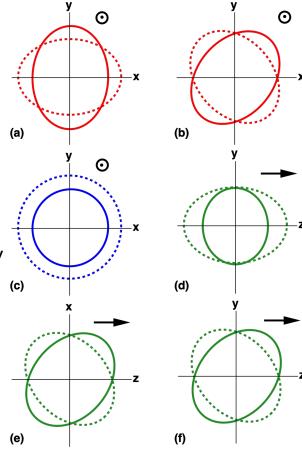
Unión Europea

Fondo Europeo de Desarrollo Regional "Una manera de hacer Europa"

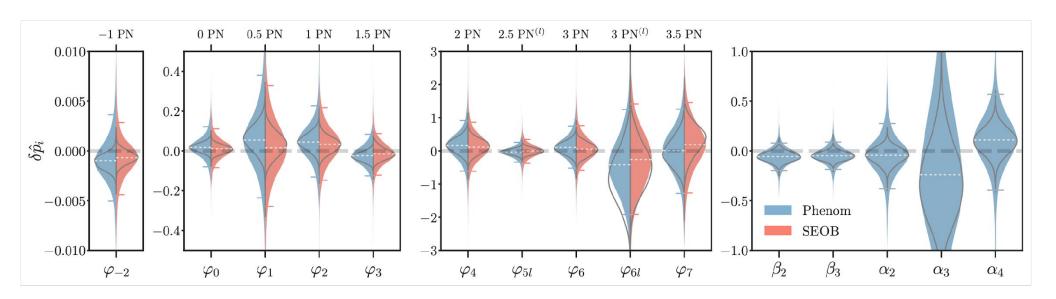
See https://dcc.ligo.org/P2100218/public for LVK acknowledgments.

BACKUP SLIDES

Polarization tests


- GR predicts only two tensorial polarizations of GWs
- generic metric theories of gravity can have up to 6 polarisation modes: 2 tensor, 2 vector, 2 scalar
- Null-stream approach: create combinations of data outputs which should be consistent with noise under a given polarization hypothesis (Gürsel&Tinto 89, Chatterji+ 06)
- Typically, M+1 detectors needed to constrain M polarization modes independently —> LIGO India and KAGRA will be key additions!
- Waveform-agnostic approaches suggested to test mixed polarizations (Chatziioannou + 21, Wong + 21)

Credit: IUCAA


Gravitational-Wave Polarization

Will, Living Rev. Relativity 17 (2014)

parametrised tests of deviations from GR

- Scarcity of explicit waveforms for specific alternative theories of gravity
- Introduce generic deviations in the inspiral and merger-ringdown phase of BBH waveform models developed under regular GR (Phenom and SEOB model families)
- Coefficients are individually perturbed: not a realistic model of beyond GR waveforms but useful for null tests

LVC <u>PRD103,122002 (2021)</u> (GWTC-2 events)

echoes from ECOs

- dark particles are hard to detect, but could be easier in the strong-field regime of compact objects
- mergers involving ECOs could be a probe for their existence, non-GR modes could be excited
- If no horizon, then modes can get trapped between potential barrier and light ring and slowly leak out, producing pulses of radiation absent in a true BBH merger.
- can be modelled either in waveform-agnostic way or by adding a "train" of pulses to a BBH template

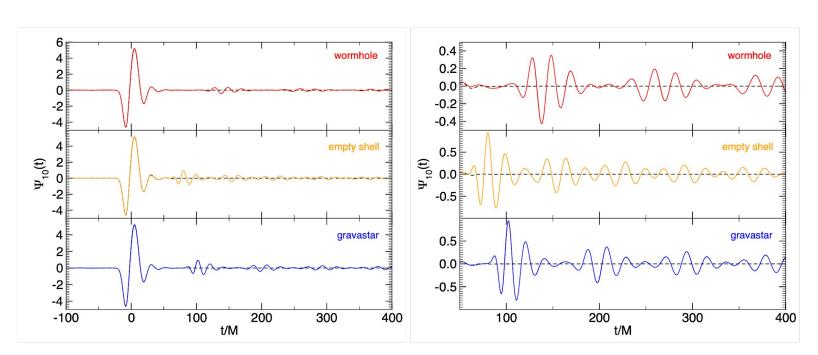


TABLE X. Results of search for GW echoes. A positive value of the log Bayes factor $\log_{10} \mathcal{B}_{\mathrm{IMR}}^{\mathrm{IMRE}}$ indicates a preference for the IMRE model over the IMR model, while a negative value of the log Bayes factor suggests instead a preference for the IMR model over the IMRE model.

Event	$\log_{10}\mathcal{B}_{\mathrm{IMR}}^{\mathrm{IMRE}}$	Event	$\log_{10}\mathcal{B}_{\rm IMR}^{\rm IMRE}$
GW150914	-0.57	GW170809	-0.22
GW151226	-0.08	GW170814	-0.49
GW170104	-0.53	GW170818	-0.62
GW170608	-0.44	GW170823	-0.34
GW190408_181802	-0.93	GW190706_222641	-0.10
GW190412	-1.30	GW190707 ₋ 093326	0.08
GW190421_213856	-0.11	GW190708_232457	-0.87
GW190503 ₋ 185404	-0.36	GW190720_000836	-0.45
GW190512 ₋ 180714	-0.56	GW190727_060333	0.01
GW190513_205428	-0.03	GW190728_064510	0.01
GW190517 ₋ 055101	0.16	GW190828 ₋ 063405	0.10
GW190519 ₋ 153544	-0.10	GW190828_065509	-0.01
GW190521	-1.82	GW190910 ₋ 112807	-0.22
GW190521_074359	-0.72	GW190915_235702	0.17
GW190602 ₋ 175927	0.13	GW190924_021846	-0.03
GW190630 ₋ 185205	0.08		
		l .	

LVC <u>PRD103,122002 (2021)</u> (GWTC-2 events)