

Experience of gas purification and radon control in BOREXINO

G. Zuzel

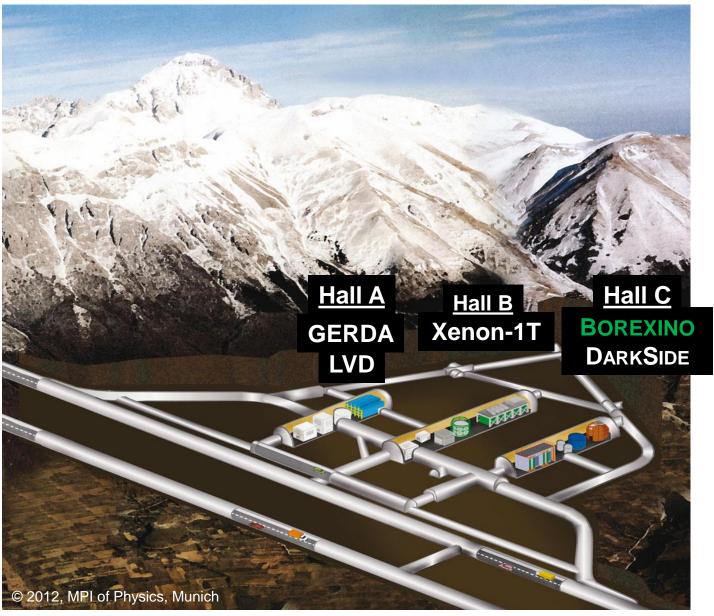
Jagiellonian University, Cracow, Poland

on behalf of the Borexino collaboration

Outline

- BOREXINO
- ²²²Rn control
- Purification of nitrogen
- Summary

BOREXINO at LNGS



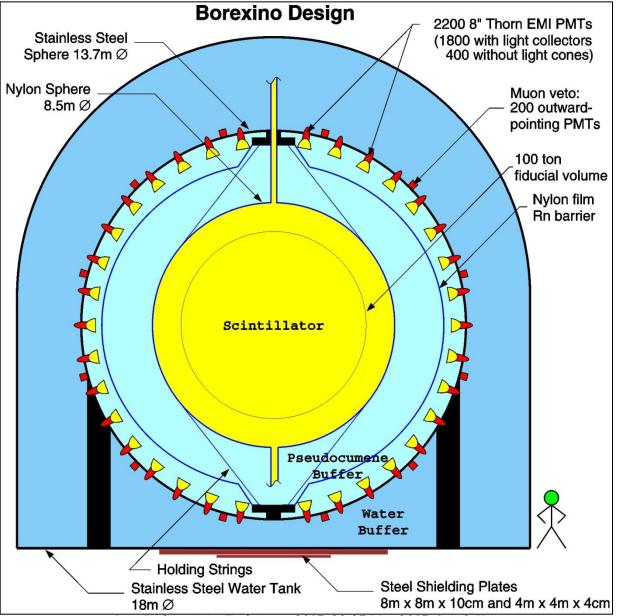
BOREXINO

²²²Rn control

N₂ purification

Summary

BOREXINO design



BOREXINO

²²²Rn control

N₂ purification

Summary

BOREXINO

²²²Rn control

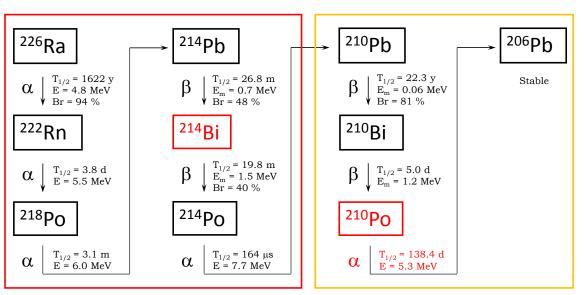
N₂ purification

Summary

In a nutshell: the radio-purest detector ever built

Isotope	Specification for LS	Before purification	After purification
²³⁸ U	$\leq 10^{-16} \text{ g/g}$	$(5.3 \pm 0.5) \cdot 10^{-18} \text{ g/g}$	$< 0.8 \cdot 10^{-19} \text{ g/g}$
²³² Th	$\leq 10^{-16} \text{ g/g}$	$(3.8 \pm 0.8) \cdot 10^{-18} \text{ g/g}$	$< 1.0 \cdot 10^{-18} \text{ g/g}$
¹⁴ C/ ¹² C	≤ 10 ⁻¹⁸	$(2.69 \pm 0.06) \cdot 10^{-18} \text{ g/g}$	unchanged
⁴⁰ K	$\leq 10^{-18} \text{ g/g}$	$\leq 0.4 \cdot 10^{-18} \text{ g/g}$	unchanged
²²² Rn	$\leq 1 \text{ cpd/}100 \text{ t}$	see ²³⁸ U	see ²³⁸ U
⁸⁵ Kr	$\leq 1 \text{ cpd/}100 \text{ t}$	$(30 \pm 5) \text{ cpd/}100 \text{ t}$	≤ 5 cpd/100 t
³⁹ Ar	≤ 1 cpd/100 t	<< ⁸⁵ Kr	<< ⁸⁵ Kr
²¹⁰ Po	not specified	~ (70) 1 dpd/100 t	unchanged
²¹⁰ Bi	not specified	(20) 70 dpd/100 t	$(20 \pm 5) \text{ cpd/}100 \text{ t}$

BOREXINO


²²²Rn control

N₂ purification

Summary

- All external systems wetted by LS and nitrogen (LS storage tanks, LS purification systems: water extraction column, stripping column, nitrogen lines, *etc.*)
- Emanation from the Stainless Steel Sphere and from the PMTs
- Emanation from the nylon scintillator vessel
- Nitrogen

Decays of ²²²Rn and it short-lived daughters can directly contribute to the detector's background, but even more important is the accumulation of the long-lived ²¹⁰Pb (followed by ²¹⁰Bi and ²¹⁰Po) in the scintillator.

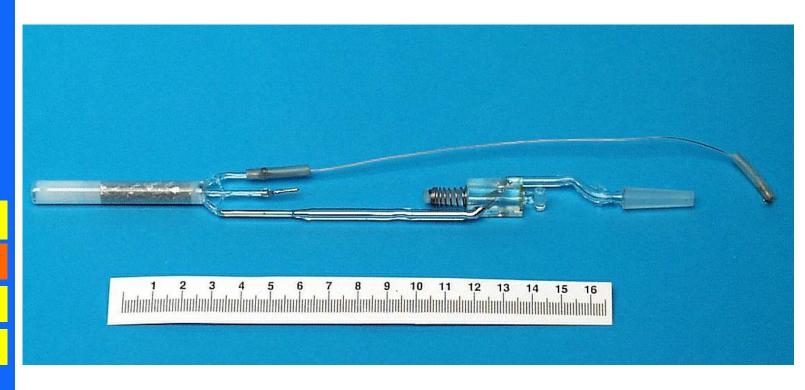
Control of ²²²Rn in BOREXINO

BOREXINO

²²²Rn control

N₂ purification

- Check of all subsystems for ²²²Rn emanation (extensive screening campaign)
- Minimization of ²²²Rn diffusion through the Inner Vessel (identification of material with low diffusion coefficient) + installation of the Rn barrier
- Identification of the IV material with sufficiently low 226 Ra content (12 μ Bq/kg)
- Nitrogen purification


Detection of ²²²Rn – counters

BOREXINO

²²²Rn control

N₂ purification

- Developed for the GALLEX/GNO experiment
- Hand-made at MPI-K (~ 1 cm³ active volume)
- In case of 222 Rn only α -decays are detected
- 50 keV threshold
 - bcg: 0.1 2 cpd
 - total detection efficiency of ~ 1.5
- Absolute detection limit $\sim 30 \mu Bq (15 \text{ atoms})$

²²²Rn emanation (MPI-K)

BOREXINO

²²²Rn control

N₂ purification

Summary

Blanks:

 $201 \rightarrow 50 \mu Bq$

 $801 \rightarrow 80 \mu Bq$

Absolute sensitivity ~100 μBq [50 atoms]

Appl. Rad. Isot. 53 (2000) 371

²²²Rn emanation: examples

BOREXINO

²²²Rn control

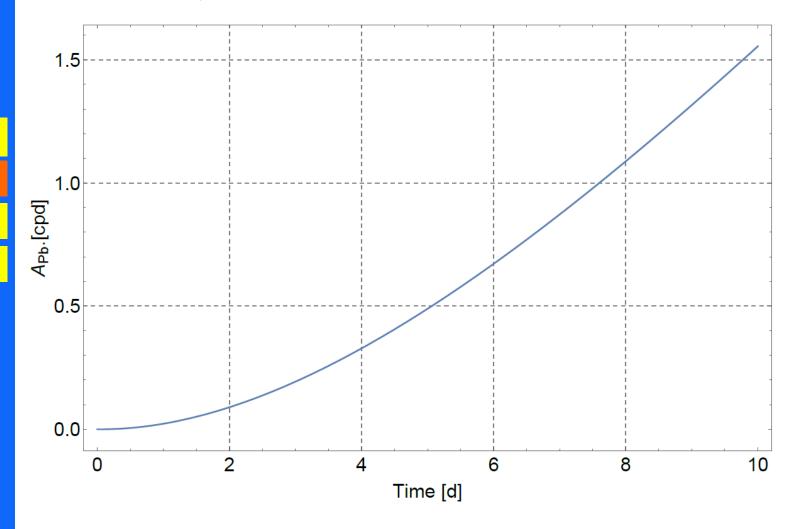
N₂ purification

Summary

System	Sample	Description	²²² Rn em. rate
	SS vessel TK1	114 m^3	< 60 mBq
LS storage area	SS vessel TK2	114 m^3	$(45 \pm 8) \text{ mBq}$
urcu	SS vessel TK3	114 m^3	$(24 \pm 5) \text{ mBq}$
$\overline{N_2}$	Electrical heater		$(0.92 \pm 0.29) \text{ mBq}$
distribution	Particle Filter		$(0.34 \pm 0.13) \text{ mBq}$
line	1.5" distrib. line	~ 100 m long	$(0.47 \pm 0.13) \text{ mBq}$
	SS package	25 m^2	< 0.12 mBq
LS purification plant	H ₂ O extraction column + 24 SS packages	$0.6 \text{ m}^3 / 608 \text{ m}^2$	$(4.83 \pm 0.70) \text{ mBq}$
Piulit	N ₂ sparging column + 26 SS packages	$0.2 \text{ m}^3 / 280 \text{ m}^2$	$(1.78 \pm 0.21) \text{ mBq}$

Over 1000 entries in the DB!

Astroparticle Physics 18 (2002) 1 LRT 2004 proceedings, p. 141 – 149 Int. J. Mod. Phys. A29 (2014) 1442009


BOREXINO

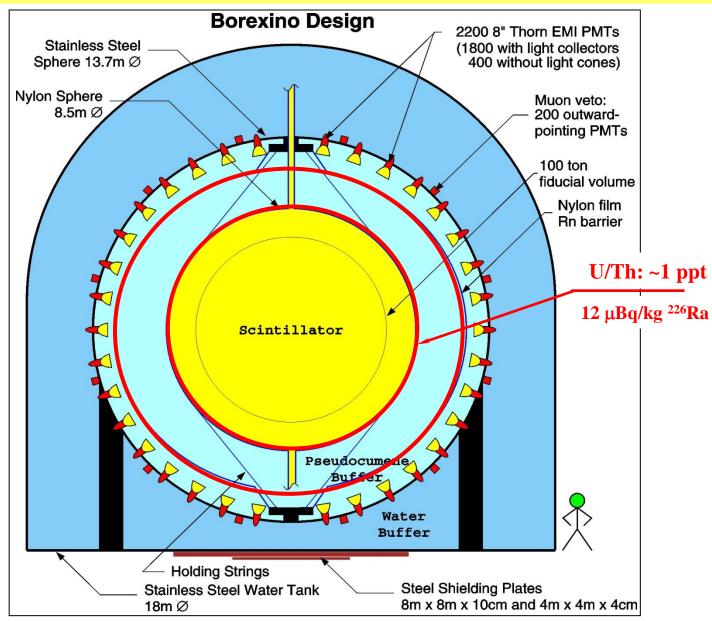
²²²Rn control

N₂ purification

Summary

Expected ²¹⁰Pb activity in 100 ton of the BOREXINO scintillator as a function of the storage time in a tank with the ²²²Rn emanation rate of 40 mBq. 1 cpd of ²¹⁰Pb is reached already after 7.5 d.

BOREXINO design



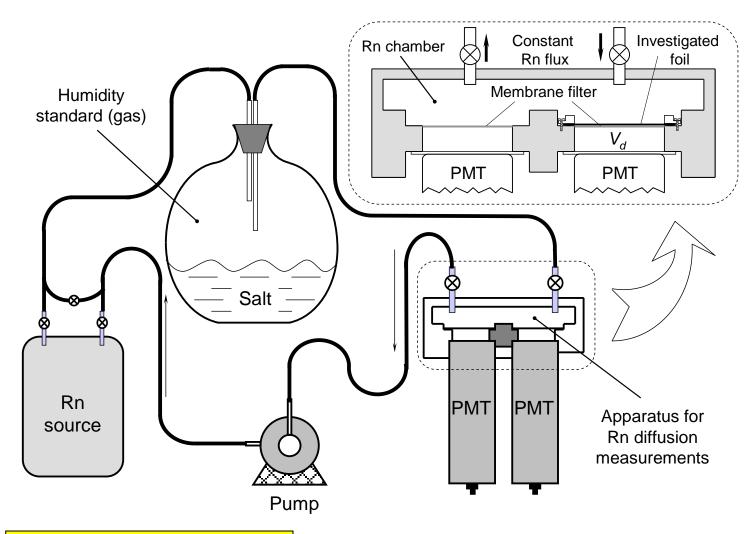
BOREXINO

²²²Rn control

N₂ purification

Summary

²²²Rn diffusion



BOREXINO

²²²Rn control

N₂ purification

Summary

Sensitivity: D ~ 10^{-13} cm²/s d_e ~ $2 \mu m$

²²²Rn diffusion

Results obtained for the 0.018 mm thick C38F film (BOREXINO)

BOREXINO

²²²Rn control

N₂ purification

Summary

RH standard salt	RH in gas phase (%)	Water amount in nylon, M (%)	Diffusion coefficient, $D \text{ (cm}^2/\text{s)}$	Solubility, S
Mg(ClO ₄) ₂	~0	~0	$(2.1\pm0.4)\times10^{-12}$	4.5 ± 0.7
$H_3PO_4 \cdot \frac{1}{2}H_2O$	9 ± 1	0.72 ± 0.04	$(2.3\pm0.3)\times10^{-12}$	2.5 ± 0.3
$\text{LiCl}_2 \cdot \text{H}_2\text{O}$	12 ± 1	0.87 ± 0.04	$(2.2\pm0.3)\times10^{-12}$	2.2 ± 0.3
CaCl ₂ ·6H ₂ O	32 ± 2	2.09 ± 0.04	$(4.3\pm0.5)\times10^{-12}$	1.8 ± 0.2
$Na_2Cr_2O_7 \cdot 2H_2O$	52 ± 2	3.74 ± 0.05	$(1.9\pm0.3)\times10^{-11}$	1.4 ± 0.2
$Na_2S_2O_3 \cdot 5H_2O$	76 ± 2	6.35 ± 0.05	$(6.5\pm0.9)\times10^{-11}$	1.5 ± 0.2
K ₂ CrO ₄	88 ± 3	7.60 ± 0.05	$(1.3\pm0.2)\times10^{-10}$	1.5 ± 0.2
$Na_2SO_4 \cdot 10H_2O$	93 ± 3	9.12 ± 0.07	$(3.3\pm0.4)\times10^{-10}$	1.0 ± 0.1
H ₂ O vapors	100 ± 3	10.14 ± 0.09	$(1.3\pm0.2)\times10^{-9}$	0.7 ± 0.1

There is 3 orders of magnitude difference between the diffusion in the dry and in the foil saturated with water!

Nucl. Instr. Meth. A 449 (2000) 158

Nucl. Instr. Meth. A 524 (2004) 355

$$d_e = \sqrt{\frac{D}{\lambda}} \qquad d_e^d = 7 \mu m$$
$$d_e^w = 270 \mu m$$

²²⁶Ra in/on BOREXINO nylon

BOREXINO

²²²Rn control

N₂ purification

Summary

1 ppt U required (~12 μBq/kg for ²²⁶Ra)

$$D_{dry} = 2x10^{-12} \text{ cm}^2/\text{s} \ (d_{dry} = 7 \text{ }\mu\text{m})$$

 $D_{wet} = 1x10^{-9} \text{ cm}^2/\text{s} \ (d_{wet} = 270 \text{ }\mu\text{m})$

$$A_{dry} = A_{sf} + 0.14 \cdot A_{bulk}$$
$$A_{wet} = A_{sf} + A_{bulk}$$

Separation of the bulk and surface ²²⁶Ra conc. was possible through ²²²Rn emanation

Very sensitive technique: $(C_{Ra} \sim 10 \mu Bq/kg)$

Bx IV foil: bulk $\leq 15 \mu Bq/kg$ surface $\leq 0.8 \mu Bq/m^2$ total = (16 ± 4) $\mu Bq/kg$ (1.2 ppt U eqiv.)

NIM A 498 (2003) 240

Construction of nylon vessels

BOREXINO

²²²Rn control

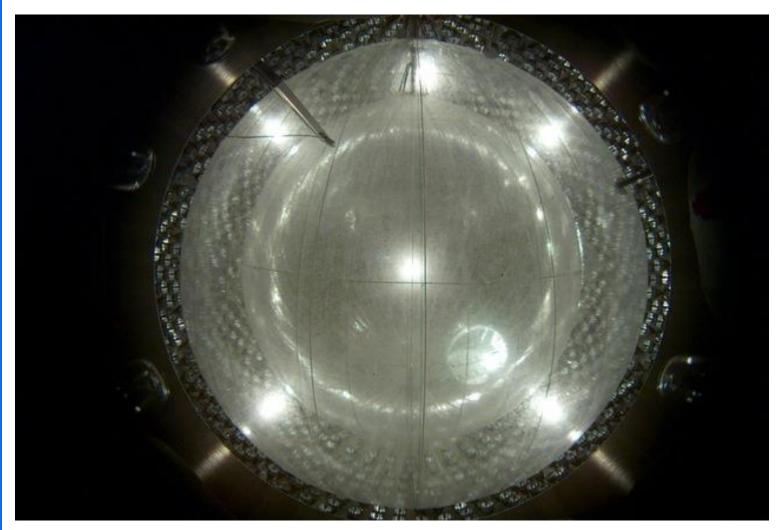
N₂ purification

Summary

Princeton clean room class 100 with 222 Rn-reduced air (VSA filter): $C_{Rn} \sim 1 \text{ Bq/m}^3$

A. Pocar, PhD Thesis (2003)

Inflation of vessels in SSS



BOREXINO

²²²Rn control

N₂ purification

Summary

The nylon vessels were inflated in the sphere with synthetic air: $C_{Rn} < 0.1 \text{ mBq/m}^3$

Int. J. Mod. Phys. A29 (2014) 1442009

- 222Rn adsorption on activated carbon
- Several AC traps available (MoREx, MPIK-HD)
- Pre-concentration from $100 200 \text{ m}^3$

²²²Rn detection limit: ~0.5 μBq/m³ (STP) [1 atom in 4 m³]

BOREXINO

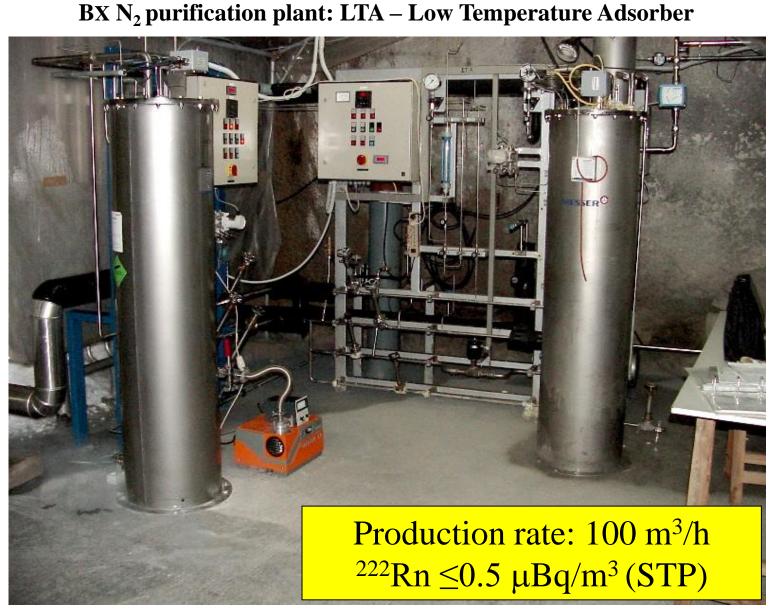
²²²Rn control

N₂ purification

Summary

Appl. Rad. Isot. 52 (2000) 691

²²²Rn removal from LN₂

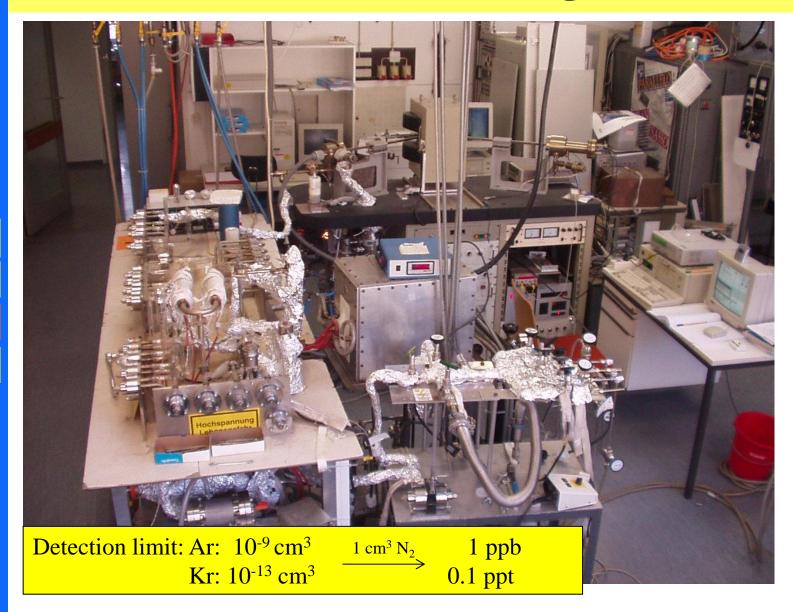


BOREXINO

²²²Rn control

N₂ purification

Summary


Ar and Kr in nitrogen

BOREXINO

²²²Rn control

N₂ purification

BOREXINO nitrogen

BOREXINO

²²²Rn control

N₂ purification

Summary

Regular Purity Nitrogen:

- Technical 4.0 quality, not purified
- Production rate up to 100 m3/h (STP)
- 222 Rn (30 70) µBq/m³ Ar ~ 10ppm, Kr ~ 30 ppt

High Purity Nitrogen:

- ²²²Rn adsorption on charcoal (LTA)
- Achieved concentration (0.30 ± 0.09) µBq/m³
- Production rate up to 100 m³/h (STP)
- Ar and Kr not removed

LAK (Low Ar and Kr) Nitrogen:

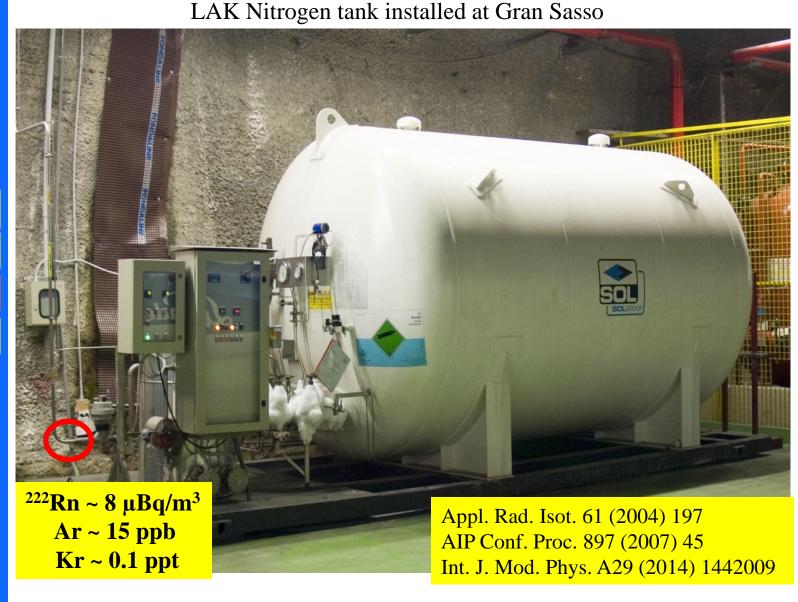
- Spec. Ar < 0.4 ppm, Kr < 0.2 ppt 222 Rn < 7 μ Bq/m³
- Purification by adsorption on different materials extensively studied (successfully!)
- Cooperation with companies on the nitrogen survey
- Tests of the nitrogen delivery chain

Nitrogen survey

Nitrogen sample	C _{Ar} [ppm]	C _{Kr} [ppt]
MESSER (4.0)	200 ± 30	1680 ± 240
Air Liquide (4.0)	11.0 ± 1.3	40 ± 5
Linde AG, (7.0)	0.031 ± 0.004	2.9 ± 0.4
SOL (6.0)	0.0063 ± 0.0006	0.04 ± 0.01
Westfalen AG (6.0)	0.00050 ± 0.00008	0.06 ± 0.02
Goal (BOREXINO)	< 0.4	< 0.2

Tests of the delivery chains

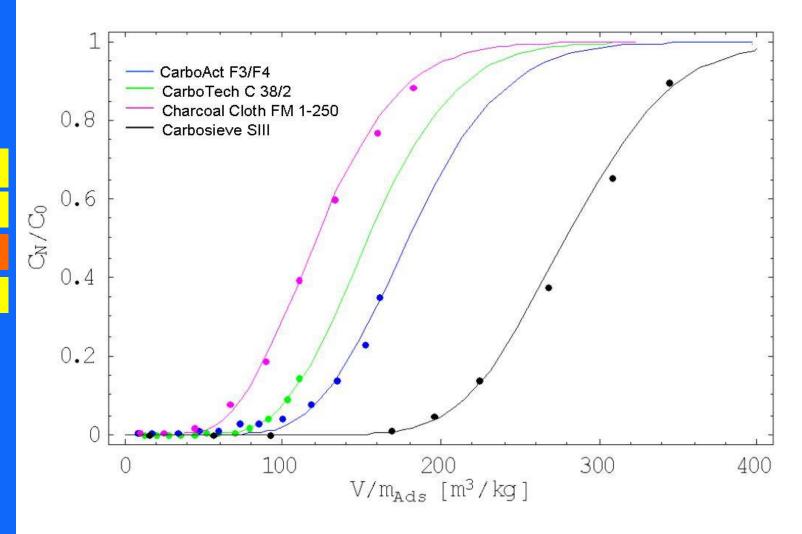
Supplier/setup	$C_{Rn} \left[\mu Bq/m^3 \right]$	C _{Ar} [ppm]	C _{Kr} [ppt]
Linde AG, 3-m ³ movable tank	1.2	0.018	0.06
SOL, 16-m ³ tank	8	0.012	0.02


BOREXINO LAK nitrogen

BOREXINO

²²²Rn control

N₂ purification


Purification of nitrogen from Kr

BOREXINO

²²²Rn control

N₂ purification

BOREXINO

²²²Rn control

N₂ purification

Summary

- BOREXINO has achieved an unprecedented background level in the liquid scintillator
- Strict quality control program including the assay of all components of the detector during its construction
- +10 years of R&D, many people/institutions involved
- Several detectors and experimental methods were developed allowing measurements even at a single atom level
- Most of the developed techniques are world-wide most sensitive (gamma-ray spectroscopy, ²²²Rn detection, ²²²Rn diffusion) and are applied in next-generation experiments (GERDA, XENON, DARKSIDE,...)