

MoO₃ and NaI powder purification for AMORE and COSINE to make ultra-low background crystals

Gileva Olga, HyangKyu Park, JunSeok Choe, KeonAh Shin, Pabitra Aryal, Sujita Karki 24-27 May 2017

Part 1

• The AMoRE (Advanced Mo based Rare process Experiment) is searching for neutrinoless double beta decay of 100 Mo using radiopure molybdenum-based crystals.

AMORE II

- dep48Ca100MoO4 crystals: dep48CaCO3 & 100MoO3 powders
- Li₂MoO₄ crystals: Li₂CO₃ & ¹⁰⁰MoO₃ powders
- Na₂Mo₂O₇ crystals: Na₂CO₃ & ¹⁰⁰MoO₃ powders

Samples	²³² Th	238U	²²⁶ Ra (U)	²²⁴ Ra (Th)	⁴⁰ K			
		ppt		mBk/kg				
100 Mo	< 46	73	8.3	< 1	9			
(99.997%)	< 61	149	3.8	< 0.8	36			
dep48Ca	< 1000	< 1000	51	1	-			
Li ₂ CO ₃ (99.998%)	9.6	414	0.95	0.41	9.0			
Na ₂ CO ₃ (99.997%)	< 52	< 52	4.15	0.52	31.5			

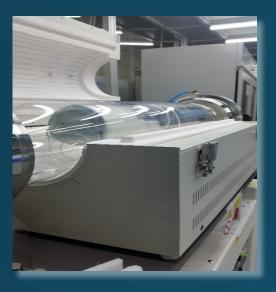
Requirements for ^{238}U & ^{232}Th :

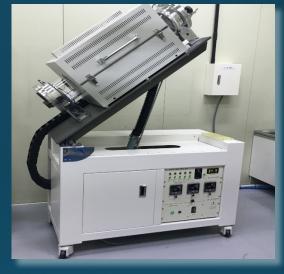
 $^{\sim}$ μ Bq/kg in crystals $\,\sim$ 1 000 reduction

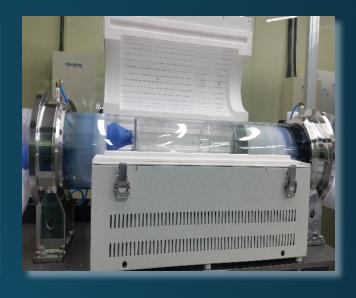
AMoRE purification experiments

- Purification of raw MoO₃ powder:
 - o sublimation (99% efficiency, no need another chemicals)
 - o fractional recrystallization (minimal irretrievable losses, no need another chemicals, achieved efficiency after one step is 30-60 %, purity level depends on efficiency)
 - \circ 3% co-precipitation with CaCl₂ (around 3% losses of Mo, necessary to find very pure carrier, not less 99.999% grade)
- Preparing of final product:
 - o precipitation of PAM (polyammonium molybdate) by HCl (90-95 % efficiency, PAM powder contain NH₄Cl and HCl)
 - precipitation of PAM by complete evaporation (irretrievable losses around 1 %, procedure takes time)

Purification of raw MoO₃ powder


Purification technique	Sr, ppt	Ba, ppt	Pb, ppt	Th, ppt	U, ppt		
		Decontamination factors (DF)					
Initial raw powder	6624	1366580	16014	270	4108		
Fractional recrystallization							
Initial MoO ₃ powder	23714	2829035	107027	91	7014		
Co-precipitation with CaCl ₂							
Evaporation of solvent							
Precipitation of PAM with HCl							


Combined methods by wet chemistry technique


Description	Sr, ppt	Ba, ppt	Pb, ppt	Th, ppt	U, ppt
1. Initial MoO ₃ — co	o-precipitation —	→ evaporation	of solvent	PAM powder	
Initial MoO ₃ powder	23714	2829035	107027	91	7014
DF after co-precipitation	3.1	228	78	1.4	14
					6.2
2. Initial MoO ₃ — co	-precipitation	→ precipitatio	n with HCl —	PAM powder	
Initial MoO ₃ powder	23714	2829035	107027	91	7014
DF after co-precipitation	3	217	61	≥1	31
DF after precipitation with HCl					≥200

Vacuum sublimation procedure

- Loading of MoO₃ powder in quartz tube
- Loading quartz tube in sublimation machine
- Operating the machine at 720 °C and vacuum condition (<10 mtorr)

Sublimation of initial MoO₃ powder

Description	Sr, ppt	Ba, ppt	Pb, ppt	Th, ppt	U, ppt
Initial powder	23714	2829035	107027	91	7014
Single sublimation	930	123076	68853	<50	612
Decontamination Factor					11
Double sublimation	89	17084	60296	<35	66

Efficiency after sublimation is more 99%!

Correlation of contamination level of MoO₃ powder obtained by ICP-MS and HPGe

Samples	Ва	²³² Th	238U	²²⁶ Ra (U)	²²⁸ Ac (Th)	⁴⁰ K
		ppt			mBq/kg	
¹⁰⁰ MoO ₃ (99.997%)	16600	< 46	73	8.3	< 1	9
	11400	< 61	149	3.8	< 0.8	36
Ini. MoO ₃	2829035	91	7014	1627	851	725.48
Single Sub.	123076	< 50	611.8	124.7	49.9	73.84
Double sub.	17084	< 35	66.09	20.56	6.73	74.80

Upgrading of evaporation technique

Evaporation on the heating plate at 70 °C

Rotary evaporation at 70 °C in vacuum condition

Annealing technique

Purified PAM powder

Annealing at 675°C

Part 2

• The COSINE collaboration (Collaboration Of Sodium IodiNe Experiments) is searching for dark matter with ultra-low background NaI crystals either to confirm or to refute the DAMA signal.

COSINE-100

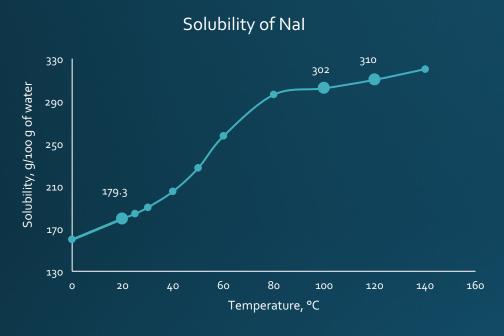
K: NaI powder should be purified up to level below 10 ppb

Goal: confirm or exclude the DAMA/LIBRA's modulation results

Strategy: achieve ultra-low background

How to purify NaI powder?

- Fractional recrystallization from water solution (water as solvent is very good, low yield after single procedure, takes time, labour-consuming)
- Solvent extraction (need to find very pure extractants, not effective for K)


 Desalting from system acetone-water or ethanol-water (low yield after single procedure, takes time, labour-consuming, need to find very pure organic solvents)

Fractional Recrystallization of Crystal and Astro grade NaI powder

	Ba ¹³⁸ , ppb	K ³⁹ , ppb	Pb ²⁰⁸ , ppb	Sr ⁸⁸ , ppb	Th ²³² , ppb	U ²³⁸ , ppb
Initial CG	7.14	45.07	3.3	0.9	DL	DL
Purified CG	0.618	6.04	0.81	<0.3	DL	DL
Initial AG	0.6	4.511	0.93	<0.3	DL	DL
Purified AG	<0.3	<1.0	<0.4	<0.3	DL	DL
DF	>2	>4.5	>2	-	-	-

CG – crystal grade powder; AG – astro grade powder. ICP-MS data from SEASTAR, Canada

Fractional recrystallization procedure for the NaI powder

Mother solution could be used as solvent for previous recrystallization step

Preparing of saturated solution at 20 °C

Adding reduction agent in order to prevent I_2 and IO_3^-

Filtration using membrane filter

Evaporation of water in presence of HI

Cooling down of solution and filtration

Washing of obtained crystals by Ethanol

Successful drying of crystals at 65 and 130 °C

Fractional Recrystallization of NaI powder

Sample	Ba ¹³⁸ , ppb	K ³⁹ , ppb	Pb ²⁰⁸ , ppb	Sr ⁸⁸ , ppb	Th ²³² , ppb	U ²³⁸ , ppb	efficiency
Initial NaI powder (technician grade)	2592	180000	5.674	65.676	<0.100	<0.100	-
1 st recrystallized NaI crystal	25.5	6280	0.364	0.650	<0.100	<0.100	52.8 %
D.F	102				_	_	
2 nd recrystallized NaI crystal	5.3	1305	0.151	0.152	<0.100	<0.100	27.5 %
NaI crystals from 2 nd MS	226.5	2745	0.400	1,263	<0.100	<0.100	16.7 %
D.F	11	66	14	52	-	-	

MS – mother solution ICP-MS data from SEASTAR, Canada

summary

Using the double sublimation of MoO $_3$ powder we reached Total Reduction Factor for 226 Ra \sim 80, for 228 Ac \sim 125, for 40 K \sim 10

Combined methods of Mo-purification looks very promising

We could achieve final goal using the Fractional Recrystallization of NaI powder, which has initial K contamination around 1 ppm

Our experiments are ongoing

