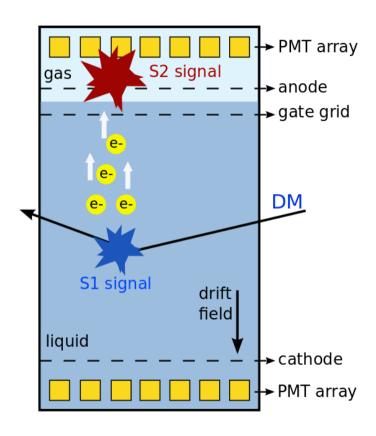


Max-Planck-Institut für Kernphysik Heidelberg



On-line ²²²Rn purification for liquid xenon detectors

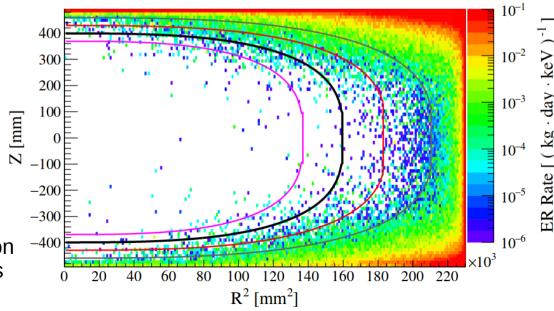
Stefan Brünner

LXe Detectors in Particle Physics

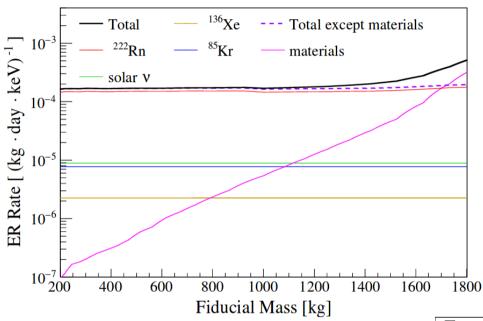
Two-Phase Time-Pojection Chamber (TPC)

Fiducialization

High stopping power shields external radiation Only the inner most volume used for analysis


LXe based detectors

Neutrinoless Double Beta Decay (EXO) Dark Matter direct detection (XENON1T, LUX, PandaX, XMASS)


Target material LXe

Scintillation properties for event detection Large atomic mass Low intrinsic radioactivity

XENON collaboration: JCAP 04, 027 (2016)

Radon – An intrinsic Background Source

Emanation as radon source

Traces of ²³⁸U in every material ²²²Rn emanates from detector materials Emanation is a permanent radon source

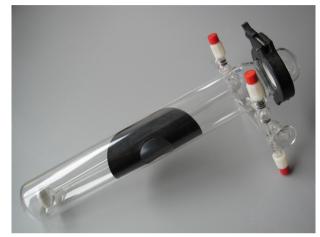
Intrinsic background

Rn distributes homogeneously in the LXe target Rn progenies (²¹⁴Pb) induce background no shielding possible

²²²Rn is a crucial background source in many liquid xenon based experiments

Expectation values of events in XENON1T, in 2 ty exposure		
	No	99.75% ER
	discrimination	discrimination
Signal (μ_s)		
6 GeV/ c^2 WIMP ($\sigma = 2 \cdot 10^{-45} \text{ cm}^2$)	0.68	0.27
10 GeV/ c^2 WIMP ($\sigma = 2 \cdot 10^{-46} \text{ cm}^2$)	4.65	1.86
100 GeV/ c^2 WIMP ($\sigma = 2 \cdot 10^{-47} \text{ cm}^2$)	7.13	2.85
1 TeV/ c^2 WIMP ($\sigma = 2 \cdot 10^{-46} \text{ cm}^2$)	8.85	3.54
Background		
Total ER (μ_{bER})	1300	3.25
NR from neutrons	1.10	0.44
NR from CNNS	1.18	0.47
Total NR (μ_{bNR})	2.28	0.91

XENON collaboration: JCAP 04, 027 (2016)


Mitigating Background - Radon Screening

Careful material selection to avoid emanation

Measurement of bulk impurities (spectrometry) often not sufficient

Radon screening at MPIK

Measurement of the radon emanation rate of every detector material

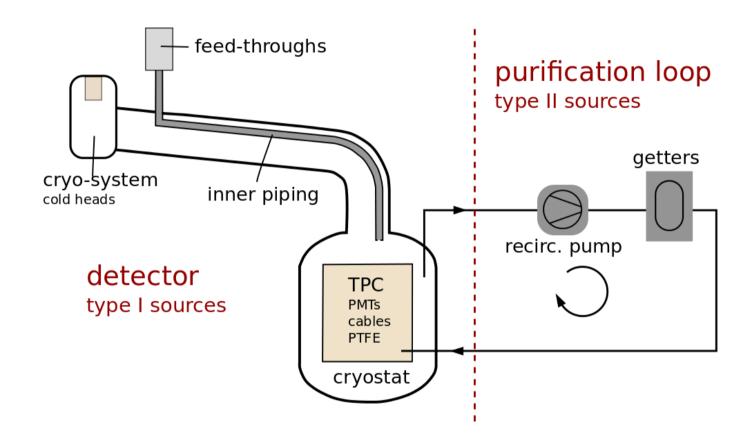
Emanation vessel with sample

Gas-Line for counter filling

Miniaturized Porportional Counter

Background: ~1 count/day Sensitivity: ~20 µBq

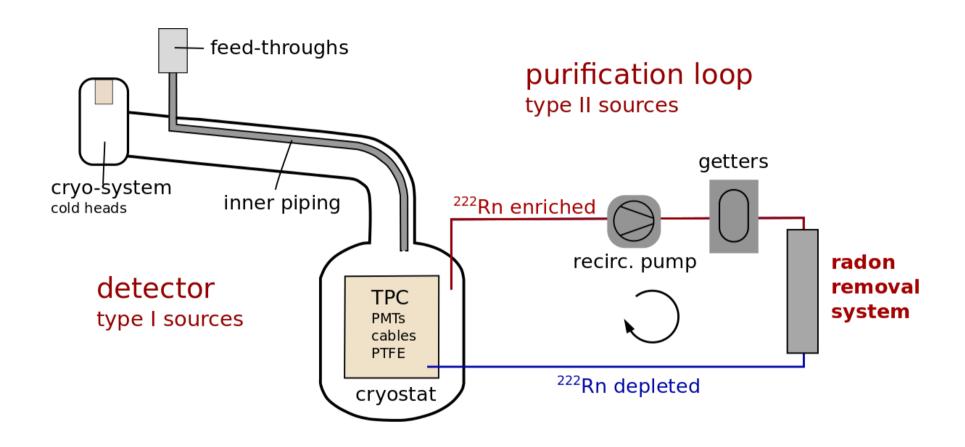
Electrostatic Rn-Monitor


Ionized Rn progenies are drifted towards a

PIN diode

Sensitivity: ~1 mBq

Typical Emanation Sources

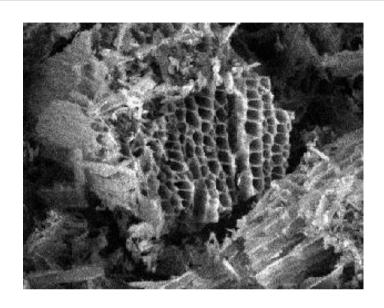


Classification of ²²²Rn emanation sources

Classification according to their position in the system

type I sources: emanation sources inside the detector, Rn directly enters the LXe target type II sources: Rn is flushed through the purification loop before entering the LXe target

On-line ²²²Rn removal


Online radon removal system (RRS)

Integrated into purification loop Radon enriched gas is flushed through RRS

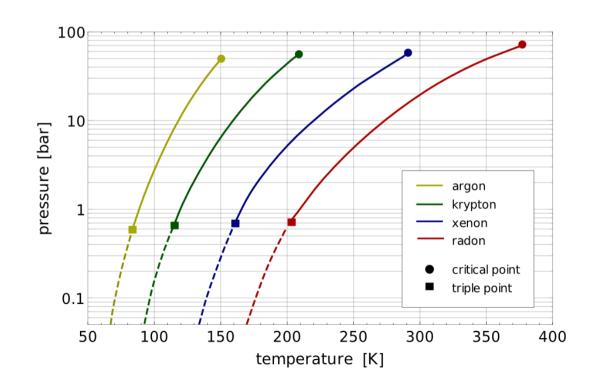
Separate radon from xenon

Radon retains in the RRS Drops out naturally by radioactive decay

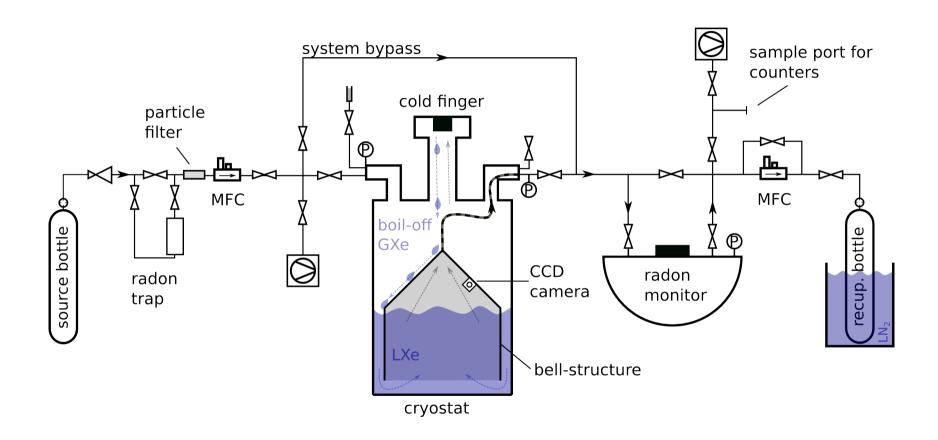
Radon/Xenon Separation Techniques

Cryogenic distillation

Successfully used for krypton removal Kr purification at ppq-level (x 10⁻¹⁵) shown EPJC 77, 275 (2017)

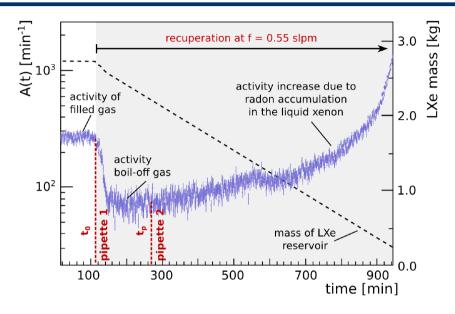

Radon distillation as separation technique

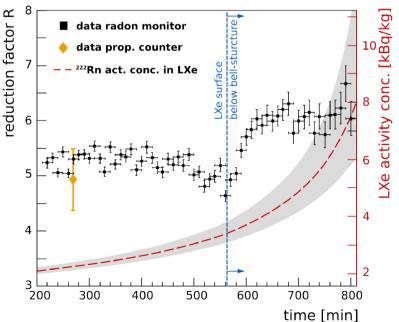
Adsorption


Radon enriched Xe is looped through adsorbent trap Radon stays adsorbed until decay Nucl. Instr. and Meth. in Phys.Res. A661, 50 (2012)

Challenges

Radon emanation of adsorbent material Large xenon consumption due to Xe adsorption


Radon depletion in boil-off Xenon

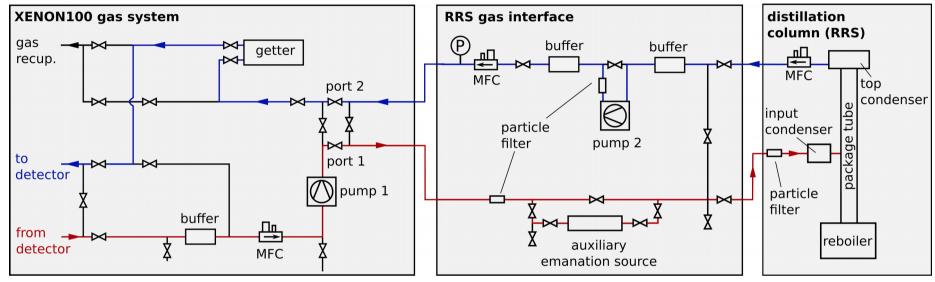


Radon reduction in a single distillation stage

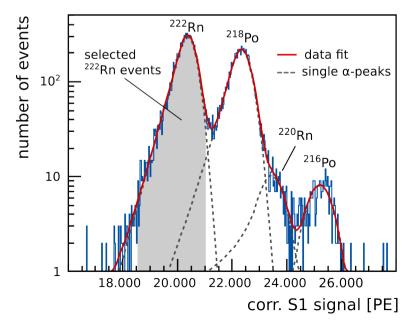
Radon enriched Xe is filled into the cryostat Xe is liquefied at the cold finger After filling an equilibrium establishes Pump boil-off Xe into recuperation bottle Radon monitor measures its activity concentration Complementary prop. counter measurements

Radon depletion in boil-off Xenon

	above bell structure	below/no bell structure	
run1	4.61 ± 0.02 stat $^{+0.29}_{-0.27}$ sys	$5.58 \pm 0.02_{ m stat} ^{+0.88}_{-0.68}{}_{ m sys}$	
	$^*3.75 \pm 0.50_{ m stat} ^{+0.08}_{-0.06}_{ m sys}$	-	
run2	5.27 ± 0.05 stat $^{+0.22}_{-0.27}$ sys	$6.02 \pm 0.04_{ m stat} ^{+1.12}_{-0.78}_{ m sys}$	
	$^*4.91 \pm 0.68$ stat $^{+0.07}_{-0.05}$ sys	-	
run3	-	$7.20 \pm 0.04_{ m stat} ^{+0.50}_{-0.31}_{ m sys}$	
	-	$^*8.12 \pm 1.35_{ m \ stat} ^{+0.13}_{-0.10} ^{ m sys}$	
run4	-	$3.77 \pm 0.09_{ m stat} ^{+0.12}_{-0.13}{}_{ m sys}$	


Proof of radon reduction in boil-off gas!

Radon reduction by a **factor > 4** measured


Complementary measurements with proportional counters confirm results

Measurements at higher recuperation flows of up to 6 slpm show same reduction factor

Systematic 'bell-effect' still under investigation EPJC 77, 143 (2017)

Extended XENON100 purification loop during distillation campaign

Rn-detector XENON100

Alpha-peaks of ²²²Rn and progenies easy to identify BiPo analysis for complementary radon monitoring

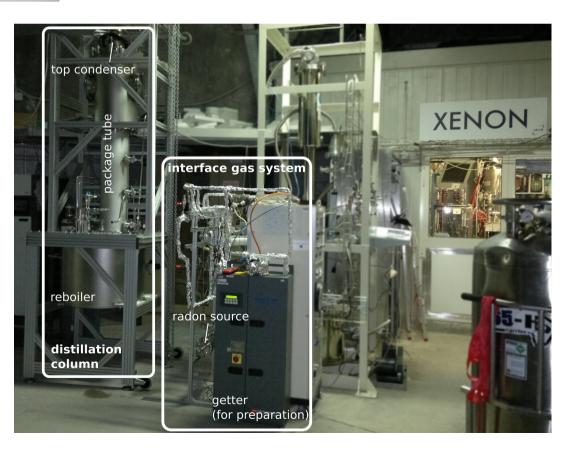
Extension of gas purification loop

Integration of XENON1T krypton column in purification loop Integration of a radon emanation source

Auxiliary radon emanation source

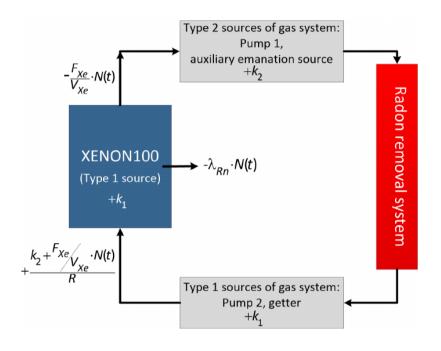
Radon emanation source

426 viton O-rings as auxiliary emanation source (constant emanation rate)


~70 mBq activity flushed into XENON100 TPC

Operation of Kr-column

XENON1T phase I krypton column EPJC 77, 275 (2017)

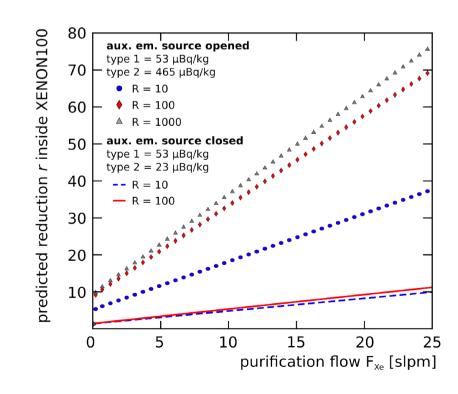

'Inverse' operation with respect to Kr distillation Rn is enriched in the liquid reservoir (reboiler)

Purified Xe from the columns top condenser is fed back into XENON100

arXiv:1702.06942 (accepted by EPJC)

Model of Rn concentration in XENON100

$$\frac{dN(t)}{dt} = k_1 - f \cdot N(t) - \lambda_{Rn} \cdot N(t) + \frac{k_2 + f \cdot N(t)}{R}$$


From fit to data:

column's reduction factor R > 27 (95% C.L.)

Achieve larger radon reduction

Larger recirculation flows needed Prevent Rn to reach LXe detector

Purification effect larger for type II sources Convert type I to type II sources by means of smart purge flows

Summary and Conclusions

Radon is a crucial source of background in LXe based experiments

Emanation measurements to find only detector materials having low radon emanation Unique radon screening facility at MPIK

Radon removal by cryogenic distillation

Xenon boil-off gas is depleted in radon with respect to the liquid phase.

On-line radon removal system demonstrated with XENON100

Integration of a cryogenic distillation column into the XENON100 gas purification loop Radon activity concentration could be reduced by a factor of 20 inside XENON100

Research and development for running experiments are ongoing

THANK YOU FOR YOUR ATTENTION