

Progress in Ultra-Low-Radioactive titanium production

Igor Avetisov, <u>Alexander Chepurnov</u>, Alexander Chub, Vadim Glebovsky, Ivan Nikulin, Elena Mozhevitina, Vladimir Pavletsov, Yury Suvorov

Low Radioactivity Techniques – 2017,

May, 24-27, 2017, Seoul

"ULR titanium" team:

Lomonosov MSU Skobeltsyn Institute of Nuclear Physics

Statement of the physical problem, data processing and R&D program

development - "a customer" representing DarkSide collaboration and "glue"

of the project

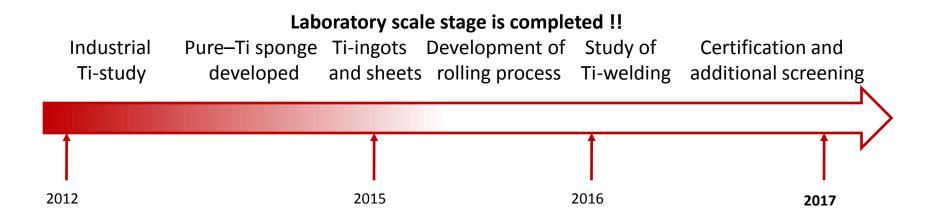
JSC "Solikamsk Magnesium Plant" and VSMPO-AVISMA Corp. -

Industrial partners from Russian titanium industry

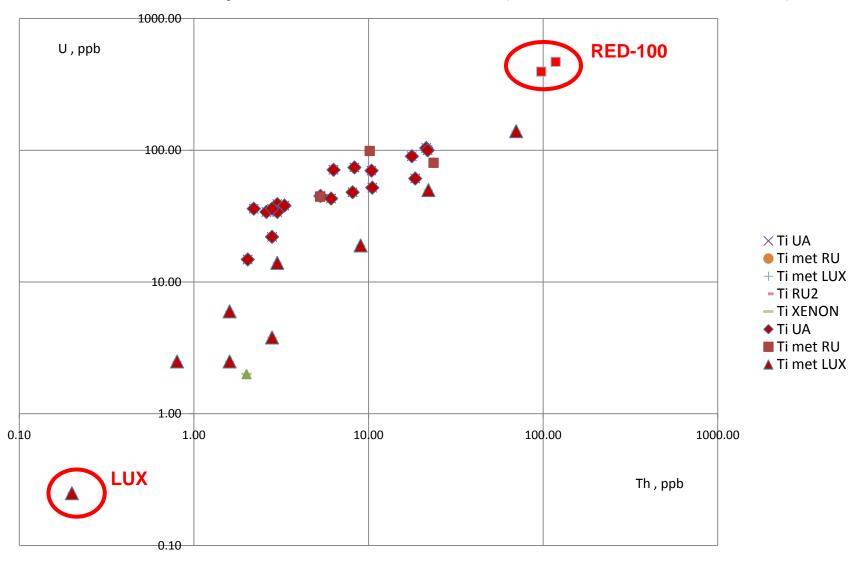
Institute of Solid State Physics of RAS and Belgorod State Research University

Theory of titanium alloys, unique metallurgical cleaning methods and installations, melting, rolling, welding, mechanical tests

D. Mendeleyev University of Chemical Technology and INFN LNGS

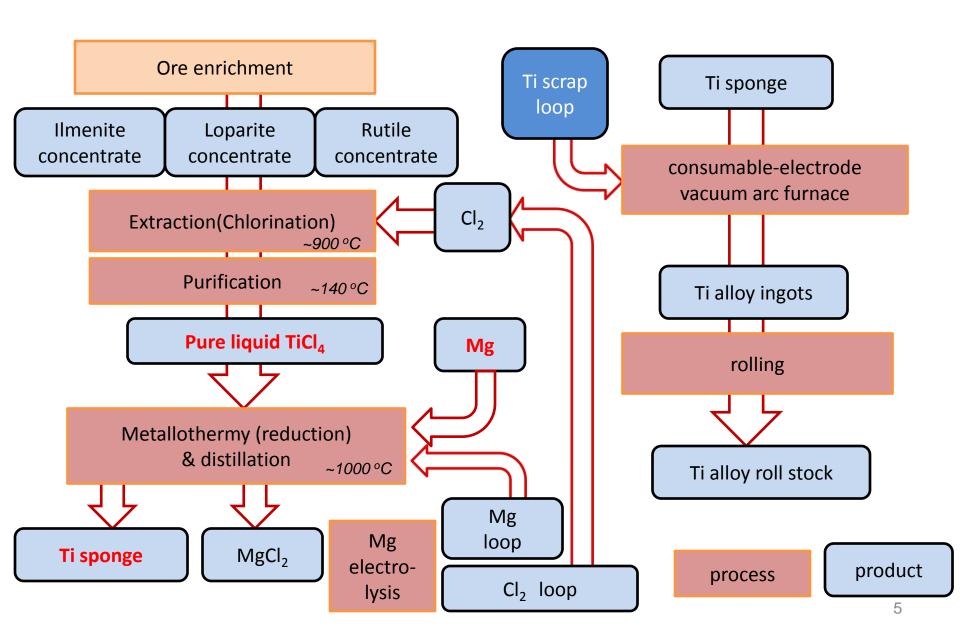

ICP-MC & HPGe U/Th measurements

Ultra-Low-Radioactive (ULR) titanium roadmap and goals

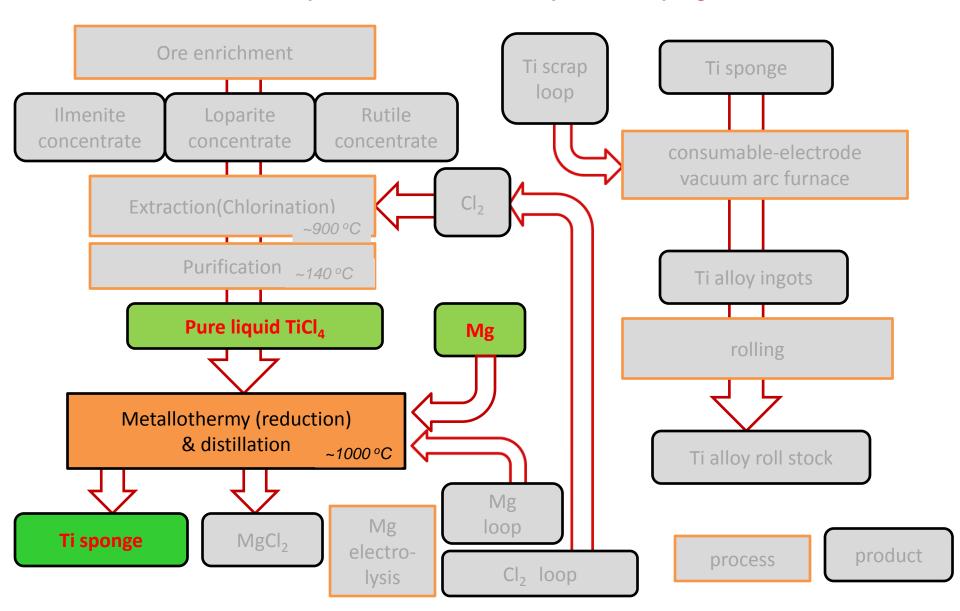

to develop industrial production cycle of ULR titanium and titanium parts

 238 U & 232 Th <= 1 mBq/kg (equivalent to < 0,1 ppb U & < 0,25 ppb Th)

to provide DarkSide (DS-20k) experiment with ULR titanium in the required quantity



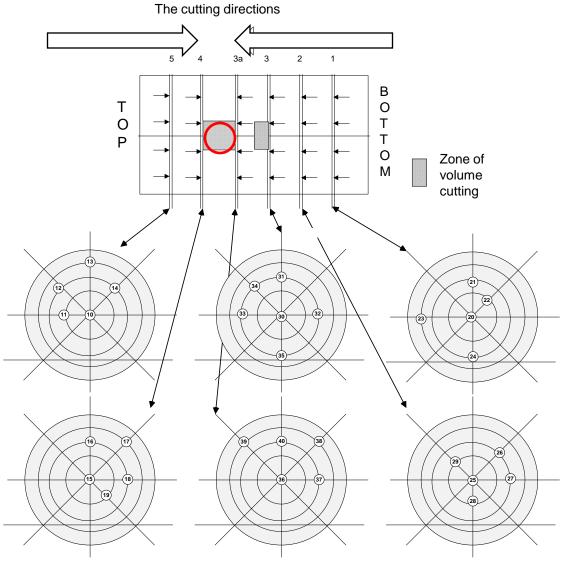
First stage results dated 2012 initiated the development of ULR-titanium Ti metal samples from different sources (U/Th difference ~4 orders!)


REMEMBER THE GOAL: 238 U < 0,10 ppb ~ 1 mBq/kg 232 Th < 0,25 ppb ~ 1 mBq/kg

Kroll-based industrial titanium production cycle

Kroll-based industrial titanium production cycle

Two simple substances are used to produce Ti sponge !!!

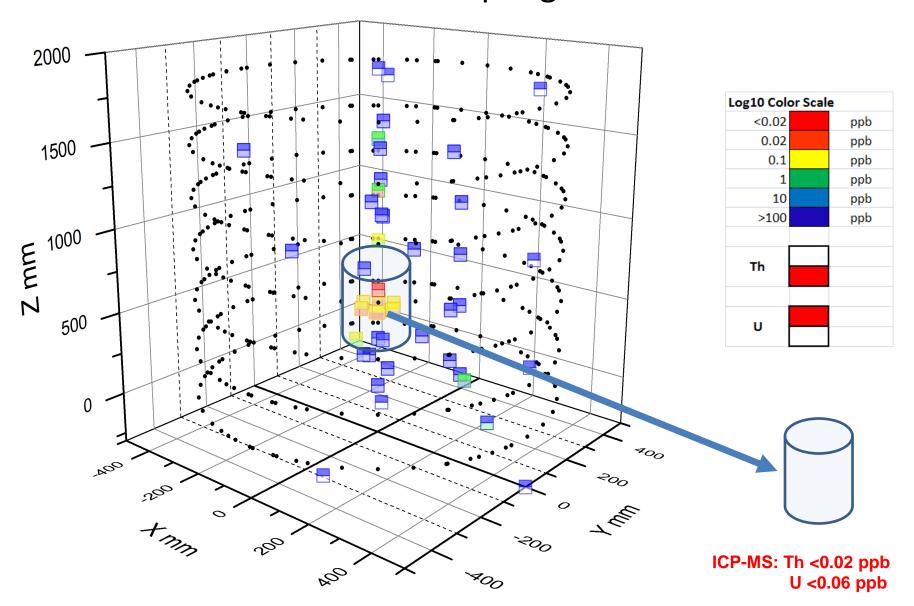


Solikamsk Magnesium Plant titanium sponge block analysis program

titanium ~6t sponge block

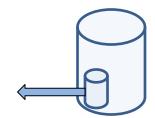
Scheme of Ti sponge block cutting and sampling 10

Solikamsk Magnesium Plant titanium sponge block analysis program



titanium ~6t sponge block

Confirmation of principal hypothesis about ULR-area of titanium sponge block



LNGS HPGe test

sample: Ti sponge, Solikamsk, March 2015, DS50

weight: 2927 g live time: 3587352 s detector: GeMPI2

radionuclide concentrations:

Th-232:

Ra-228: < 0.41 mBq/kg <==> < 1.0 E-10 g/g

Th-228: (0.23 +- 0.07) mBq/kg <==> (6 +- 1) E-11 g/g

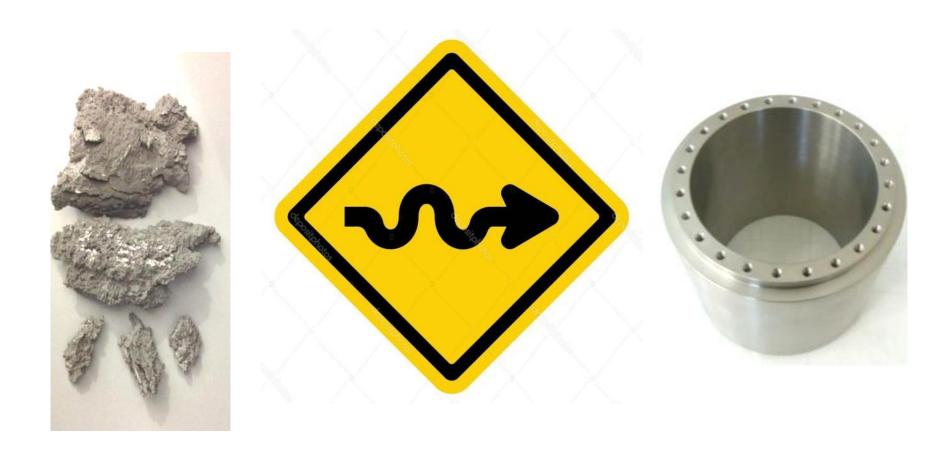
U-238:

Ra-226 (0.34 +- 0.06)mBq/kg <==> (2.8 +- 0.5) E-11 g/g Th-234 < 9.4 mBg/kg <==> < 7.6 E-10 g/g

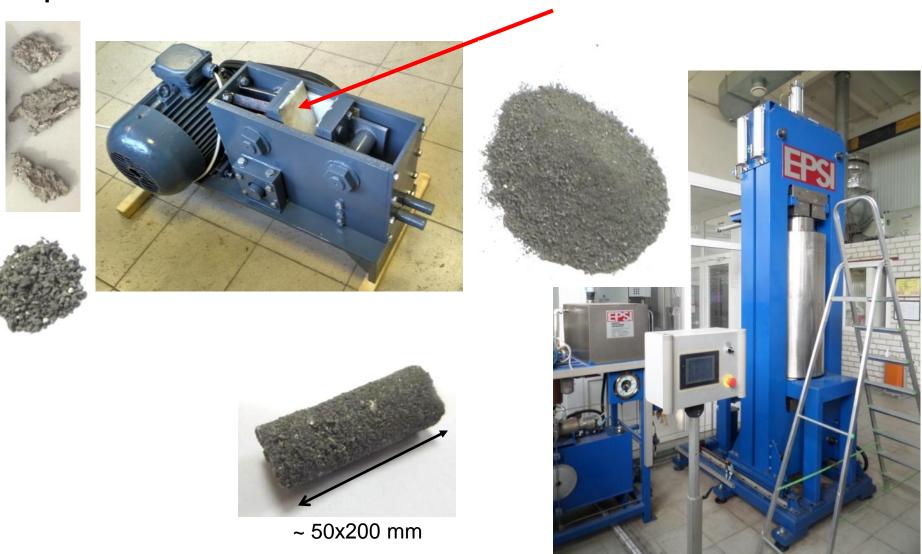
Th-234 < 9.4 mBq/kg <==> < 7.6 E-10 g/g Pa-234m < 9.3 mBq/kg <==> < 7.5 E-10 g/g

U-235: < 0.28 mBg/kg <==> < 5.0 E-10 g/g

K-40: (2.1 +- 0.3) mBg/kg <==> (6.8 +- 0.9) E-8 g/g

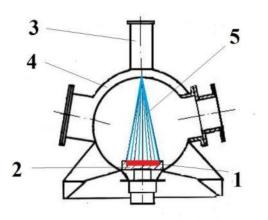

Cs-137: (2.1 +- 0.3) MBq/kg <==> (6.8 +- 0.9) E-8 g/

Ti-44: < 0.10 mBg/kg @ start of measurement: 12-JUN-2015


upper limits with k=1.96, uncertainties are given with k=1 (approx. 68% CL);

HOW TO PRODUCE PARTS FORM THE ULR-SPONGE AND AVOID RECONTAMINATION ?

Special "ULR-Mill" lined with ULR titanium



Isostatic compacting of the ULR titanium sponge

Electron Beam Vacuum Melting

Mass of each ingot is ~5 kg thickness - 18-20 mm, material losses during the melting up to 15-20% of the load. Th <0.02ppb, U <0.06ppb

1-liquid metal, 2-mould, 3-EB axial gun, 4-vacuum vessel, 5-electron beam

Cylindrical consumable electrodes are melted by electric arc into a water-cooled mold. The weight of each ingot is 1.9 kg.

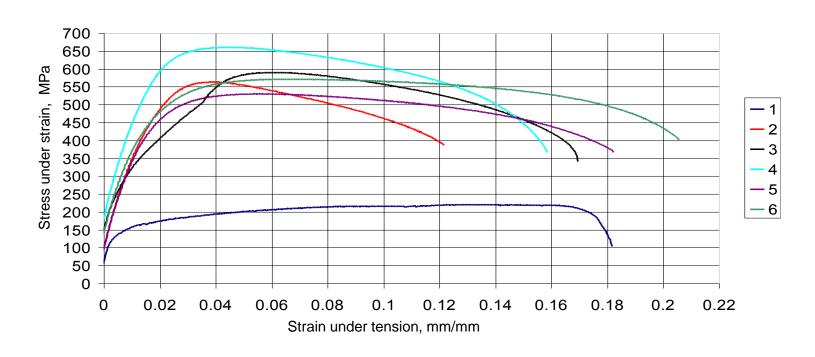
	38-3	39-3	40-3
	ppb	ppb	ppb
Th	<0.02	<0.03	<0.02
U	<0.01	<0.02	0.005

Vacuum Arc Melting

&

Study of the rolling conditions and the mechanical properties of titanium sheets

- The goal was to produce Ti sheets with optimal mechanical properties at cryogenic temperatures, which means uniform fine-grained (~5 mkm) structure and keep low radioactive properties.
- The task is complicated by the fact that the original ingots contain large grains and have a low level of impurities. Since a high-purity Ti undergoes polymorphic conversion of the diffusion path during cooling there is no obstacle for the growth of deformation twins. The twinning and slipping in titanium are two competing processes of plastic deformation. Changes in temperature can be controlled by the intensity of these processes. The twinning process is the primary mechanism to the 1 mkm structure, and twins are the large internal stress concentrators and thus lead to cracking. The modes have been developed to prevent the occurrence of cracks through the timely removal of stresses arising in the formation of mechanical twins and thus achieve an uniform and maximum structure.


Furnace for vacuum annealing

ULR titanium sheets rolling equipment

Results of mechanical tests of rolled titanium

- №1. The initial state. Cast after melting.
- №2. 25% rolling, vacuum annealing at 700°C.
- №3. Warm rolling with a total degree of deformation of 80% by 6-8% per pass.
- №4. Variable warm/cold with a cross-rolling of the ingot with a total degree of deformation of 80% by 6-8% per pass.
- №5. Warm rolling with a cross-rolling of the ingot with a total degree of deformation of 80% by 6-8% per pass, followed by annealing at 450°C.
- №6. Variable warm/cold cross-rolling with a total degree of deformation of 80% by 6-8% per pass, followed by annealing at 450°C.

Mechanical and U/Th properties

Optimal rolling process which gives necessary mechanical and keeping ULR properties was selected.

Material	HV $\sigma_{0,2}$, Mpa			σ _в , Mpa		
	(hardness)	(conventional		(tensile		ISP-MS data
		yield limit)		strength)		
Industrial materials						
AISI 304		210	51	0		
VT1-00 / GRADE 1	110-140	250-380	30	0-450		
AISI 316	180-250	250-450	45	0-800]	
VT16 (Al, V)	170-400	600-1000	10	00-1500		
Ingots/sheet from pure Ti-sponge					U, ppb	Th, ppb
Original ingot from pure Ti-	140	150	22	0	<0.003	< 0.05
sponge	std.dev 30					
Sample №2	160	410	56	5	0.83	0.67
	std.dev 53					
Sample №3	165	420	59	0	<0.003	< 0.05
	std.dev 10					
Sample №4	155	250	39	0	0.16	0.14
	std.dev 15					
Sample №5	160	280	40	0	<0.003	0.017
	std.dev 45					

20

Study of ULR titanium welding

An essential step in the manufacture of the cryostat is welding. The welding process should not lead recontamination by radioactive impurities, and the mechanical properties of the welds should not impair the mechanical strength of the assembly. To investigate the possibility of creating a weld sheets radiation pure titanium welding process three were selected:

- 1. Argon arc welding of non-consumable tungsten electrode with the location details of the butt, without the use of additives, with double-sided weld penetration.
- 2. Laser welding arrangement butt parts without using additives with bilateral weld penetration.
- 3. Laser welding with overlapping, without the use of additives with a bilateral joint penetration.

Mechanical properties and U/Th of the welds

Mechanical properties show that the laser and argon welding allow to use UHP Ti as a structural material in the manufacture of a cryostat. The strength of the welded joint was about 400MPa. An advantage of laser welding is a small heat-affected zone.

Samples	Max strength MPa			
Laser welding (butt)	450			
Laser welding (overlap)	355			
Argon arc welding (butt)	390			
Original material	590			

Ti 1-X - argon arc welding;

Ti 2-X - laser welding.

Task		Ti 1-1		Ti 1-2	Ti 2-1	Ti 2-2	
ppb		ppb	St dev ppb	St dev %	ppb	ppb	ppb
<0.25	Th	<0.02			<0.02	<0.01	<0.01
<0.10	U	0.69	0.04	6.4	<0.03	<0.01	<0.01

<u>The laser welding keeps U/Th level low</u>. Contamination with argon arc welding by U requires further study and may be associated with a contamination from the tungsten electrode.

Low radioactivity of the original material was confirmed again.

Ultra Low Radioactive titanium samples manufactured from industrial titanium sponge

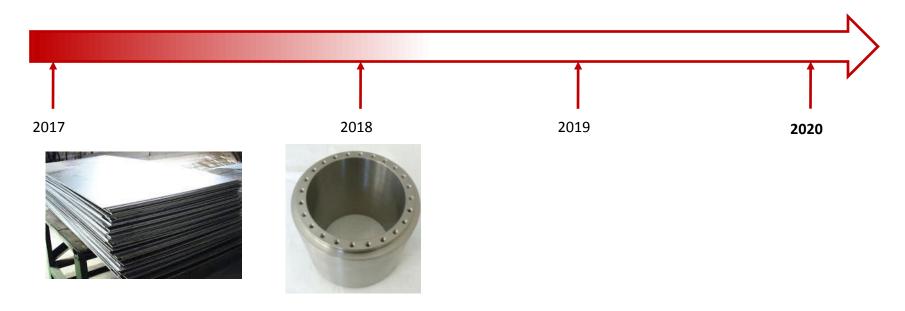
Step 1. Production of low-radioactive sponge.

Step 2: Crushing sponge. Step 3: Isostatic compacting of the sponge.

Step 4: Vacuum arc- melting or Step 5: Vacuum e-beam-melting.

Step 6: Rolling with annealing. Step 7: Laser welding.

	ppb
Th	<0.02
U	<0.03


LABORATORY-SCALE STAGE RESULTS

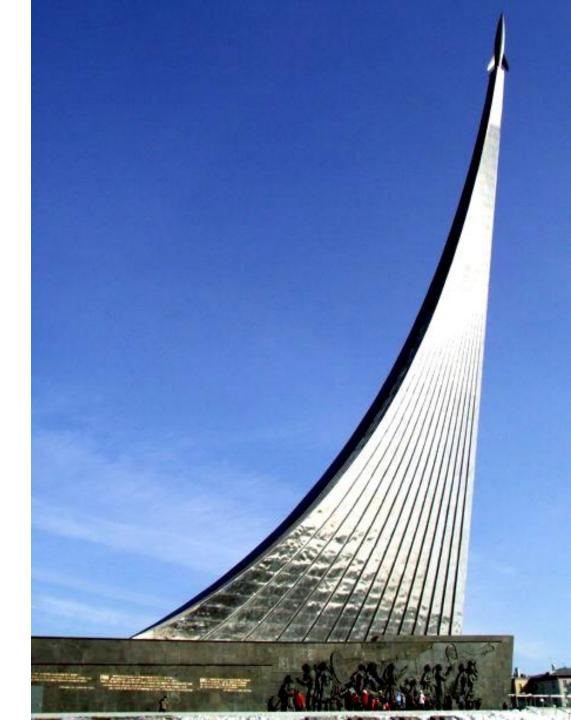
- 1. It is confirmed, that ULR-titanium sponge could be produced by Kroll process
- 2. EBV-melting in water cooled crystallizer & VA-melting (most widely used in industry) keep the material clean.
- 3. Mechanical properties of processed ULR-titanium could be equal or better than commercial VT1-00 alloy due to specially developed rolling/annealing process
- 4. Laser welding is preferable welding method to keep ULR titanium clean
- 5. ICP-MS screening on all stages confirms the target levels of U/Th

Ultra-Low-Radioactive (ULR) titanium future

Laboratory scale stage is completed !! Industrial scale stage (tons of titanium) is started !!

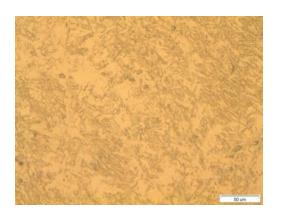
Is it possible to reach the level below 0.1 mBq/kg (of U/Th)?
Yes, the way to 0.1 and below is visible but it needs to do additional R&D

Is it possible to purchase ULR titanium now? Not yet. Please wait until the end of 2017.

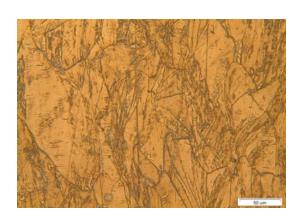

Thank you for your attention!

The project was financially supported by a program of the ministry of education and science of The Russian Federation for higher education establishments, project №14.578.21.0192 (RFMEFI57816X0192).

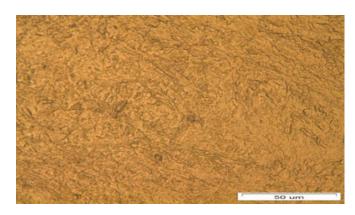
Titanium monument above


Moscow museum of space research

http://москва-россия.pф/muzey-kosmonavtiki-v-moskve/



Additional slides


Microstructure of titanium sheets depending of the rolling modes

№3. Warm rolling (300°C) with a total degree of deformation of 80% by 6-8% per pass.

№2. 25% rolling, vacuum annealing at 700°C.

Nº6. Variable warm/cold with a cross-rolling of the ingot with a total degree of deformation of 80% by 6-8% per pass, followed by annealing at 450°C/

Variable warm/cold rolling and subsequent annealing at 450°C (N6) yielded a more homogeneous structure with the size of 3 microns fragments. Warm rolling contributed a slip deformation, allowing to relax stresses caused by formed in cold rolling twins, as evidenced by the uniformity of microhardness. This cold deformation, due to activation of the twinning process, contributed to intensive fragmentation pattern.

Melting 1: Electron Beam Vacuum Melting

The thickness of the bars - 18-20 mm.

The operations were carried out in the ISSP RAS. Melting was carried out in a specially constructed water-cooled copper mold with multiple coup of ingot when the ingot melted through the entire depth. Power 60 kW axial gun, with a magnetic deflection of the beam and electron beam focus from acute to scattered.

Material losses during the melting - 15-20%.

Data analysis ICP-MS of both flat bars for "Remelting 1" showed that the recontamination doesn't happen, U and Th concentrations are below the detection limit.

Th <0.02ppb, U <0.06ppb

Mass of each ingot is ~5 kg

WHILE THE GOAL IS: $U < 0.10 \text{ ppb} \sim 1 \text{ mBq/kg}$ Th < 0.25 ppb $\sim 1 \text{ mBq/kg}$

Melting 2: Vacuum Arc Melting

The process was done according to the standard test-process on "VSMPO-AVISMA" Co. The pressed cylindrical consumable electrodes were made by crushing and compacting of ULR Ti sponge. Then the consumable electrodes were rmelted by electric arc into a vertical water-cooled mold.

Three ingots were produced with numbers 38, 39 and 40. The weight of each ingot was ~1.9 kg.

The ingots were cut to the segments, as shown in Figure. Results of ICP MS analysis is presented below

Demands		38-3	39-3	40-3	St dev	Rel St dev
ppb		ppb	ppb	ppb	ppb	%
<0.25	Th	<0.02	<0.03	<0.02	-	-
<0.10	U	<0.01	<0.02	0.005	0.0048	88.4

