Organic Scintillator and Tellurium Purification Techniques of the SNO+ Double Beta Decay Experiment
SNO+ Physics Goals

- Neutrinoless Double Beta Decay of ^{130}Te
- Low Energy Solar Neutrinos
- Reactor Antineutrinos
- Geo-Neutrinos
- Supernova-ν

Three stages:
- Water phase
- Liquid scintillator phase
- Te-loaded liquid scintillator
SNO+ Detector

780t of liquid scintillator (LAB+PPO)

PSUP = PMT Support Structure
~9500 PMT, 54% Coverage

Acrylic Vessel (AV)
Φ=12m, thickness=5cm

Light water (H2O) shielding
- 1700t internal
- 5300t external

Urylon Liner/Radon Seal

Norite Rock

Low cost
High flash point: 130°C
Low toxicity

Light attenuation length:
20 m at 420 nm

High light yield (>10,000 photons/MeV)

Smallest scattering of all scintillating solvents investigated
SNO+ Detector

Internal Radioactivity
Traces of radioisotopes (U/Th chain, 40K, etc) in the scintillator

External Gammas
from decays in the acrylic, water, PMTs, etc.

Cosmogenics
Neutrons and radionuclides from spallation and hadronic showers

Cosmic Ray Muons
μ, n, γ, α, β, n, p, 11C...
SNO+ Detector

Internal Radioactivity
Traces of radioisotopes (U/Th chain, 40K, etc) in the scintillator

External Gammas
from decays in the acrylic, water, PMTs, etc.

Cosmogenics
Neutrons and radionuclides from spallation and hadronic showers

Cosmic Ray Muons
$n, \gamma, \alpha, \beta, \mu, n, p,^{11}C...$
Are neutrinos their own anti-particles?

- **2νββ (Dirac)**
 \[(A, Z) \rightarrow (A, Z + 2) + 2e^- + 2ν_e\]
 \[\sim 10^{18} - 10^{21}\ \text{years}\]

- **0νββ (Majorana)**
 \[(A, Z) \rightarrow (A, Z + 2) + 2e^-\]
 \[> 10^{25}\ \text{years}\]

- With the Mass Mechanism:
 \[\left(T^{0ν}_{1/2}\right)^{-1} = G^{0ν} \cdot |M^{0ν}|^2 \cdot \left<m_{ββ}\right>^2\]
 \[\left<m_{ββ}\right>^2 = \left|\sum_i U_{ei}^2 m_{vi}\right|^2\]

D.B.D. experiments need good energy resolution, low backgrounds, and large amounts of isotope.
130°Te Double Beta Decay

- **Selection of the best isotope for SNO+**
 - High natural abundance (34%)
 - $T_{1/2}^{2n\beta\beta} = 7 \times 10^{20}$ years one of the longest $2\nu\beta\beta$
 - High $Q_{\beta\beta} = 2526.97$ keV
 - High light yield
 - Successfully loaded in the liquid scintillator

High Q value reduces backgrounds and increases the phase space & decay rate. Large abundance makes the experiment cheaper.
Scintillator Purification Plant

- Multi-stage distillation
 - Dual-stream PPO distillation
 - Removes heavy metals
 - Improves UV transparency

- N₂ / steam stripping
 - Removes Rn, Kr, Ar, O₂

- Water extraction
 - Removes Ra, K, Bi

- Metal scavenging
 - Removes Bi, Pb

- Microfiltration
 - Removes dust

- Target Levels
 - \(^{85}\text{Kr}: 10^{-25}\ \text{g/g}\)
 - \(^{40}\text{K}: 10^{-18}\ \text{g/g}\)
 - \(^{39}\text{Ar}: 10^{-24}\ \text{g/g}\)
 - U: \(10^{-17}\ \text{g/g}\)
 - Th: \(10^{-18}\ \text{g/g}\)
Telluric Acid Production

- Te extracted from mine (depth ~ 300 m) in April 2014
 - Visit to the production site prior to start of processing
 - QA/QC tests on samples from each barrel before approval to send to SNOLAB

3.8 tonnes of Te(OH)$_6$, corresponding to ~2.1 tonnes Te, or ~0.26% Te loading

- Shipped to SNOLAB (January 7th 2015)
 - Transported underground on January 19th 2015
 - Testing one sample from one of the barrels to cross-check previous results
Telluric Acid Purification

- The purification technique relies on solubility of TeA in water based on pH
 - $\text{Te(OH)}_6 \leftrightarrow \text{Te(OH)}_5\text{O}^- + \text{H}^+$
 - in-soluble soluble
 - Insoluble contamination
 - Dissolve in water, and filter
 - Soluble contamination
 - Force TeA to recrystallize by adding Nitric Acid, let it precipitate out, and drain the “dirty” liquid
- The process can be made tellurium selective
Telluric Acid Purification

- **0.5% Tellurium Target levels:**
 - 1.3×10^{-15} g/g in 238U (3×10^{-8} Bq/kg)
 - 5×10^{-16} g/g in 232Th (1.2×10^{-9} Bq/kg)
 - (raw Te $\sim 10^{-11}$ g/g U/Th, 10^{-4} Bq/kg)

- **Cosmogenic contamination from activation on Te**
 - 60Co, 110mAg, 126Sn, 88Zr, 88Y, 124Sb
 - Rejection needed 10^4-10^5
Telluric Acid Purification Plant

Target 200 kg TeA / batch
~50 “working” days to purify 8 tonnes
Telluric Acid Purification Plant
\(\nu\nu\beta\beta \) LS Requirements

- Reach high tellurium concentration
 - 0.5\% Te in 780 tonnes of scintillator

- Preserve good optics of the cocktail
 - Transparency, Scattering, Light Yield

- Maintain high purity of the scintillator
 - U/Th reduction factor
 - Cosmogenic activation
The TeDiol Complex

- **Tellurium loading in Linear Alkyl Benzene**
 - Through direct mixing in of an organometallic complex of Tellurium

- **Butane-Diol based Te complex ("TeDiol")**:

 ![Chemical Structures]
 - **Telluric Acid**
 - Diolization (boiling)
 - Butanediol
 - TeDiol+LAB (mixing)
 - in SNO+
 + 6 H₂O
The TeDiol Complex

- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium

- Butane-Diol based Te complex ("TeDiol"):
The Diol Assay

- Identified distributor in Japan, Kowa-Co.
 - High quality and affordable (8 tonnes needed)
 - $^{14}C/^{12}C$ to confirm its non-biogenic origin
 - Accelerator Mass Spectrometry at uOttawa:
 - Sample #1: $(14.3 \pm 1.2) \times 10^{-16}$ Blank #1: $(26.0 \pm 7.4) \times 10^{-17}$
 - Sample #2: $(4.8 \pm 1.2) \times 10^{-16}$ Blank #1: $(2.5 \pm 1.2) \times 10^{-17}$

The André E. Lalonde AMS Laboratory

University of Ottawa
25 Templeton Street
Ottawa, ON K1N 6N5
Canada

Radiocarbon@uOttawa.ca
The Diol Assay

- **Gamma-ray spectrometry**
 - High Purity Ge (HPGe) detector at SNOLAB
 - 238U < 3.13 ppb
 - 232Th < 0.26 ppb
 - 40K < 386.56 ppb

- **Neutron Activation Analysis**
 - NAA at UC Davis
 - 238U < 0.3 ppb
 - 232Th < 3.3 ppb
 - natNa ~ ppm -> a fraction of which is 22Na
The Diol Assay

- Tracing sodium contamination with NAA

TRIGA-type research reactor in Sacramento, owned and operated by UC Davis

Na \((2.2 \pm 1.0)\) ppb
The Diol Purification

- Bench-top distillation with radio spikes
 - ^{228}Th spike in 1,2-Butanediol
 - Low T (70 °C, 80 mTorr)
 - Initial activity mBq/g: 72
 - Distillate activity mBq/g: <0.014
 - Reduction factor: >5100
 - ^{224}Ra
 - Initial activity mBq/g: 72
 - Distillate activity mBq/g: <0.013
 - Reduction factor: >5500
 - High T (170 °C, 225 Torr)

<table>
<thead>
<tr>
<th></th>
<th>Initial activity Bq/g</th>
<th>Distillate activity µBq/g</th>
<th>Reduction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{228}Th</td>
<td>1.94</td>
<td>7 ± 1</td>
<td>280 000</td>
</tr>
<tr>
<td>^{224}Ra</td>
<td>1.94</td>
<td>13 ± 5</td>
<td>150 000</td>
</tr>
</tbody>
</table>
The TeDiol Plant

Produce TeDiol at a 250-kg batch scale to match the throughput of the Telluric Acid Purification Plant.
The TeDiol Plant
Backgrounds Budget

- **(α, n)**
 - Alpha-capture on $^{13}\text{C}/^{18}\text{O}$
 - Neutrons produced
 - Capture of thermal neutrons
 - Delayed coincidence tag

- **$^{8}\text{B} \nu \text{ES}$**
 - ^{8}B solar neutrinos:
 - Flat spectrum
 - Constrained by SNO/SK data
 - Limited by resolution

- **Cosmogenics**
 - Mitigation: purification + "cool-down" UG
 - $< 1\text{eV/yr}$ in RoI-FV
 - Further reduction if needed: multi-site events

- **External γ**
 - From AV, ropes, water, PMTs
 - Fiducial volume (20%) cut
 - 50% extra rejection multi-site cuts

- **Internal U chain**

- **Internal Th chain**

- **Internal U/Th**
 - $^{214}\text{BiPo}, ^{212}\text{BiPo}$
 - B-α delayed coincidence tagging
 - 100% rejection in RoI
 - In-window trigger: $x50$ rejection
\(\nu \beta \beta \) Sensitivity

- **1.3 tonnes of \(^{130}\)Te in LAB (at 0.5\% nat-Te)**
- \([-0.5; +1.5]\) \(\sigma \) around \(Q_{\beta \beta} \)
- 400 NHits/MeV (\(\sim 4\% \Delta E \))
- Fiducial Volume: 20\% total

<table>
<thead>
<tr>
<th>(T_{1/2}) [yr]</th>
<th>(m_{\nu \beta \beta}) [meV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 yr</td>
<td>(8 \times 10^{25})</td>
</tr>
<tr>
<td>5 yrs</td>
<td>(1.96 \times 10^{26})</td>
</tr>
</tbody>
</table>
ννββ Sensitivity

- **1.3 tonnes of 130Te in LAB (at 0.5% nat-Te)**
 - [-0.5; +1.5] σ around $Q_{ββ}$
 - 400 NHits/MeV (~4% ΔE)
 - Fiducial Volume: 20% total

<table>
<thead>
<tr>
<th>$T_{1/2}$ [yr]</th>
<th>$m_{ννββ}$ [meV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 yr</td>
<td>8×10^{25}</td>
</tr>
<tr>
<td>5 yrs</td>
<td>1.96×10^{26}</td>
</tr>
</tbody>
</table>
ννββ Schedule

- 2017-2018
 - Scintillator plant commissioning
 - Scintillator fill
 - Unloaded scintillator phase (short)
 - Evaluation of backgrounds for ννββ
 - Commissioning of the Tellurium plant(s)

- 2018-2019
 - Tellurium loading
 - Begin ννββ phase
Backgrounds Budget

- Current sensitivity studies assume that in the background budget, solar neutrinos would be the dominant factor.
 - $2\nu\beta\beta$ spectrum "leaks" into the ROI [8.5/23.2 c-yr]
 - Improved energy resolution with good optics
 - External backgrounds (^{208}Ti, ^{214}Bi) [3.5/23.2 c-yr]
 - Minimized with proper fiducialisation, and PSD
 - Internal backgrounds and detector response
 - U/Th [3.8/23.2 c-yr] and cosmogenics [0.1/23.2 c-yr] reduced by purification & cooling
 - Bi-Po/(α,n) tagged with space-time coincidence
 - $^{210}\text{Po}-2\nu\beta\beta/^{210}\text{Bi}-2\nu\beta\beta$ pile-up events reduced based on PMT-hit time distribution
 - Apply the "source-in – source-out " approach
 - Flat ^8B (ES) e⁻ normalized to known flux [7.2/23.2 c-yr]
SNOLAB Facility

- Depth = 2070 m (6000 m.w.e.)
- 60 muons/day in SNO+
- 10,000 sq ft class-2000 clean room
Calibration Hardware

New (Re)Design

New Technology
Calibration Sources

- Need Double encapsulation
 - Limitation for ^{222}Rn, ^{90}Y

- Radioactive and optical sources α, β, γ, n, with laser injection laserball and Cherenkov

<table>
<thead>
<tr>
<th>Type</th>
<th>γ</th>
<th>β</th>
<th>α</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Src.</td>
<td>^{57}Co</td>
<td>^{60}Co</td>
<td>^{48}Sc</td>
<td>^{24}Na</td>
</tr>
<tr>
<td>MeV</td>
<td>0.1 (sum)</td>
<td>2.5 (sum)</td>
<td>3.3 (sum)</td>
<td>4.1 (sum)</td>
</tr>
</tbody>
</table>

$\sim 7.12 \text{s}$
Light emitted from the support structure from 92 fibres installed between PMTs. Each gives 10^3-10^5 photons/pulse.
νββ Sensitivity in Phase II

- **Improve sensitivity by improving**
 - Light yield and going to higher loading
 - Improve current technique
 - Higher QE PMTs
 - Improved concentrators
 - Coverage to 80%

- **Goal:** 3% nat. Te loading
 - ~ 8 tonnes 130Te
 - Higher QE PMTS
 - $T_{1/2}^{0ν}$ onbb $\sim 10^{27}$ yr
2x the Light Yield and same absorption with alternative approach at 3% Te

![Graph showing light yield improvement](image_url)

Courtesy of Minfang Yeh of BNL