

University of Milano Bicocca - Dep. of Physics and INFN of Milano Bicocca

Ultra-trace element determination by neutron activation analysis in Acrylic material

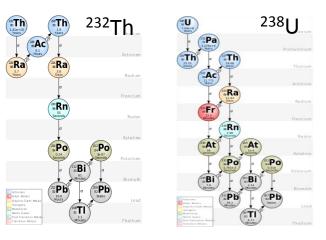
Low Radioactivity Techniques 2017
Ewha Womans University, Seoul, Korea

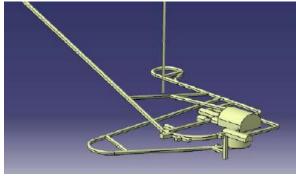
Introduction

The radio purity of materials is the essential condition upon which rely the latest experiments of Rare Events Physics

The greatest risk

radioactive background overlap the observable energy regions of interest


Fundamental a selection of the different components of the detector



Typical requirements for contamination level of detector materials

232
Th $< 10^{-12}$ g/g (4 uBq/kg)
 238 U $< 10^{-12}$ g/g (12 uBq/kg)
 40 K $< 10^{-12}$ g/g (270 uBq/kg)

Crucial to have tools able to achieve that sensitivity

Acrylic material

Acrylic is a widely used material in many experiments in the physics of rare events

optical properties

mechanical properties

Jiangmen Underground Neutrino Observatory

Inverse Beta DecayReaction $\overline{\nu}+p \rightarrow e^+ + n$ Delayed signal (~ 200 μ s) **2.2MeV Y-ray**

JUNO Central Detector ~20 kton LS detector

Acrilic Vessel 12cm thickness Diameter: 35.5

It is crucial to carefully select acrylic material at ~ppt level of contamination (238U,232Th, 40K) in order to reduce the accidental rate in the active volume of the detector

Acrylic samples

Samples received from China from **3 different companies**

Each company has produces the samples from sheets of 2 cm or 12 cm thickness

Company A

2 cm sheet production: 7 samples 248×248×20 mm3


Company B1

from 12 cm sheet production (panel surface):7 samples 248×248×20 mm3

Company B2

from 12 cm sheet production (panel centre):

7 samples 248×248×20 mm3

Company C

from 12 cm sheet production (panel centre):

7 samples 248×248×20 mm3

Available radioassay techniques @INFN-MIB

HPGe Spectroscopy*

Sensitivity on Th and U: ~ 10 mBq/kg

Bulk contaminations

γ emitting nuclides

Large amount of materials: few tens of kg

Alpha spectroscopy*

Sensitivity: 10⁻⁶Bq/cm²

α emitting nuclides

Surface contaminations

Neutron Activation Analysis

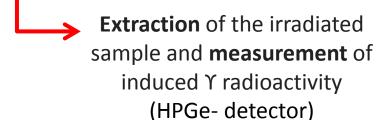
Sensitivity on Th and U: ~ uBq/kg

Bulk contaminations

Primordial parents

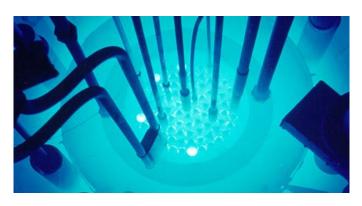
Sample of few tens of g

*needs counting times from several weeks to months


Neutron Activation Analysis (NAA)

The neutron activation process consists in the production of unstable isotopes through neutrons absorption by the nuclei present in the sample

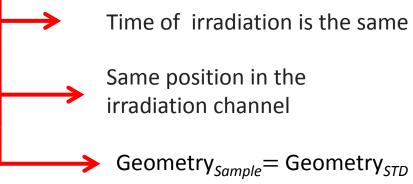
$${}^{A}X+\mathrm{n} \rightarrow {}^{A+1}X \xrightarrow{\beta^{-}} {}^{A+1}Z^{*} \rightarrow {}^{A+1}Z+\gamma$$


The NAA technique consists of several steps:

Sample **exposure** to a neutron flux

Calculation of the quantity of precursor element $({}^{A}X)$

NAA key parameters:

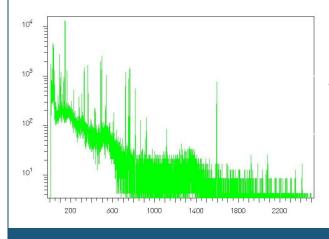

Reaction cross section
Efficiency HPGe-detector
Neutron Flux
Irradiation Time
y emission and BR

Neutron Activation Analysis

Comparative method

Sample and a reference Standard are prepared and irradiated

STD containing a known amount of the element to be measured



Geometry_{Sample} = Geometry_{STD} Geometry and size must be similar $T_{irr-Sample} = T_{irr-STD}$

Neutron Flux $\phi_{Sample} = \phi_{STD}$

Gamma spectroscopy - HPGe

 $Efficiency_{Sample} = Efficiency_{STD}$

The activities of samples and standards are compared

Sample trace analysis

Neutron Activation Analysis

Three key ingredients:

high neutron flux

$$\phi \approx 10^{12} \div 10^{13} cm^{-2} s^{-1}$$

high enough neutron capture cross section

$${}^{A}X + n \longrightarrow {}^{A+1}_{Z+1}Y + \gamma$$

"convenient"
daughter nucleus
(γ emission, half-life
time)

$$n + {}^{41}K \longrightarrow {}^{42}K \xrightarrow{\beta^{-}} {}^{42}Ca + \gamma(1524keV - BR 17\%)$$

$$n + {}^{238}U \longrightarrow {}^{239}U \xrightarrow{\beta^{-}} {}^{239}Np \xrightarrow{\beta^{-}} {}^{239}Pu + \gamma(106keV - BR26\%)$$

$$n + {}^{232}Th \longrightarrow {}^{233}Th \xrightarrow{\beta^{-}} {}^{233}Pa \xrightarrow{\beta^{-}} {}^{233}U + \gamma(311keV - BR38\%)$$

neutron exposure time

Sensitivity depends on:

interferences in the matrix

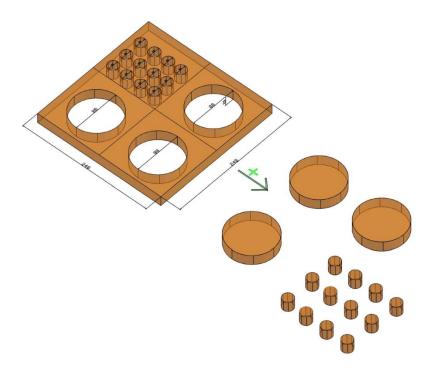
Care in the sample preparation is

background in the region of the gamma emission

extremely important!

Advantage:

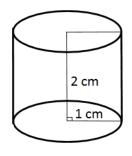
very high sensitivity :~ 1ppt


Disadvantage:

sensitive only to radioactive chain progenitors

Sample preparation: Laser cut

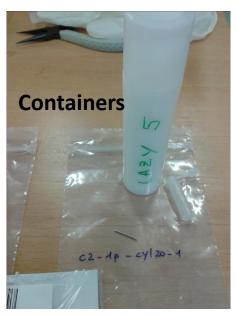
To avoid the risk of contaminating the samples, we used the laser cutting technique



Extreme care was put to avoid contact of the samples with dirty surfaces

Sample preparation in clean room

Acrylic samples washed several times in US bath (30°C) with MilliQ water in clean room 1000 atmosphere



Irradiation containers cleaned with ultra pure nitric acid solution (1%) in clean room 1000 atmosphere

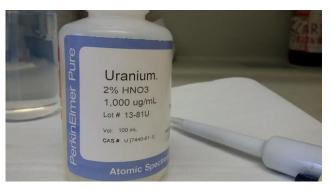
STD preparation

Liquid Standard (1mg/ml)

3 Vials for each STD (0.02ml)

3 Vials blank with water

Liquid standards prepared in separate containers from samples

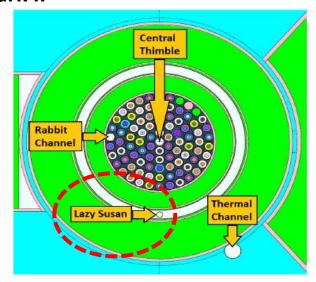

The vials were sealed and washed

Solid Standard:

Al-Co (Co 0.5%wt) wire standards put in every irradiation channel as a crosscheck of the results

Uranium

Thorium



Potassium

NAA irradiation campaigns TRIGA Mark II

Research reactor (250 kW) - Pavia, Italy

LAZY SUSAN facility:

Flux of neutrons: $\approx 10^{12} cm^{-2} s^{-1}$

Irradiation Time: 12 hours

LAZY SUSAN facility is a rotary specimen rack in a circular well within the radial reflector

40 irradiation channels available around the reactor core, 7 adjacent channels were used

Irradiation Channel	LS1	LS2	LS3	LS4	LS5	LS6	LS7
Sample/STD liquid	Α	STD2	B1	STD4	B2	STD6	С
STD solid	SS1	SS2	SS3	SS4	SS5	SS6	SS7

STD solid and samples were in the same channel

STD liquid and samples were in different channels to avoid contamination

Gamma spectroscopy

HPGe GePV

Beryllium Window

Relative efficiency: 25%

Coaxial geometry

Three detectors in Low background configuration

HPGe GeGEM

Coaxial geometry

Relative efficiency: 30%

HPGe GeKan

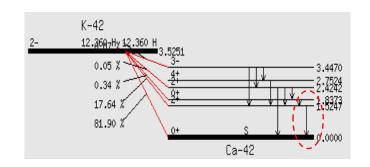
Coaxial geometry

Relative efficiency: 70%

HPGe BeGE

Planar geometry

Relative efficiency: 50%


Carbon Window

Broad Energy detector

NAA results: 40K

$$n + {}^{41}K \longrightarrow {}^{42}K \xrightarrow{\tau = 12,36} {}^{42}Ca$$

IsotopicAbbundace*K*:

$$K^{39} \rightarrow \sim 93\%$$

 $K^{40} \rightarrow \sim 0.01\%$
 $K^{41} \rightarrow \sim 7\%$

Υ-ray(keV) BR(%) 312.6 0.34 1524.6 17.64

Untreated samples

Sample	⁴⁰ K(ppt)
Α	0.7±0.3
B1	0.7±0.2
B2	0.7±0.2
С	0.9±0.2

limits @ 90% C.L.

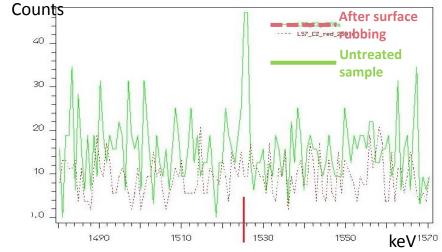
We checked the hypothesis that contamination is mainly located on surfaces of the samples.

We decide to remove a thin surface layer

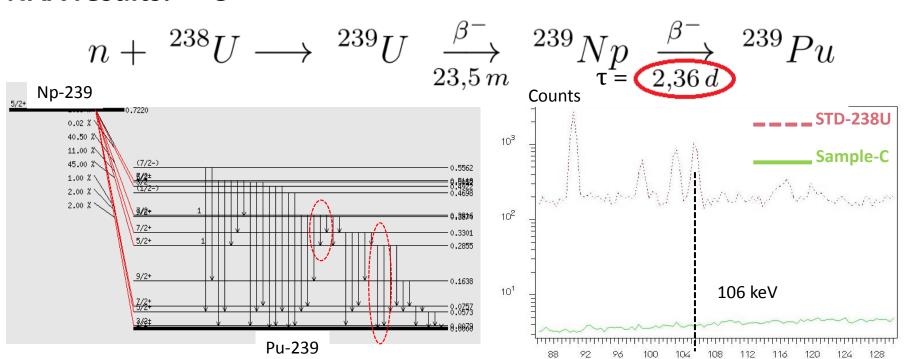
NAA results: 40K

Problem of surface handling!

Sample Mass(g)		Mass(g)
Α	6.1786	5.754
B1	6.973	5.6672
B2	6.9494	6.1678
С	7.2181	6.441


Untreated	After surface
samples	rubbing

Sample	⁴⁰ K(ppt)	⁴⁰ K(ppt)
Α	0.7±0.3	<0.1
B1	0.7±0.2	<0.5
B2	0.7±0.2	<0.4
С	0.9±0.2	<0.1


Sandpaper

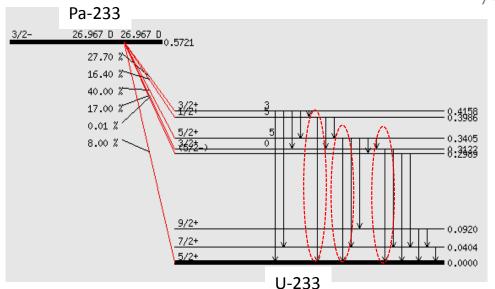
The contamination was concentrated on the sample surface!

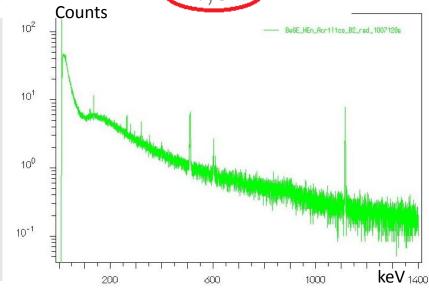
The reported limit on the presence of ⁴⁰K in acrylic are among the best ever achieved

NAA results: ²³⁸U

Υ-ray(keV)	BR(%)
10612	26.3
228.18	11.14
277.60	14.44

Measurements were carried out on 3 HPGe detectors


Sample	²³⁸ U(ppt)
A	<2.0
B1	<3.2
B2	<2.0
С	<0.7


limits @ 90% C.L.

keV

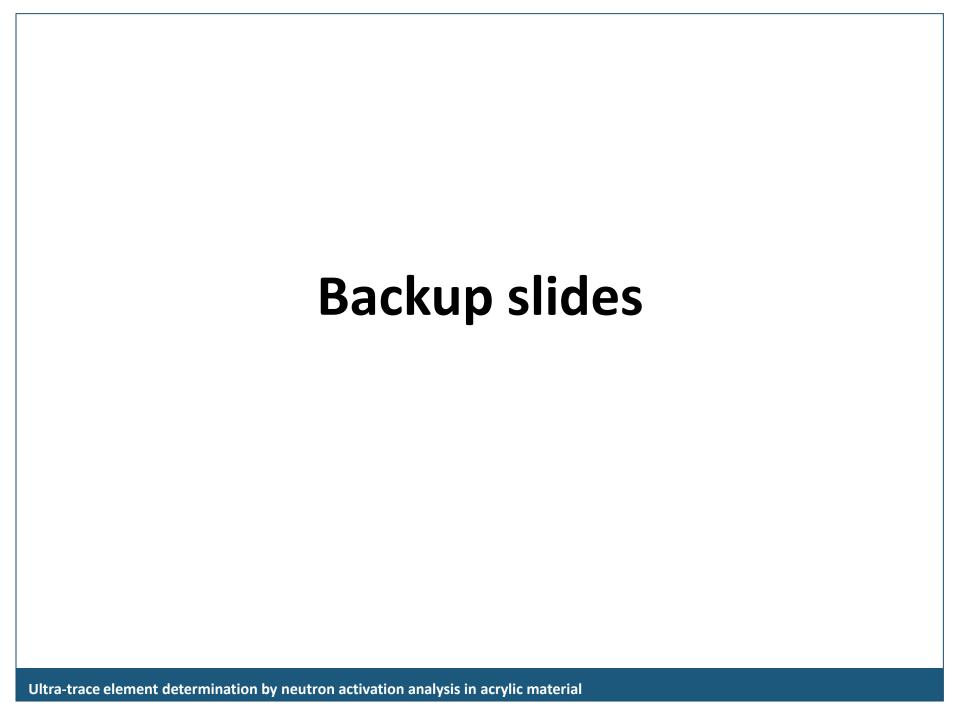
$$n + \stackrel{232}{\longrightarrow} Th \longrightarrow \stackrel{233}{\longrightarrow} Th \xrightarrow[22,3\,m]{\beta^-} \stackrel{233}{\longrightarrow} Pa \xrightarrow[\tau=(27,0\,d)]{\beta^-} \stackrel{233}{\longrightarrow} U$$

Υ-ray(keV)	BR(%)
300.13	6.63
311.90	38.5
340.48	4.45

Measurements were performed

~ 1 month after the irradiation

Sample	²³² Th(ppt)
Α	<2.9
B1	<2.4
B2	<2.5
С	<1.4


limits @ 90% C.L.

Conclusions

A methodology based on neutron activation analysis (NNA) combined with treatment of the sample surfaces has been developed to determine K, Th and U content in Acrylic samples

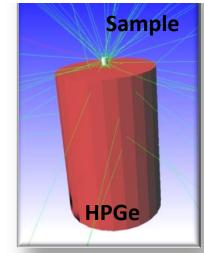
By this methodology:

- \rightarrow 10^{-12 g}/ $_g$ level has been achieved for ²³⁸U and ²³²Th
- \longrightarrow **10**⁻¹³ g/g level has been achieved for 40 K

Summary

		GePV Untreated	GePV treated	GeKan	GeGEM
Sample	STD	⁴⁰ K(ppt)	⁴⁰ K(ppt)	⁴⁰ K(ppt)	⁴⁰ K(ppt)
Α	2	0.7±0.3	<0.1	<0.1	
B1	2	0.7±0.2	<0.5		<0.2
B1	4	0.7±0.2	<0.5		<0.2
B2	4	0.7±0.2	<0.4		<0.4
B2	6	0.7±0.2	<0.4		<0.4
С	6	0.9±0.2	<0.1	<0.1	

		GeKan	GeGEM	BeGE
Sample	STD	²³⁸ U(ppt)	²³⁸ U(ppt)	²³⁸ U(ppt)
Α	2	<2	<2	
B1	2	<7	<3	
B1	4	<8	<3	
B2	4		<2	
B2	6		<2	
С	6	<1		<0.7


		GeKan	GeGEM	BeGE
Sample	STD	²³² Th(ppt)	²³² Th(ppt)	²³² Th(ppt)
Α	2	<3		<3
B1	2			<2
B1	4			<3
B2	4			<3
B2	6			<3
С	6		<3	<1

Measurements made with different standards are independent and are always compatible

STD solid

Channel	LS1	LS2	LS3	LS4	LS5	LS6	LS7
Sample/ STD liquid	Α	STD2	B1	STD4	B2	STD6	C
STD solid	SS1	SS2	SS3	SS4	SS5	SS6	SS7

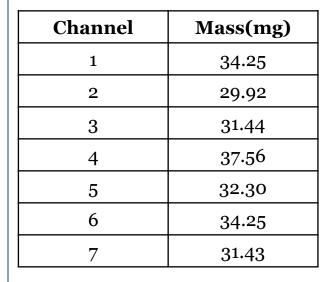
MC simulation

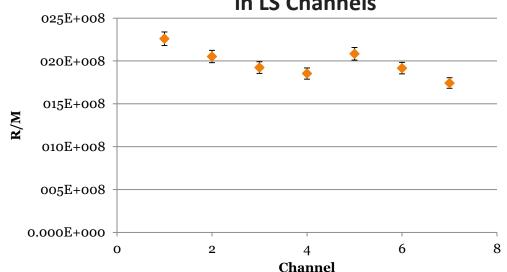
Al-Co wires

Integral flux

 σ_{eff} : calculated

from MCNP


Activation Rate



$$\Phi = \frac{R}{N\sigma_{eff}} \longrightarrow$$

 $\Phi = \frac{R}{N\sigma_{eff}} \longrightarrow R \sim n_{dec} = \frac{C_{meas}}{C_{sim}} n_{sim}$

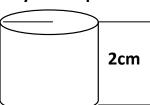
Verification of the uniformity of the flux in LS Channels

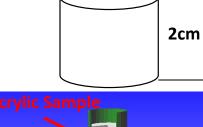
Reference: "Measurement and simulation of the neutron flux distribution in the TRIGA Mark II reactor core" Correspondig author: D.Chiesa

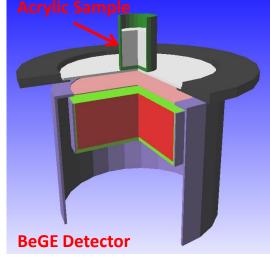
Efficiency: corrective factor

Acrylic Sample and STD liquid have a different geometry

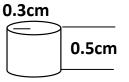
 $Efficiency_{Sample} \neq Efficiency_{STD}$

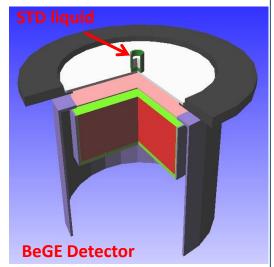



Corrective factor via MonteCarlo simulation



$$E_{Sample/STD} = \frac{Efficiency_{Sample}}{Efficiency_{STD}}$$





	GeGEM	GeKan	BeGE
$E_{Sample/STD}$	1.55	1.3	1.31

$$C_{Sample}\left(\frac{g}{g}\right) = I.A. \frac{Counts_{Sample}}{Counts_{STD}} \frac{C_{STD}M_{STD}}{M_{Sample}} \frac{e^{-\lambda T_{Wait-STD}}}{e^{-\lambda T_{Wait-Sample}}} \frac{\left(1 - e^{-\lambda T_{Mis-STD}}\right)}{\left(1 - e^{-\lambda T_{Mis-STD}}\right)} \left(E_{Sample}/S_{STD}\right)$$

NAA: preparation of irradiation (December 2015)

Samples were prepared together with the NAA standards for neutron irradiation in the **Central Thimble** (Flux of neutrons: $10^{13}cm^{-2}s^{-1}$)

Preparation of the standards inside quarz vials

84-19-19-19-2 (March 1)

Acrylic sample + standards in the irradiation containers (one per sample)

The Acrylic cylinders were destroyed!

Not a question of temperature inside the reactor core (~70-80 °C)