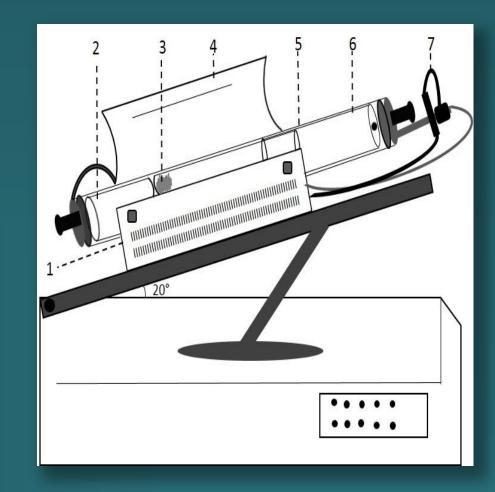
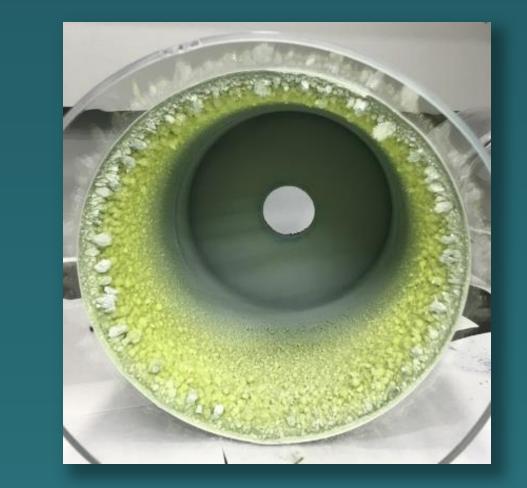
MoO3 PURIFICATION FOR SEARCHING ON NEUTRINOLESS DOUBLE BETA DECAY FOR AMORE

Olga Gileva^a, H.J Kim^b, H.K Park^a, Keonah Shin^a, Pabitra Aryal^{a,b}, Sujita Karki^{a,b}

a(On behalf of AMoRE collaboration) Institute for Basic Science, 70 Yuseong-daero 1689-gil, Yuseongu – Daejon, Korea ^bDepartment of Physics, Kyungpook National University, Daegu 41566, Republic of Korea

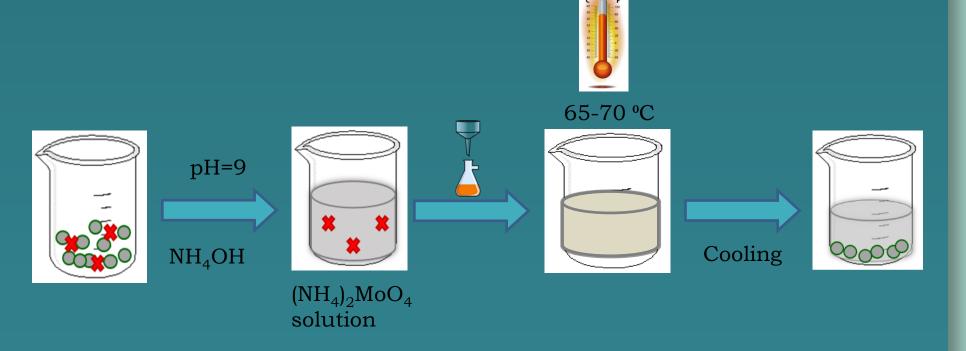

Motivation and introduction


- o The AMoRE (Advance Molybdenum Based Rare process Experiment) collaboration is using scintillating crystals containing molybdenum to search for neutrionoless double decay of ¹⁰⁰Mo.
- The sensitivity of the detector used by AMoRE is determined by the internal background in the region of expected peak.
- To reduce the internal background from scintillating crystal the radioactive isotopes, which contribute around 3.03 MeV (208Tl from the 232Th chain and ²¹⁴Bi among the ²²⁶Ra decay products in the ²³⁸U chain), must be removed from the raw materials.
- The objectives of present study is to develop the best purification method for MoO₃ powder along with high yield efficiency.
- Different purification techniques such as: Sublimation, Recrystallization and Co-precipitation are studied for removing radioactive contaminants.
- o The effectiveness of the purification techniques are checked with ICP-MS measurements and radioactivity from Ra, Th and U with HPGe detector at YangYang underground laboratory in Korea.

Experimental Procedure

Purification by sublimation

- Loading of MoO₃ powder (99.95%) in quartz tube.
- Loading quartz tube in sublimation machine.
- Operating the machine at 720 °C and vacuum condition (<10 mtorr)

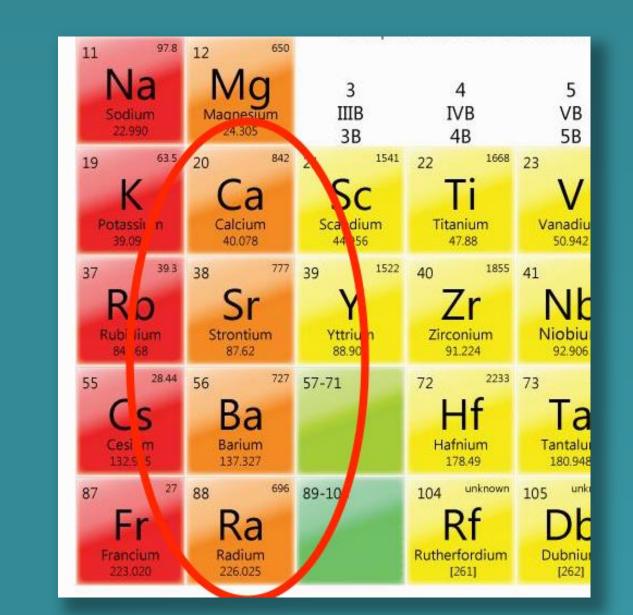


Schematic diagram of the experimental apparatus for MoO3 sublimation: (1) Heater; (2) Left quartz tube; (3) Sample in middle quartz tube; (4) Thermal cap; (5) Outer quartz tube; (6) Right quartz tube; (7) Nitrogen gas supply

MoO₃ powder after sublimation

Purification by recrystallization

- o MoO₃ dissolved in NH₄OH
- o Evaporation at the temperature of 65-70 °C.
- o Cooling of the solution at room temperature.
- Obtained product is PolyAmmonium Molybdate (PAM)



 $MoO_3 + 2 NH_4OH \rightarrow (NH_4)_2MoO_4 + H_2O$

 $7(NH_4)_2MoO_4 + 4H_2O \rightarrow (NH_4)_6Mo_7O_{24}.4H_2O + 8NH_4OH$

Purification by co-precipitation

- o Leaching MoO₃ in NH₄OH.
- o Adding carrier CaCl₂ at pH 9 to precipitate 3% Mo.
- Exposition of carrier in the solution for long time to occur post-precipitation.
- Separation of CaMoO₄ precipitate through filtration

 $(NH_4)_2MoO_4 + H_2O + CaCl_2 \rightarrow CaMoO_4 \downarrow + Ca(OH)_2 \downarrow + (NH_4)_2MoO_4 + NH_4Cl_4$

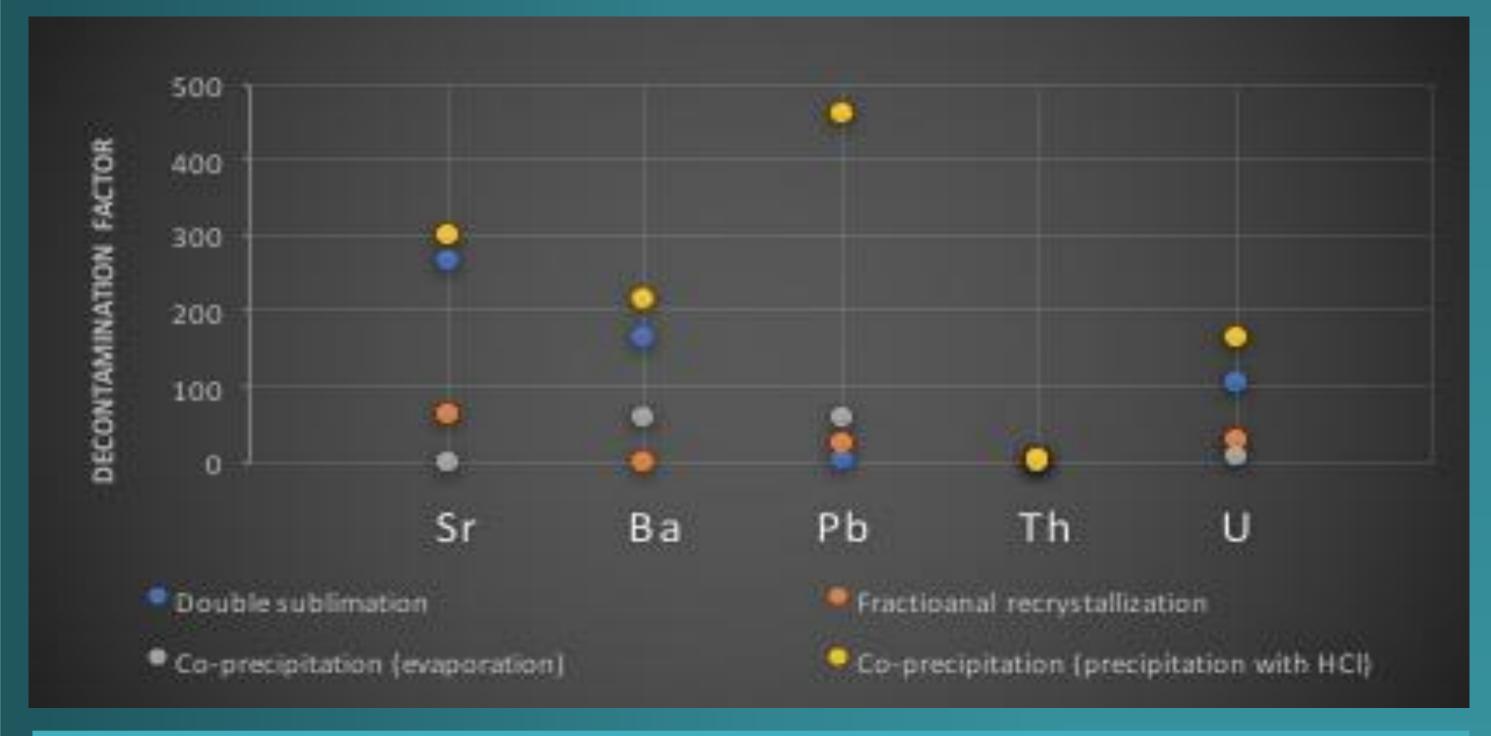
Obtaining of final product

Final product was obtained by two ways:

- 1. Complete evaporation of solution at 70 °C.
- 2. Precipitation of PAM by adding HCl.

Evaporation Precipitation of PAM PAM powder

 $(NH_4)_2MoO_4 + H_2O + HC1 \rightarrow (NH_4)_2Mo_4O_{13}.2H_2O + NH_4C1$


Results and Discussion

Effectiveness of MoO₃ purification by sublimation

Description	Sr, ppt	Ba, ppt	Pb, ppt	Th, ppt	U, ppt
Initial powder	23714	2829035	107027	91	7014
Single sublimation	930	123076	68853	<50	612
Decontamination Factor	25	23	2	>2	11
Double sublimation	89	17084	60296	<35	66
Decontamination Factor	266	166	2	>2	106

Effectiveness of MoO₃ purification by wet chemistry and sublimation

		Decontamination factors (DF)					
Elements	Initial Impurities (ppt)	Double sublimation	Fractional recrystallization	Co-precipitation (evaporation)	Co- precipitation (precipitation		
Sr	23714	266	61	0.5	with HCl) 301		
Ba	2829035	166	0.57	58	215		
Pb	107027	2	23	60	462		
Th	91	≥2	≥2	≥0.63	≥3		
U	7014	106	27	6	≥164		

Samples	Ba	²³² Th	²³⁸ U	²²⁶ Ra (U)	²²⁸ Ac (Th)	⁴⁰ K
		ppt			mBq/kg	
$100 \mathrm{MoO}_3$	16,600	< 46	73	8.3	< 1	9
(99.997%)	11,400	< 61	149	3.8	< 0.8	36
Ini. MoO ₃	2,829,035	91	7,014	1,627	851	725.48
Single Sub.	123,076	< 50	611.8	124.7	49.9	73.84
Double sub.	17,084	< 35	66.09	20.56	6.73	74.80

o The most effective purification technique is co-precipitation with CaCl₂ as a carrier and successive precipitation with HCl from acidic media. Next one is double sublimation which is characterized high efficiency above 99%. Combination of sublimation and wet chemistry technique is very promising way to achieve purity level below enriched ¹⁰⁰MoO₃ powder