On multicolor extremal problems

Tuesday, 21 December 2021 15:30 (25 minutes)

We study a natural generalization of the well-studied Turl'an problems, known as multicolor Turl'an problems, which was first introduced and nurtured by Keevash, Saks, Sudakov, and Verstra\"\{e\}te. A simple k-coloring of a multigraph G is a decomposition of the edge multiset as a disjoint sum of k simple graphs which are referred as \emph\{colors\}. A subgraph H of a multigraph G is called $\backslash e m p h\{m u l t i c o l o r e d\}$ if all of its edges have distinct colors. The multicolor extremal number, $\operatorname{ex}_{k}(n, H)$, is defined as the maximum number of edges in an n-vertex multigraph that has a simple k-coloring containing no multicolored copy of H.
Two natural constructions for this problem are as follows: When $k<e(H)$, it is clear that the unique extremal construction comes from k copies of the complete graph. Even when $k \geq e(H)$, one can consider the multigraph consisting of $e(H)-1$ copies of the complete graph. A second natural construction is to take the sum of k copies of a fixed extremal H-free graph. Keevash, Saks, Sudakov, and Verstra\"\{e\}te showed that the multicolor extremal problem always admits one of the two natural constructions when H is a complete graph of any fixed order. Moreover, they conjectured the same for every color-critical graphs and proved it for 3-color-critical graphs.
We prove their conjecture for 4-color-critical graphs and for 'most' r-color-critical graphs when $r>4$. Moreover, we show that for every non-color-critical non-bipartite graphs, none of the two natural constructions is extremal for certain values of k. This answers a question of Keevash, Saks, Sudakov, and Verstra\"\{e\}te.

Primary authors: CHAKRABORTI, Debsoumya (Institute for Basic Science); KIM, Jaehoon (KAIST); LEE, Hyunwoo (KAIST); LIU, Hong (University of Warwick); SEO, Jaehyeon (KAIST)

Presenter: SEO, Jaehyeon (KAIST)
Session Classification: Session

