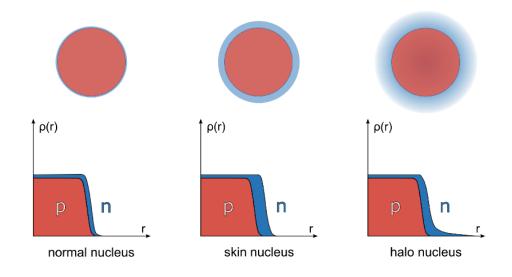
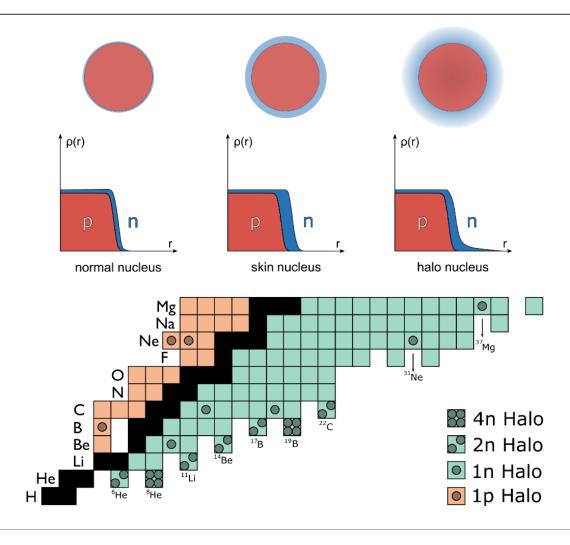
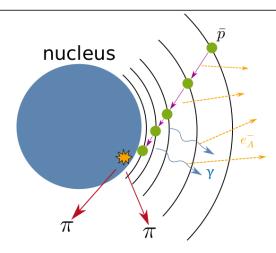
The PUMA (antiProton Unstable Matter Annihilation) Experiment at CERN

<u>Frank Wienholtz</u> for the PUMA Collaboration Technische Universität Darmstadt, Institut für Kernphysik

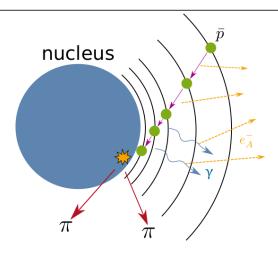

EMIS 2022

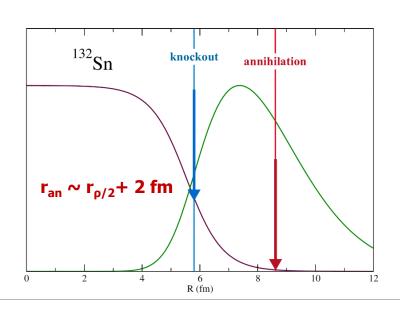
03 - 07 October 2022


Scientific Motivation: Halos and Skins

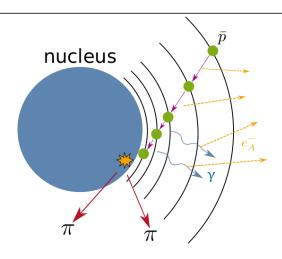


Scientific Motivation: Halos and Skins





- \overline{p} captured in excited antiprotonic orbital
- Decay via emission of Auger e⁻ and X-rays



- \overline{p} captured in excited antiprotonic orbital
- Decay via emission of Auger e⁻ and X-rays
- Annihilation in the tail of nuclear density
 → emission of pions


antiproton-p	roton	antiproton-neutron			
Pion final state	Branching	Pion final state	Branching		
$\pi^0\pi^0$	0.00028	$\pi^-\pi^0$	0.0075		
$\pi^0\pi^0\pi^0$	0.0076	$\pi^- k \pi^0 (k > 1)$	0.169		
$\pi^0\pi^0\pi^0\pi^0$	0.03	$\pi^{-}\pi^{-}\pi^{+}$	0.0023		
$\pi^+\pi^-$	0.0032	$\pi^{-}\pi^{-}\pi^{+}\pi^{0}$	0.17		
$\pi^{+}\pi^{-}\pi^{0}$	0.069	$\pi^-\pi^-\pi^+k\pi^0(k>1)$	0.397		
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	0.093	$\pi^{-}\pi^{-}\pi^{-}\pi^{+}\pi^{+}$	0.042		
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	0.233	$\pi^{-}\pi^{-}\pi^{-}\pi^{+}\pi^{+}\pi^{0}$	0.12		
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	0.028	$\pi^-\pi^-\pi^-\pi^+\pi^+k\pi^0(k>1)$	0.066		
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	0.069	$\pi^-\pi^-\pi^-\pi^-\pi^+\pi^+\pi^+k\pi^0 (k \ge 0)$	0.0035		
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}$	0.196				
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	0.166				
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	0.042				
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	0.021				
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}$	0.019				

- p̄ captured in excited antiprotonic orbital
- Decay via emission of Auger e⁻ and X-rays
- Annihilation in the tail of nuclear density
 → emission of pions

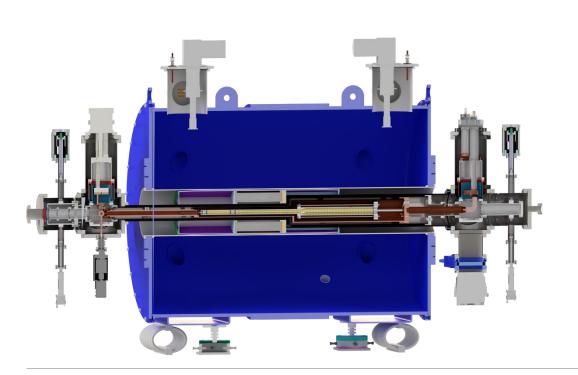
$$\sum_{\pi} q_{\pi} = \begin{cases} 0 \text{ for } \overline{p}p \\ -1 \text{ for } \overline{p}n \end{cases}$$

Transport antiprotons from the Antimatter Factoy (ELENA) to ISOLDE at CERN

- Transport antiprotons from the Antimatter Factoy (ELENA) to ISOLDE at CERN
- Store 10⁹ antiprotons with storage time > 30 days
 - \rightarrow initial benchmark with 10⁷ antiprotons

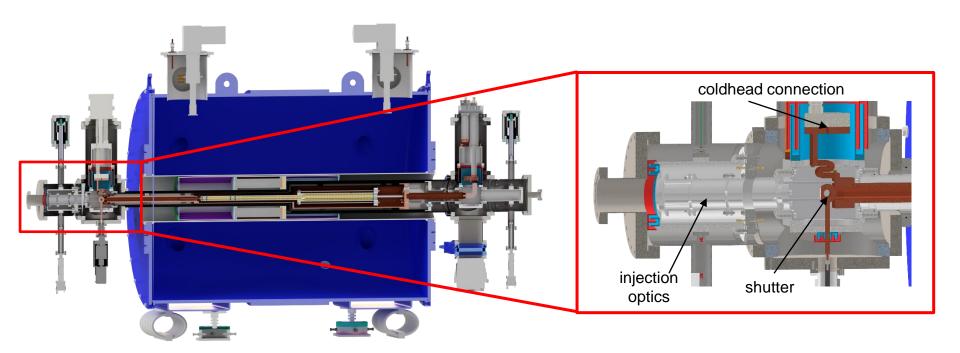
- Transport antiprotons from the Antimatter Factoy (ELENA) to ISOLDE at CERN
- Store 10⁹ antiprotons with storage time > 30 days
 - → initial benchmark with 10⁷ antiprotons
- Capture low-energy ions at ISOLDE (< 100 eV)

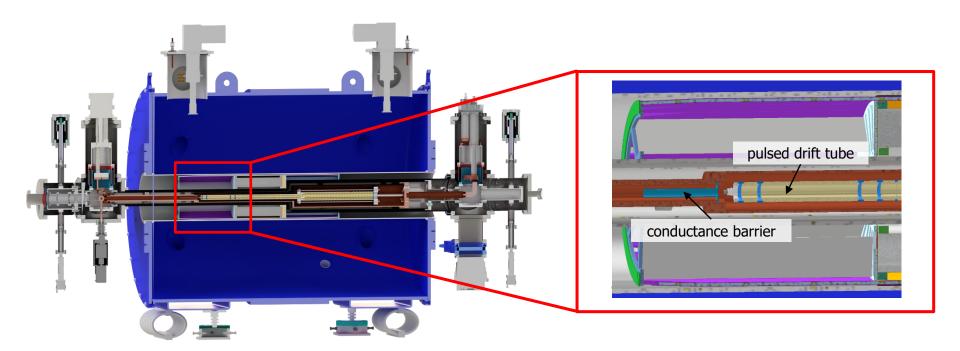
- Transport antiprotons from the Antimatter Factoy (ELENA) to ISOLDE at CERN
- Store 10⁹ antiprotons with storage time > 30 days
 - → initial benchmark with 10⁷ antiprotons
- Capture low-energy ions at ISOLDE (< 100 eV)
- Measure and identify charged pions resulting from annihilation
 - → neutron-to-proton annihilation ratio



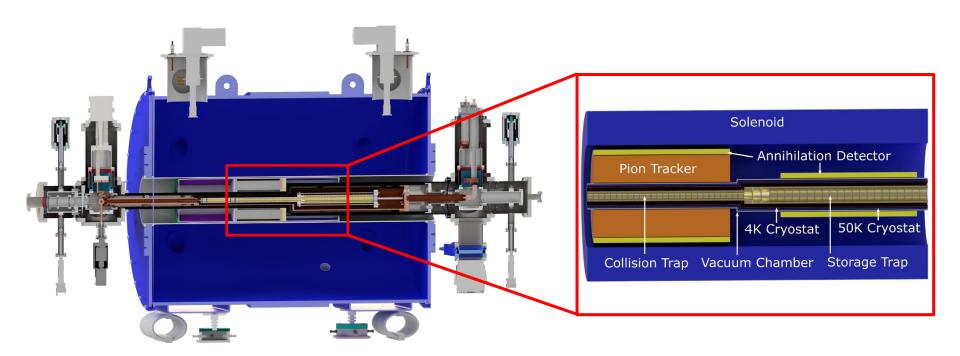
- Transport antiprotons from the Antimatter Factoy (ELENA) to ISOLDE at CERN
- Store 10⁹ antiprotons with storage time > 30 days
 - → initial benchmark with 10⁷ antiprotons
- Capture low-energy ions at ISOLDE (< 100 eV)
- Measure and identify charged pions resulting from annihilation
 - → neutron-to-proton annihilation ratio
- Accepted in 2021 as new experiment at CERN

- Antiproton storage time and measurements limited by residual gas pressure
 - \rightarrow cyrogenic double-trap assembly, 20 particles per cm³ (~10⁻¹⁷ mbar)

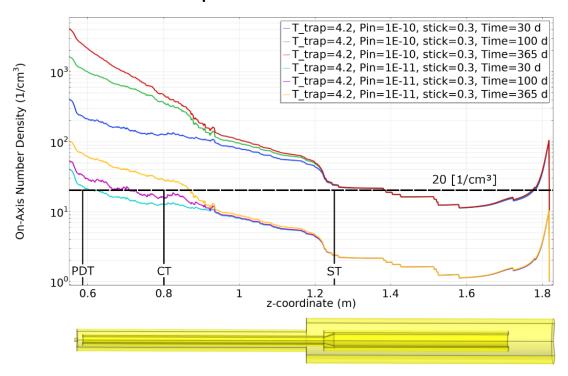




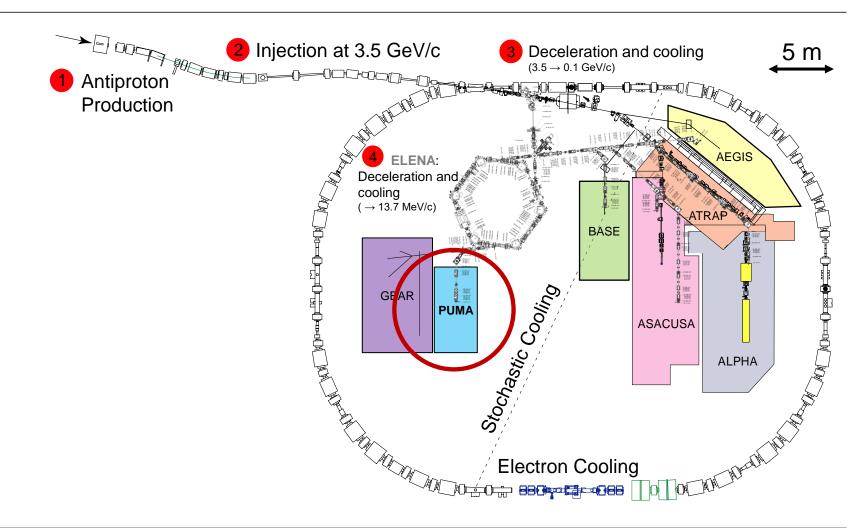
- Antiproton storage time and measurements limited by residual gas pressure
 - \rightarrow cyrogenic double-trap assembly, 20 particles per cm³ (~10⁻¹⁷ mbar)



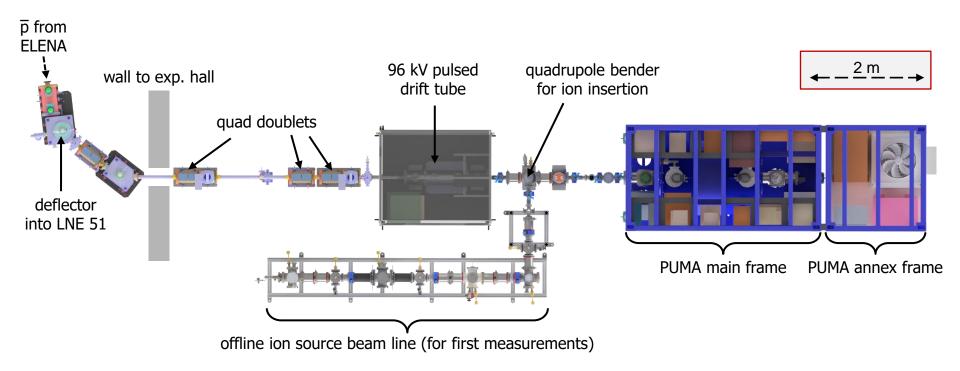
- Antiproton storage time and measurements limited by residual gas pressure
 - \rightarrow cyrogenic double-trap assembly, 20 particles per cm³ (~10⁻¹⁷ mbar)


- Antiproton storage time and measurements limited by residual gas pressure
 → cyrogenic double-trap assembly, 20 particles per cm³ (~10⁻¹⁷ mbar)
- Time-projection chamber and plastic scintillator barrel as detection setup

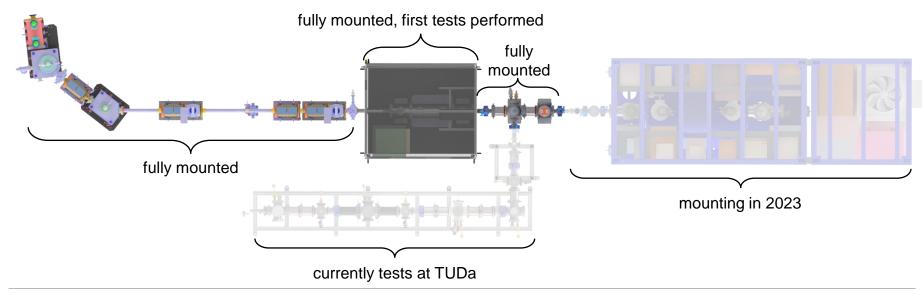
The PUMA Experimental Setup

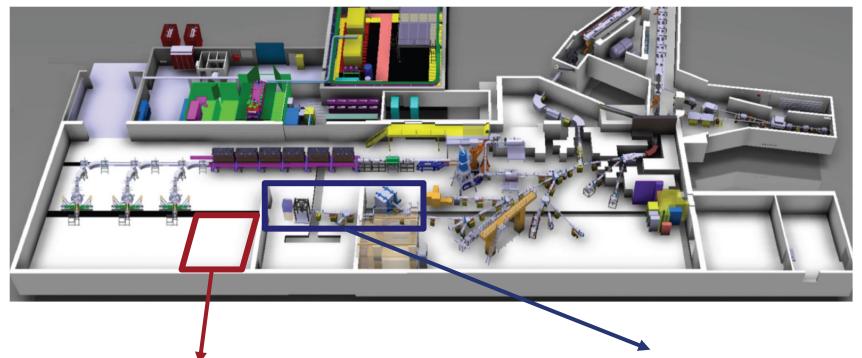


- Antiproton storage time and measurements limited by residual gas pressure
 → cyrogenic double-trap assembly, 20 particles per cm³ (~10⁻¹⁷ mbar)
- Time-projection chamber and plastic scintillator barrel as detection setup


The Antimatter Factory

Experimental Setup at ELENA


Current Status at ELENA



PUMA at ISOLDE

beamline at ISOLDE under design

PUMA experimental zone XHV (10⁻¹¹ mbar)

low-energy beamline isotopic selection and bunching UHV (10-8 mbar)

First Physics Cases

- at ELENA: investigation of neutron skin evolution of stable isotopic chains
 - gas ionization source: ³⁶⁻⁴⁰Ar, ^{128-132,134,136}Xe
 - laser ablation source: ⁴⁰⁻⁴⁸Ca, ¹¹⁰⁻¹²⁶Sn, ²⁰⁸Pb

First Physics Cases

- at ELENA: investigation of neutron skin evolution of stable isotopic chains
 - gas ionization source: ³⁶⁻⁴⁰Ar, ^{128-132,134,136}Xe
 - laser ablation source: ⁴⁰⁻⁴⁸Ca, ¹¹⁰⁻¹²⁶Sn, ²⁰⁸Pb
- at ISOLDE: investigation of thick skins and halos in unstable nuclei

Nucleus	Half-life T _{1/2}	Statistics (1 day of beam)	Expected ρ _n /ρ _p
⁶ He	807 ms	108	> 100 → neutron halo
⁸ He	119 ms	4·10 ⁷	$> 70(10) \rightarrow \text{thick skin}$
¹⁷ Ne	109 ms	10 ⁵	< 0.01 → proton halo

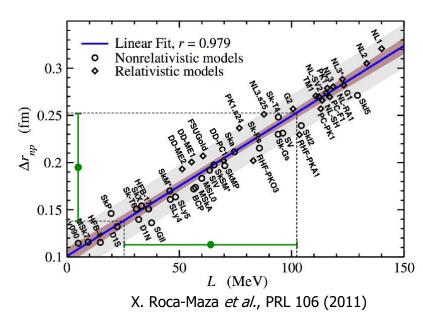
Summary

- PUMA provides new observable in neutron-to-proton ratio in nuclear density tail
- Fully transportable cryogenic Penning trap and detection setup
- Approved as official CERN experiment in 2021

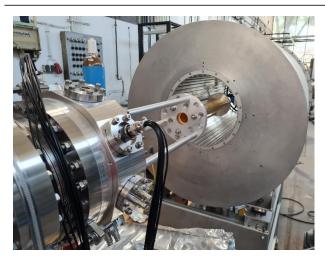
- Experiments with antiprotons and stable ions at ELENA
- Experiments with antiprotons and short-lived ions at ISOLDE

The PUMA Collaboration

T. Aumann, N. Azaryan, W. Bartmann, A. Bouvard, O. Boine-Frankenheim, A. Broche, F. Butin, D. Calvet, J. Carbonell, P. Chiggiato, H. De Gersem, R. De Oliveira, T. Dobers, F. Ehm, J. Ferreira Somoza, J. Fischer, M. Fraser, E. Friedrich, M. Gomez-Ramos, J.-L. Grenard, G. Hupin, K. Johnston, C. Klink, M. Kowalska, Y. Kubota, P. Indelicato, R. Lazauskas, S. Malbrunot-Ettenauer, N. Marsic, W. Müller, S. Naimi, N. Nakatsuka, R. Necca, D. Neidherr, A. Obertelli, Y. Ono, S. Pasinelli, N. Paul, E. C. Pollacco, L. Riik, D. Rossi, H. Scheit, M. Schlaich, R. Seki, A. Schmidt, L. Schweikhard, S. Sels, E. Siesling, T. Uesaka, M. Wada, F. Wienholtz, S. Wycech, C. Xanthopoulou, S. Zacarias



Scientific Motivation: Neutron Skins

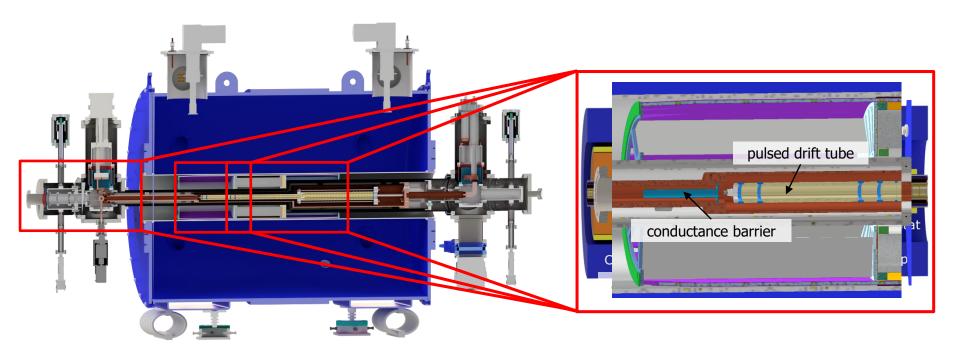

- Neutron skin thickness: $\Delta r_{np} = \langle r_n^2 \rangle^{1/2} \langle r_p^2 \rangle^{1/2}$
- Neutron skin thickness correlated to slope parameter L of nuclear EoS

$$\frac{E}{A}(\rho_n, \rho_p) = \frac{E_0}{A}(\rho) + S(\rho) \cdot \left(\frac{\rho_n - \rho_p}{\rho}\right) \quad \text{with} \quad L \propto \frac{\partial S(\rho)}{\partial \rho} \Big|_{\rho_0}$$

Current Status at TUDa

test setup with 3 T solenoid and RT trap

offline ion source beam line test stand


(see poster of Moritz Schlaich)

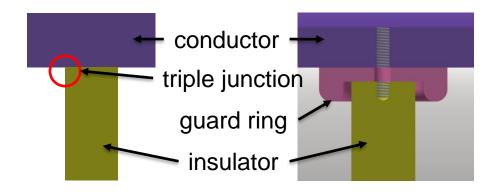
The PUMA Experimental Setup

- Antiproton lifetime and measurements limited by residual gas pressure
 - → cyrogenic double-trap assembly

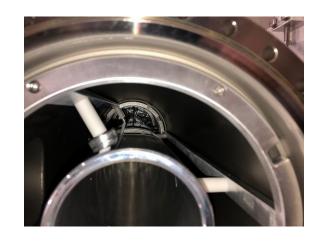
- τ [days] $\sim 6.10^{-16} \cdot T$ [K] / P [mbar]
- Time-projection chamber and plastic scintillator barrel as detection setup

Pulsed Drift Tube (PDT)

- ELENA gives us antiprotons with a kinetic energy of 100keV
- we need ~4keV to trap -> solution: pulsed drift tube
- put an electrode with -96kV to decelerate the antiprotons
- so the antiprotons are not re-accelerated we switch to 0V while particles are inside the electrode "without the particles noticing"

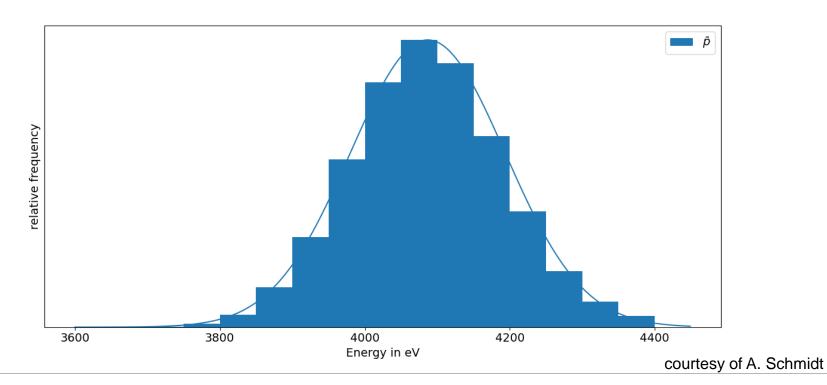

100 keV antiproton pulse
$$\varepsilon_{\text{transversal, in}} = 6\pi \text{ mm mrad} \frac{100 \text{ keV}}{-96 \text{ kV}} \cdot \varepsilon_{\text{transv, in}} = 30\pi \text{ mm mrad}$$
switch
$$\frac{100 \text{ keV}}{4 \text{ keV}} \cdot \varepsilon_{\text{transv, in}} = 30\pi \text{ mm mrad}$$

100 kV is a lot


challenges

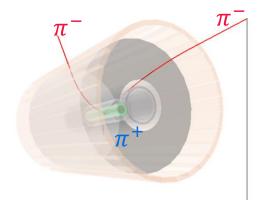
- good vacuum, $< 10^{-10}$ mbar
- personal safety
- electrical safety
- fast switching times, ~ 100 ns
- RC circuit, $\tau = RC$

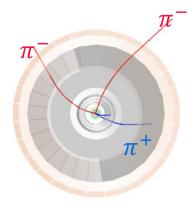
ansatz


- NEG, aluminium, Macor
- safety cage, interlock
- no edges, triple junctions
- MOSFET switch
- low resistance, high current

Deceleration

SIMION simulation, bunch $100 \text{ keV} \pm 100 \text{ eV}$ voltage drops exponentially with $\tau = RC \sim 50 \text{ ns}$ from -96kV energy spread (std) increases from 100eV to 107eV simulated trapping efficiency (geometrical and energy constraints) > 65%

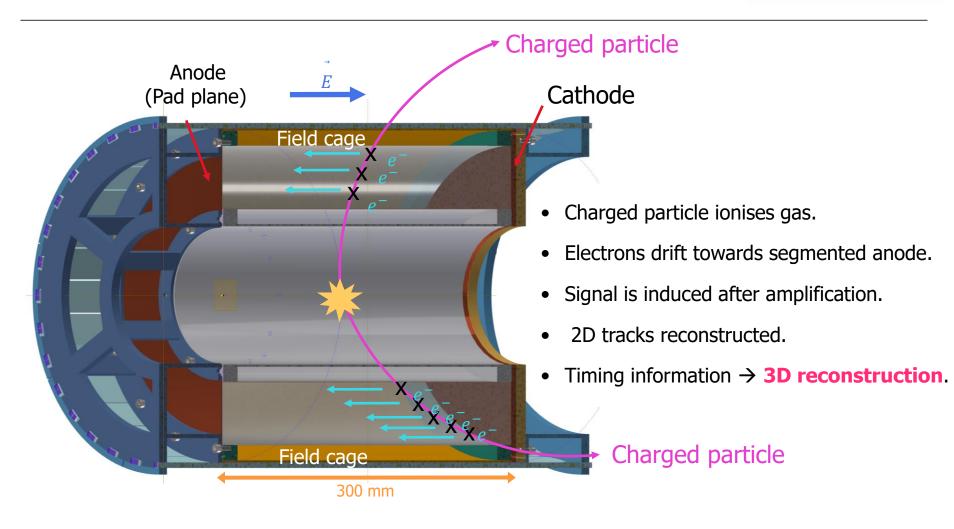

Pion detection with PUMA



Time Projection Chamber (TPC) & plastic scintillator barrel within a 4T magnet will be used.

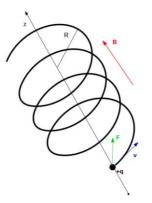
Requirements:

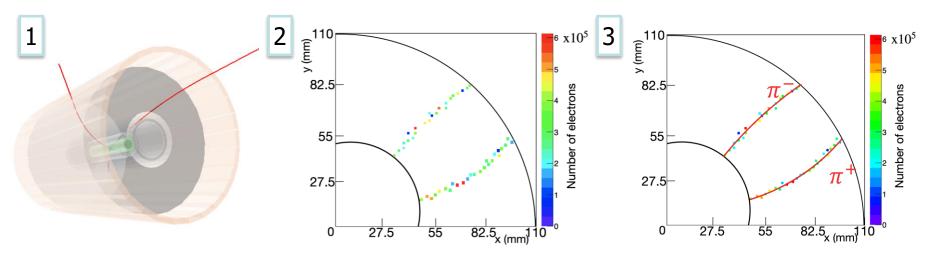
- Reliability (long term without maintenance).
- >60% detection efficiency.
- Resolution 400 μ m.
- E field = 200 V/cm (ie: Cathode @ -6kV).
- Field uniformity.
- Minimization of sparks and microsparks.



Typical event simulation with Geant 4

Time Projection Chamber (TPC) in a nutshell

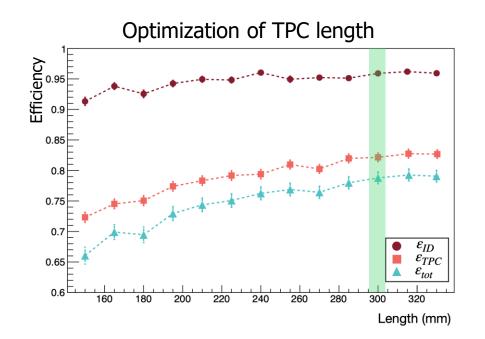

TPC Simulations



Performed with GEANT 4 and analysed with ROOT.*

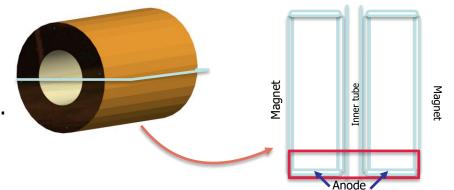
Main Steps:

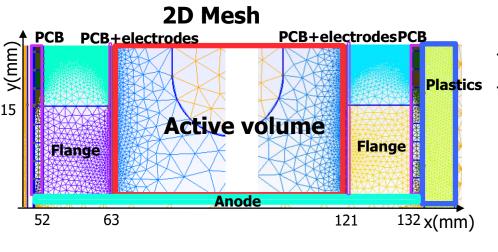
- 1. Generation of realistic events in the trap.
- 2. Drift of ionized electrons in the gas towards the signal collection pads.
- 3. Determination of the charge (π^+ / π^-) based on the curvature of the track.

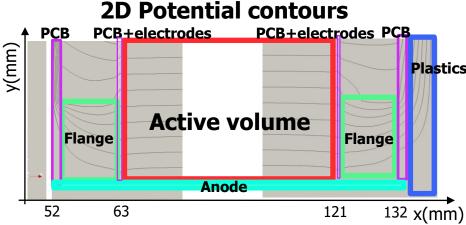


*Based on MINOS TPC simulation

TPC Simulations: Results

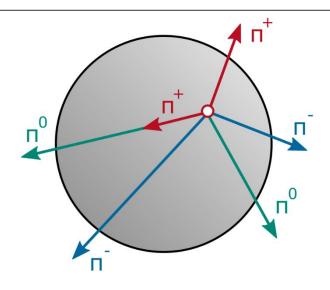

• Simulations carried out show 75% efficiency (pion detection + ID).


TPC Field cage



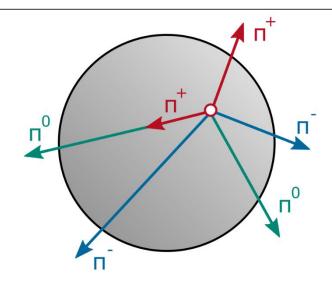
To be built by CERN (EP-DT).
 Field simulations:

- Geometry and meshing produced with Gmsh.
- Poisson's equation solved with **ElmerFem**.
- Electron drift simulated with Garfield++.



Final State Interactions (FSIs)

Initial state:


$$(\Pi^+,\Pi^-,\Pi^0) = (2,2,1)$$

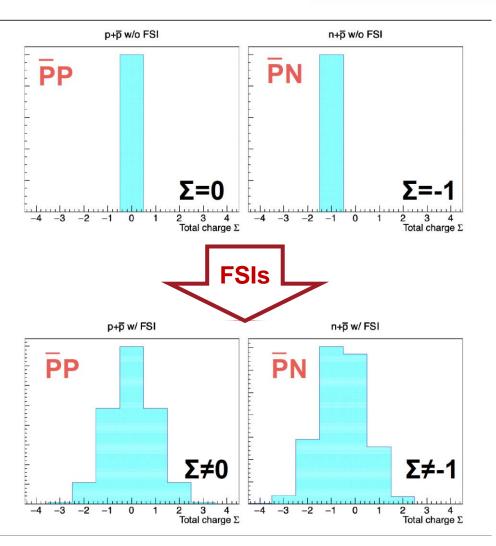
 $\Sigma = 0, M = 4$

Final state:

$$(\Pi^+,\Pi^-,\Pi^0) = (1,2,2)$$

 $\Sigma = -1, M = 3$

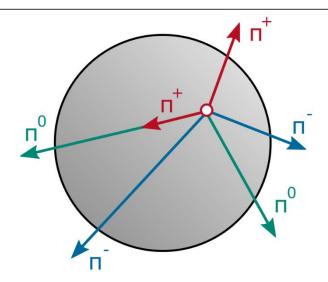
Final State Interactions (FSIs)



Initial state:

$$(\Pi^+,\Pi^-,\Pi^0) = (2,2,1)$$

 $\Sigma = 0, M = 4$


Final state:

$$(\Pi^+,\Pi^-,\Pi^0) = (1,2,2)$$

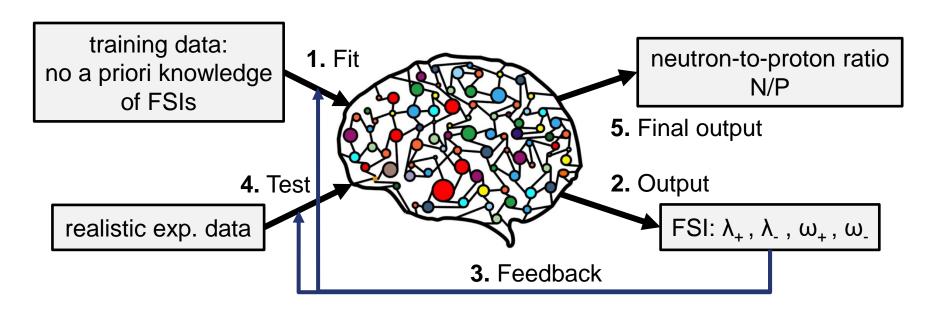
 $\Sigma = -1, M = 3$

Final State Interactions (FSIs)

4-parameter model of FSIs:

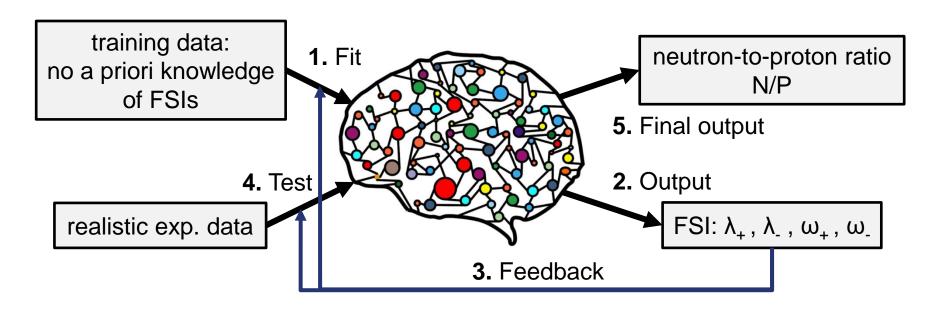
- $-\lambda_{+}, \lambda_{-}$: charge exchange reaction
- $-\omega_{+}, \omega_{-}$: absorption in residue
- → Statistical analysis of charged pion multiplicities

Neural Network Approach

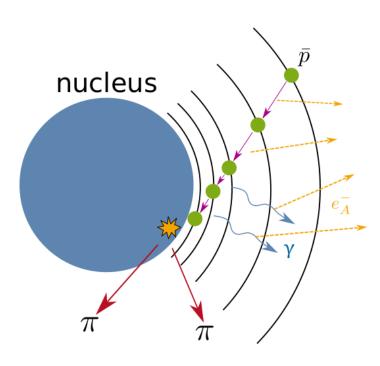

• Use M-Σ matrix as input data for statistical analysis via neural network

$M \setminus \Sigma$	-5	-4	-3	-2	-1	0	+1	+2	+3	+4
0	0	0	0	0	0	1384	0	0	0	0
1	0	0	0	0	2696	0	4079	0	0	0
2	0	0	0	1403	0	18331	0	2188	0	0
3	0	0	284	0	12946	0	13783	0	280	0
4	0	27	0	2993	0	23029	0	2035	0	18
5	2	0	313	0	6414	0	4189	0	111	0
6	0	21	0	634	0	2116	0	232	0	3
7	0	0	20	0	312	0	142	0	5	0
8	0	0	0	3	0	4	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0

Neural Network Approach


Use M-Σ matrix as input data for statistical analysis via neural network

Neural Network Approach



Use M-Σ matrix as input data for statistical analysis via neural network

- Benchmark tests on realistic intranuclear cascade model simulations
 - → precision of ~93 % and accuracy of ~92 % reached!

$$\sum_{\pi} q_{\pi} pprox \left\{ egin{array}{ll} 0 ext{ for } \overline{ extstyle p} \ -1 ext{ for } \overline{ extstyle p} \end{array}
ight.$$