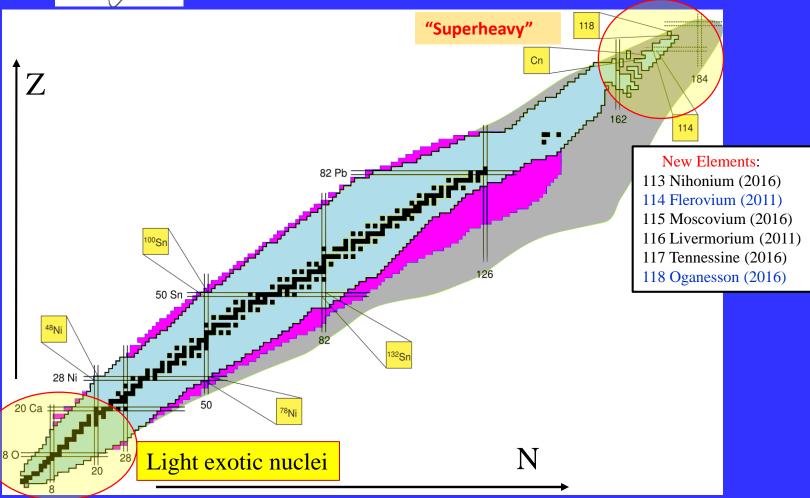
First experimental campaign at the new fragment separator ACCULINNA-2: superheavy ^{6,7}H isotopes elucidated

E. Yu. Nikolskii ^{1, 2} (on behalf of ACCULINNA group)

¹ Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions

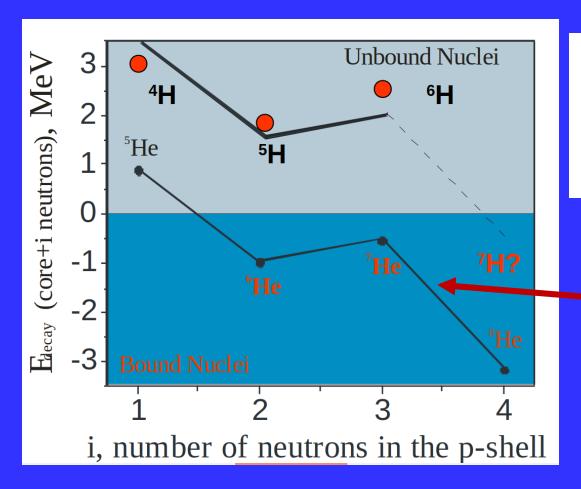
² National Research Center "Kurchatov Institute"

COLLABORATION:


- 3 Institute of Physics, Silesian University in Opava, Czech Republic
- 4 Bogolyubov Laboratory of Theoretical Physics, JINR, Dubna, Russia
- 5 GSI Helmholtzzentrum fur Schwerionenforschung, Darmstadt, Germany
 - 6 Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland
- 7 Skobel'tsyn Institute of Nuclear Physics, Moscow State University, Russia
 - 8 Faculty of Physics, University of Warsaw, Warsaw, Poland
- 9 Fundamental Physics, Chalmers University of Technology, Goteborg, Sweden
 - 10-All-Russian Research Institute of Experimental Physics, Sarov, Russia
 - 11 Ioffe Physical Technical Institute, St. Petersburg, Russia
 - 12 NSCL, Michigan State University, East Lansing, Michigan, USA

OUTLINE:

- Physics motivation. Light exotic nuclei near and beyond nucleon drip lines
 History of ⁷H, ⁶H research....
- New fragment separator ACCULINNA-2 at FLNR (JINR). Experimental setup
- Calibration by the ${}^{2}H({}^{10}Be, {}^{3}He){}^{9}Li$ and ${}^{2}H({}^{10}Be, {}^{4}He){}^{8}Li$ reactions with ${}^{10}Be$ beam
- Study of the ${}^{7}\text{H}$ system via ${}^{2}\text{H}({}^{8}\text{He}, {}^{3}\text{He}){}^{7}\text{H} \rightarrow t + 4\text{n}$. Two Runs. [A.A. Bezbakh et al., PRL 124, 022502 (2020); I. A. Muzalevskii et al, PRC 103, 044313 (2021)]
- Satellite study of the 6 H system via 2 H(8 He, 4 He) 6 H \rightarrow t + 3n [E.Yu. Nikolskii et al., PRC **105**, 064605 (2022)]
- Summary
- Looking ahead



Main areas of interest at FLNR, JINR

^{4.5}H, ⁶H, ⁷H) ⁷He, ^{8,9,10}He, ¹⁰Li, [⁶He+d], ⁶Be, ¹⁷Ne, ²⁷S

EXOTIC NUCLEI: Superheavy hydrogen isotopes ^{6,7}H

The largest A/Z ratio!!

Unique many-body neutron decay channels!!

"Helium anomaly"

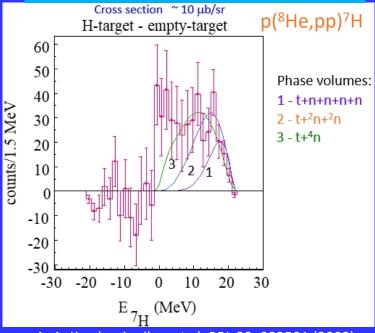
Theoretical calculations of ⁷H(t+4n) energy:

E = 0.87 MeV (7-body hyperspherical functions)
N.K. Timofeyuk, PRC 65 064306 (2002)

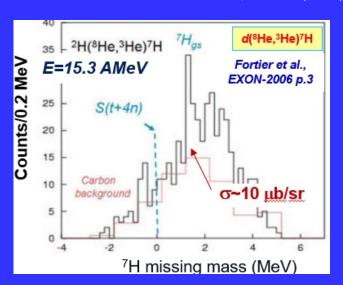
E = 3 MeV (7-body hyperspherical functions, p.s.e.)

A.A. Korsheninnikov et al., PRL 90 082501 (2003)

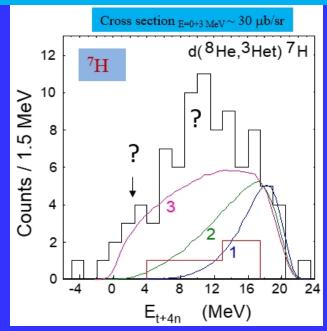
E = **7 MeV** (AMD) S. Aoyama and N. Itogaki, NP A738 362 (2004)

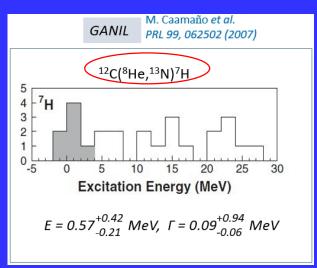

Estimation of width of 7 H: $\mathbf{E} \leq \mathbf{3} \; \mathbf{MeV} \Leftrightarrow \Gamma \leq \mathbf{1} \; \mathbf{MeV}$ M.S. Golovkov et al., PL B588 163 (2004)

New Result:

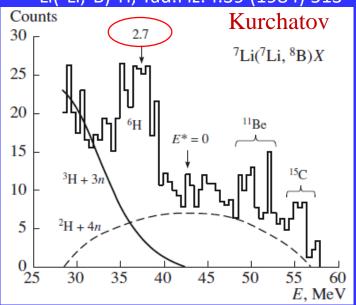

 $E \approx$ **9.5 MeV**, Γ = **3.5 MeV** (Variational Gaussian Expansion Approach) *E. Hiyama et al.*, PLB **833** 137367 (2022)

Experiments to search for ⁷H states

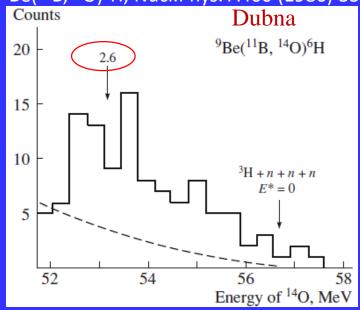

1st RIKEN experiment to search for ⁷H


A. A. Korsheninnikov et al. PRL 90, 082501 (2003)

2nd RIKEN experiment to search for ⁷H

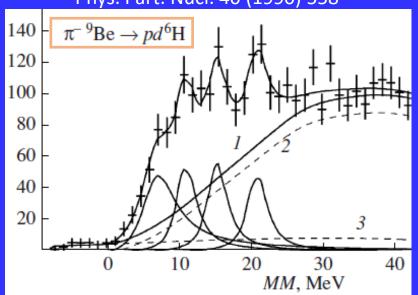


E.Yu.Nikolskii et al., PRC 81, 064606 (2010)

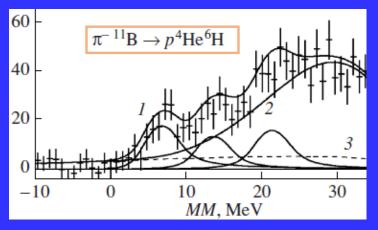


Experiment	LAB	Energy (AMeV)	Result	Cross section (μb/sr)	
p(⁸ He,pp)	RIKEN	61	Very sharp increase from threshold No resonance parameters	~ 30 (E ≤ 3 MeV)	
d(⁸ He, ³ He)	GANIL	15.3	Structure near 2 MeV No resonance parameters	_	
d(⁸ He, ³ He)	Dubna	25	Few events No resonance parameters	≤ 30 (E ≤ 3 MeV)	
¹² C(⁸ He, ¹³ N)	GANIL	15.3	7 events $E = 0.57^{+0.42}_{-0.21^{'}} \Gamma = 0.09^{+0.94}_{-0.06} \text{ MeV}$	40.1 ^{+58.0} _{-30.6}	
d(⁸ He, ³ He)	RIKEN new	42	Abnormal shape near threshold, shoulder at ~ 2 MeV No resonance parameters	~ 30 (E ≤ 3 MeV)	

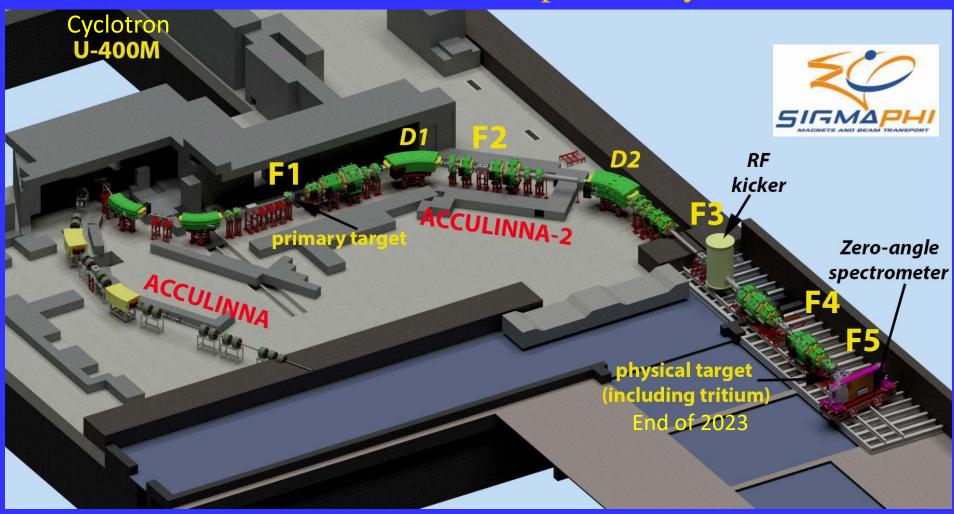
⁷Li(⁷Li,⁸B)⁶H, Yad.Fiz. т.39 (1984) 513

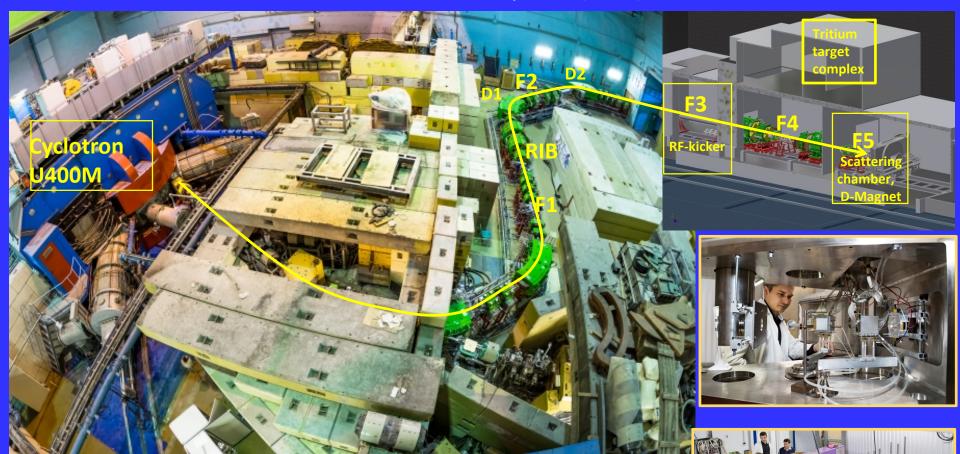


⁹Be(¹¹B,¹⁴O)⁶H, Nucl.Phys. A460 (1986) 352



⁶H history

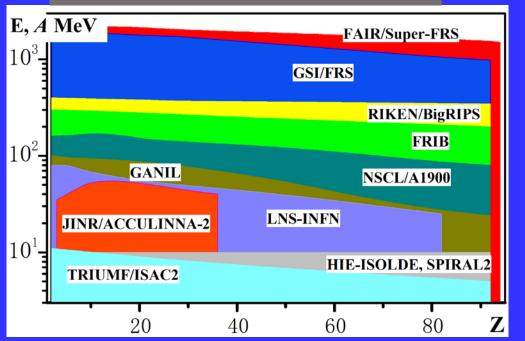

Phys. Part. Nucl. 40 (1990) 558


⁹ Be(π ⁻ ,	, <i>pd</i>) ⁶ H	$^{11}\text{B}(\pi^-, p^4\text{He})^6\text{H}$			
E_r , MeV*	Γ, MeV**	E_r , MeV	Γ, MeV		
6.6 ± 0.7	5.5 ± 2.0	7.3 ± 1.0	5.8 ± 2.0		
10.7 ± 0.7	4 ± 2	_	-		

ACCULINNA-2 separator layout

A.S. Fomichev et al., Eur. Phys. J. A (2018) 54: 97

2011: Contract signed with Sigma PHI


2016-17: Full commissioning + Beam

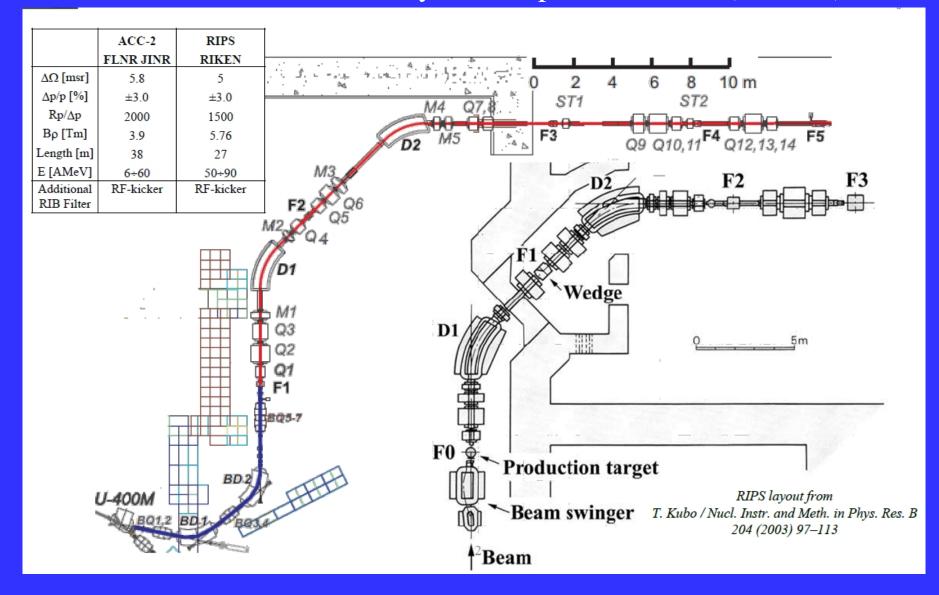
2018-2019: First experiments

2020-2022: Upgrade U400M cyclotron

ACCULINNA-2 and world RIBs centers

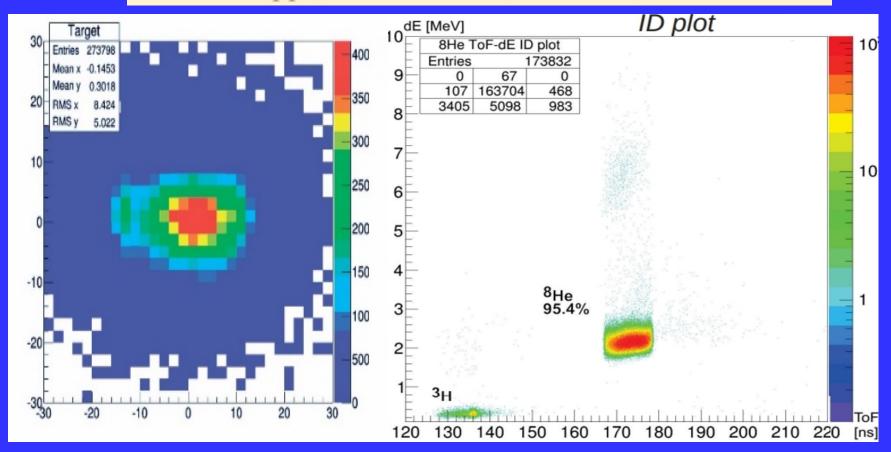
Primary beams for ACCULINNA-2:

	I, pμA
⁶ Li @ 46 AMeV	8
¹¹ B@ 33 AMeV	5
¹⁵ N @ 50 AMeV	2
²⁰ Ne @ 53 AMeV	1
³² S @ 52 AMeV	0.2

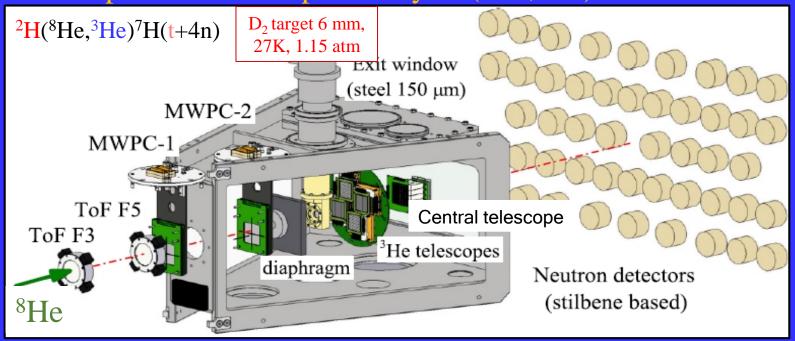

Secondary beams from ACCULINNA-2:

^{6,8} He @ 25÷35 AMeV						
^{9,11} Li @ 30 AMeV						
¹⁸ Ne @ 35 AMeV						
²⁸ S @ 38 AMeV						
In-flight separation						

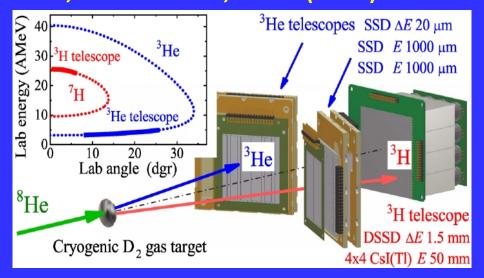
		ACC	ACC-2	LISE3	$ARIS^a$	RIPS	$\operatorname{BigRIPS}$
		FLNR,	JINR	GANIL	FRIB	RIKEN	
$\Delta\Omega$	msr	0.9	4.2	1.0	5.0	5.0	6.3
δ_P	%	2.5	6.0	5.0	10	6.0	6.0
$P/\Delta P$	a.u.	1000	2000	2200	4000	1500	3300
$B\rho_{max}$	Tm	3.2	3.9	3.2 - 4.3	8.0	5.76	9.0
Length	\mathbf{m}	21	37	19(42)	87	21	77
E_{\min}	AMeV	10	5	30	30^b	30	5^c
$E_{\rm max}$	AMeV	40	50	80	300	90	350

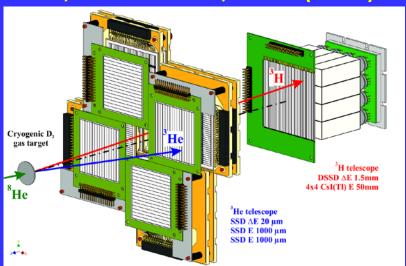

ACCULINNA-2 is comparable with RIPS, RIKEN

ACCULINNA-2 layout compared to RIPS (RIKEN)

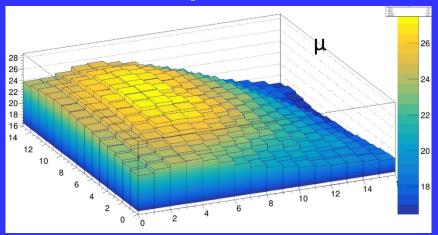


⁸He beam

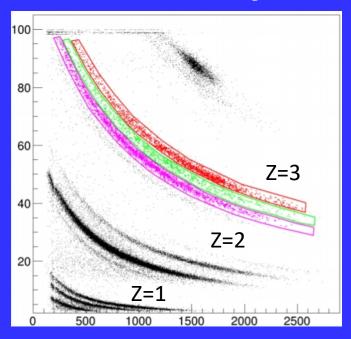

 $I \sim 3*10^5$ pps, $E \sim 26$ AMeV, P > 90%, Ø ~17 mm


Experimental setup to study ²H(⁸He, ³He)⁷H reaction

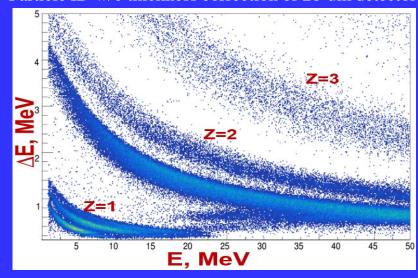
EXP 1, 2018 2 weeks, 107 ⁷H (³He+t) events

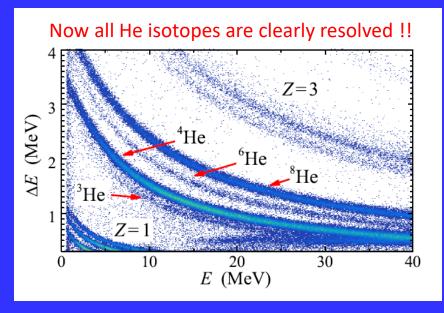


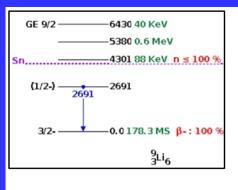
EXP 2, 2019 3 weeks, 404 ⁷H (³He+t) events



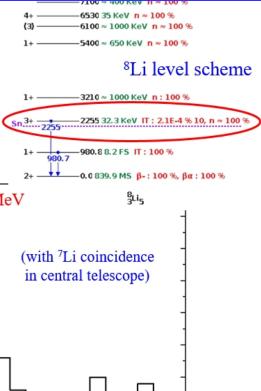
Identification of low-energy ³He is a difficult task!

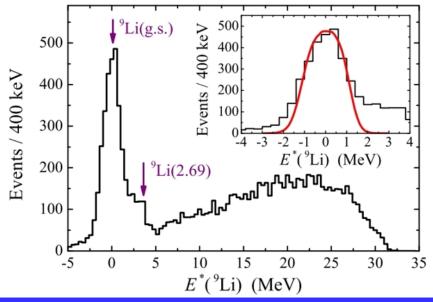

Measured thickness map of one of 20-um detector


Identification in central telescope (10Be beam)

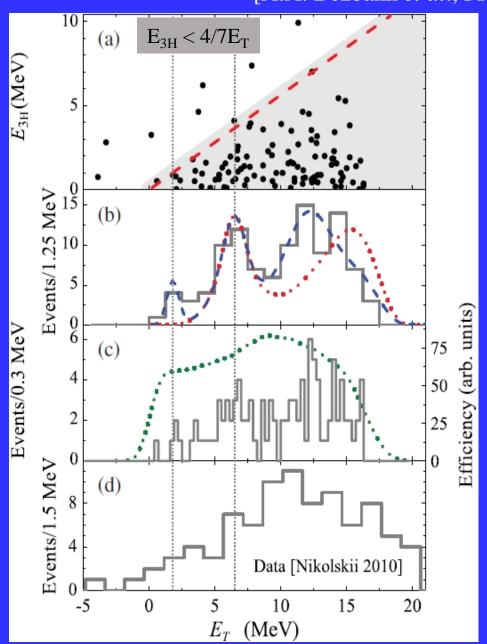

Particle ID w/o thickness correction of 20-um detector

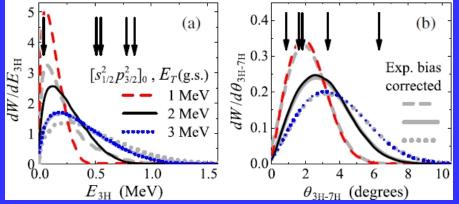
Particle ID after thickness correction of 20-um detector

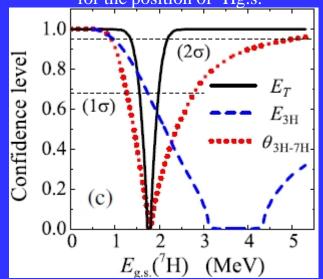



Test reactions ²H(¹⁰Be,³He)⁹Li and ²H(¹⁰Be,⁴He)⁸Li with 42 AMeV ¹⁰Be beam

Data for the reference reactions ²H(¹⁰Be, ³He)⁹Li and ²H(¹⁰Be, ⁴He)⁸Li:


* energy calibration and resolution for the missing mass spectra; ** detector efficiency;

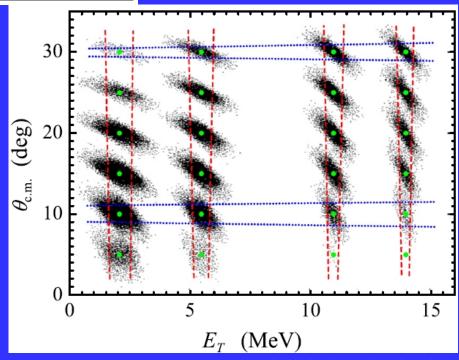



Detailed data of ⁷H of the 1st Run

[A.A. Bezbakh et al., PRL 124, 022502 (2020)]

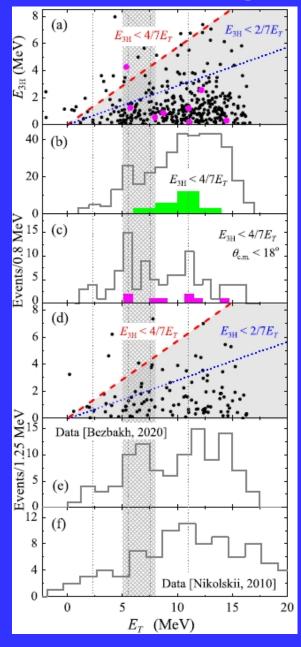
MC likelihood functions of confidence level for the position of ⁷Hg.s.

Indication of the $1/2^+$ g.s. of 7 H at E =1.8(5) MeV with cs \sim 25 µb/sr at θ cm $\simeq 17^{\circ}$ –27°.

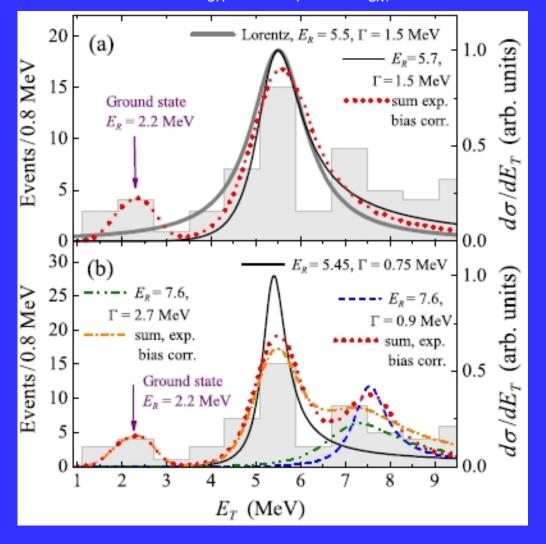

Conclusion after 1st Run:

- (I) For the first time, the 7 H excited state is observed at $E_{T} = 6.5(5)$ MeV with $\Gamma = 2.0(5)$ MeV. This state can be interpreted as the unresolved 5/2+ and 3/2+ doublet built upon the 2+ excitation of valence neutrons, or one of the doublet states.
- (ii) Indications for the ${}^{7}\text{Hg.s.}$ at $E_{T} = 1.8(5)$ MeV are found in the measured energy and angular distributions. The cross section obtained for the presumed ${}^{7}\text{Hg.s.}$ populated in the ${}^{8}\text{He}(d,{}^{3}\text{He}){}^{7}\text{H}$ reaction in the $\Theta_{CM} = 7^{\circ} 27^{\circ}$ is $\approx 25 \, \mu \text{b/sr.}$ This corresponds to a weak population of the g.s. with experimental SF ~ 0.1 , which clarifies why the previous searches for the ${}^{7}\text{Hg.s.}$ required so much time and efforts without bringing reliable assignments of such a remote isotope.

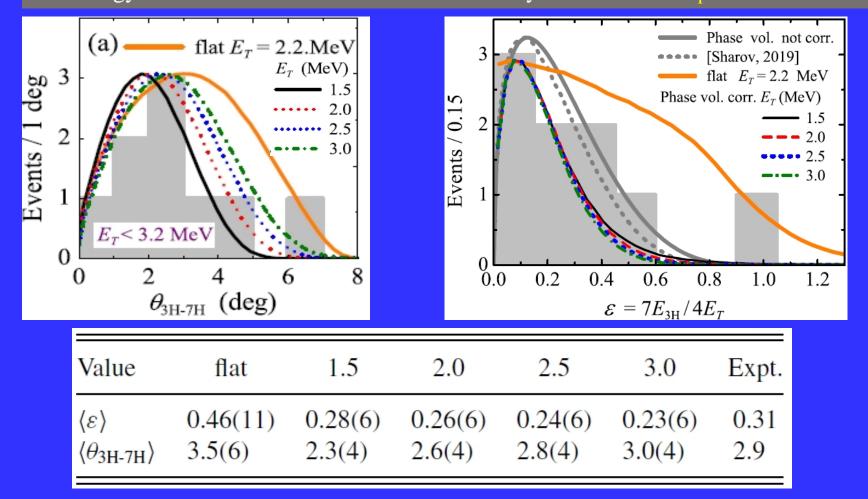
Monte Carlo calculations of the 7 H missing mass energy resolution over Θ_{CM} and 7 H energy


TABLE I. Experimental resolution in the second experiment as a function of the ^{7}H MM energy and center-of-mass angle $\theta_{c.m.}$ based on the MC simulations Fig. 8. The first and second values in each cell are the FWHM energy and the angular resolutions given in MeV and degrees, respectively.

E_T	2.2 MeV		5.5 MeV		11 MeV		14 MeV	
20°	1.10	1.6	0.93	1.8	0.64	2.2	0.38 0.52 0.69	2.6

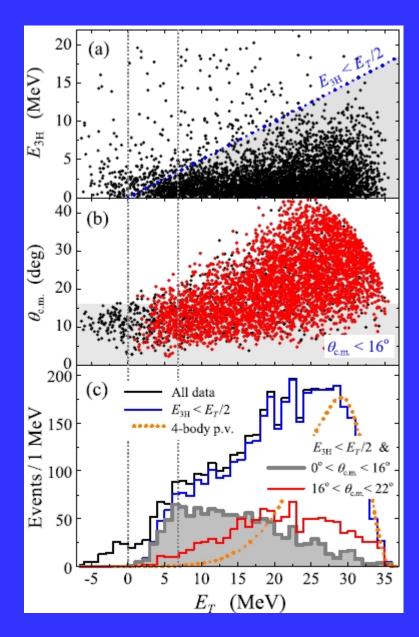


Detailed data of ⁷H of the 2nd Run

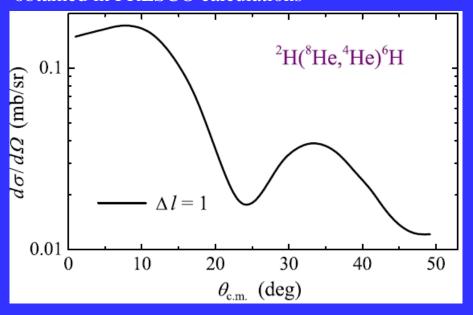

[I. A. Muzalevskii et al, PRC **103**, 044313 (2021)]

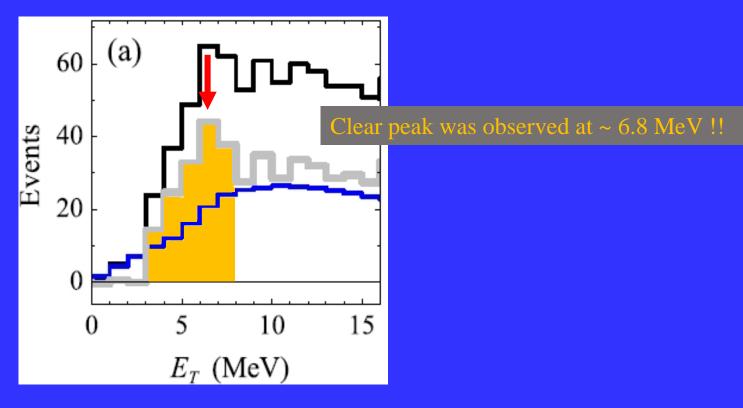
 7 H spectrum after $E_{3H} < 4/7E_{T}$ and $\Theta_{CM} < 18^{0}$ selections

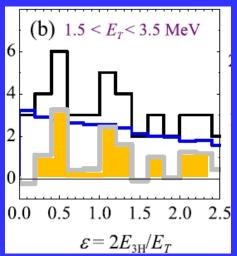
Additional support for the position of ${}^{7}\text{Hg.s.}$ at E = 2.2(5)MeV comes from the angular and energy distributions of tritons from the ${}^{7}\text{H}$ decay for the events $E_{T} < 3.2 \text{ MeV}$

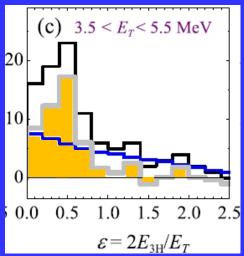


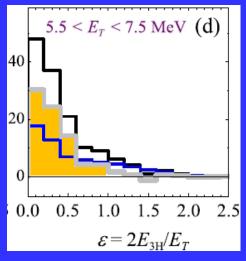
The value ε is consistent with $E_T < 2.2$ MeV. The best fit to the experimental $<\theta_{3H}^{-7}H>$ value is obtained at $E_T = 2.6(7)$ MeV. Both values are consistent with $E_T = 2.2(5)$ MeV inferred from the MM data.

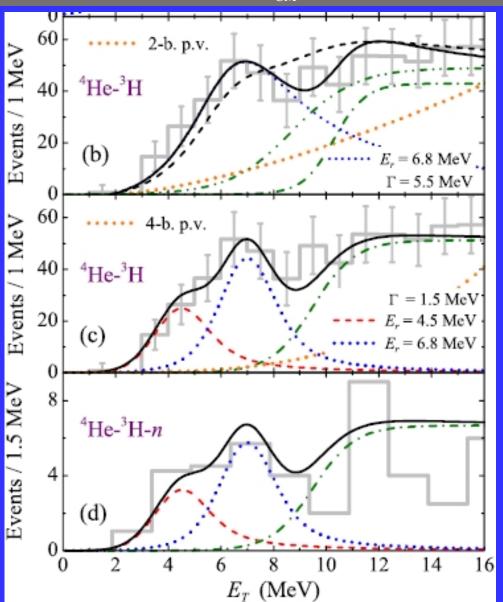

Conclusion after 1st and 2nd experiments:


- 1. A solid experimental evidence is provided that two resonant states of ⁷H are located in its spectrum at 2.2(5) and 5.5(3) MeV relative to the ³H+4n decay threshold.
- 2. Based on the energy and angular distributions, obtained for the ²H(⁸He, ³He)⁷H reaction, the weakly populated 2.2(5)-MeV peak is ascribed to the ⁷H 1/2⁺ ground state.
- 3. There are indications that the resonant states at 7.5(3) and 11.0(3) MeV are present in the measured ⁷H spectrum.
- 4. It is highly plausible that the firmly ascertained 5.5(3)-MeV state is the 5/2⁺ member of the ⁷H excitation 5/2⁺–3/2⁺ doublet, built on the 2⁺ configuration of valence neutrons. The supposed 7.5-MeV state can be another member of this doublet, which could not be resolved in 1st Run.


Study of ⁶H system by measuring the ²H(⁸He, ⁴He)⁶H \rightarrow t + 3n reaction

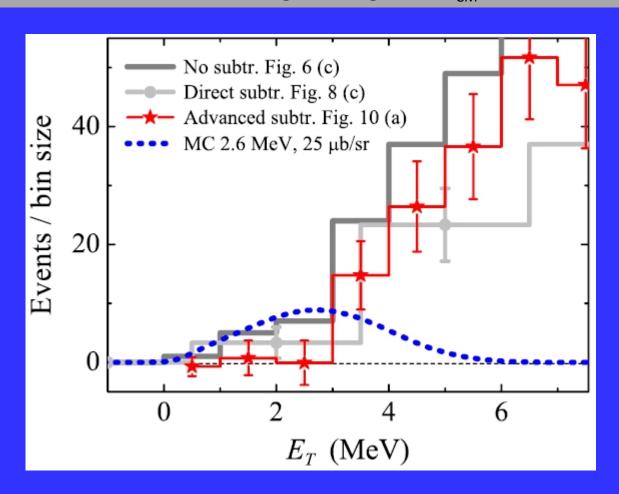



The $\Delta L = 1$ cross section for the ${}^{2}H({}^{8}He, {}^{4}He){}^{6}H$ reaction obtained in FRESCO calculations

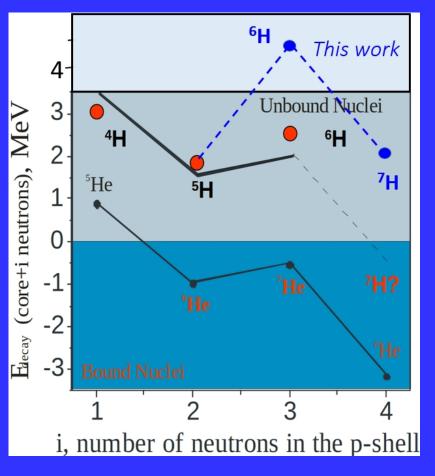


Final 6 H spectra corrected for the experimental efficiency with cutoff $\Theta_{CM} < 16^0$

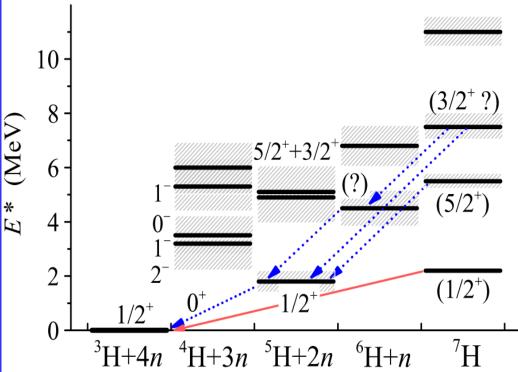
$$\frac{d\sigma}{dE_T} \approx \frac{\Gamma(E_T)}{(E_r - E_T)^2 + \Gamma(E_T)^2/4},$$


One state interpretation

Two states interpretation

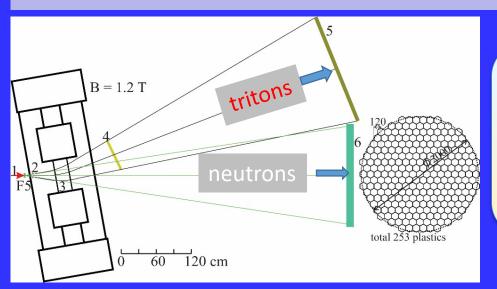

Two states interpretation of the spectrum with neutron coincidences

No indications for the ⁶H state at E ~ 2.7 MeV with cross section limit $d\sigma/d\Omega_{CM} \le 5 \mu b/sr$!!


Instead, we observed the population cross section of $d\sigma/d\Omega_{CM} \approx 190 \,\mu b/sr$ for the 6.8 MeV broad state at angular range $5^{\circ} < \Theta_{CM} < 16^{\circ}$

Hydrogen and helium chains: today status

- * New level schemes for all isotopes 3H ÷ 7H
- ** The unique true 4n-decay mechanism is proved to be realized for ⁷H. This is the first such case found in the nuclide map.


Summary

- 1. The ⁷H system was studied in two experiments in the ²H(⁸He, ³He)⁷H transfer reaction with a 26AMeV secondary ⁸He beam. The missing mass (MM) spectrum and center-of-mass angular distributions of ⁷H, as well as the momentum distribution of the ³H fragments in the ⁷H frame, were reconstructed.
- 2. A solid experimental evidence is provided that two resonant states of ⁷H are located in its spectrum at 2.2(5) and 5.5(3) MeV relative to the ³H+4n decay threshold. There are indications that the resonant states at 7.5(3) and 11.0(3) MeV are also present in the measured ⁷H spectrum.
- 3. Based on the energy and angular distributions, obtained for the studied ${}^{2}H({}^{8}He, {}^{3}He){}^{7}H$ reaction, the weakly populated 2.2(5)-MeV peak is ascribed to the ${}^{7}H$ ground state. It is highly plausible that the firmly ascertained 5.5(3)-MeV state is the $5/2^{+}$ member of the ${}^{7}H$ excitation of $5/2^{+} 3/2^{+}$ doublet, built on the 2^{+} configuration of valence neutrons. The supposed 7.5-MeV state can be another member of this doublet, which could not be resolved in 1^{st} experiment.
- 4. The ⁶H spectrum was populated in the ²H(⁸He, ⁴He)⁶H transfer reaction. The broad bump in the ⁶H MM spectrum at E = 6.8(5) MeV with $\Gamma \sim 5.5$ MeV is reliably identified with the population cross section $d\sigma/d\Omega_{CM} \approx 190 \,\mu b/sr$ in the 5⁰ < Θ_{CM} < 16⁰ angular range.
- 5. We have found *no evidence* of the \approx 2.6–2.9 MeV state in 6 H, which was reported in 3 previous works. The cross section limit $d\sigma/d\Omega_{CM} \leq 5 \mu b/sr$ is set for the population of possible states with E < 3.5 MeV. We suggest that the position of the 6 H g.s. is not yet established, and discussion of this issue should be continued.
- 6. The ⁷H and ⁶H experiments were cross-checked by the studies of the ²H(¹⁰Be, ³He)⁹Li and ²H(¹⁰Be, ⁴He)⁹Li reactions where calibration and resolution over ^{6,7}H excitation energies were derived that were found to be closed to complete Monte Carlo simulations.

Very short outlook...

1. Tritium Target!! Liquid T₂ ~ 3*10²¹ cm⁻²

 8 He+ T_2 (liquid) \rightarrow 4 He(stopped) + 7 H(t+4n) invariant mass

Ground-state energy resolution ~400 keV Liquid T_2 ~3*10²¹ cm⁻² Intensity of ⁸He ~10⁵ 1/s Reaction cross section ~0.1 mb/sr Triton trigger eff. ~0.7 t+4n detection eff. ~0.015 $^7H_{g.s.}$ counting rate: ~5 per day

2. p(11Li,p4He)7H 11Li – new "source" to make 7H

Quasi-free alpha knockout from ¹¹Li possibly has larger cross section ⁷H could have [s²p²] component of WF that already exist in ¹¹Li

A. S. Fomichev, I. A. Muzalevskii, A. A. Bezbakh, E. Yu. Nikolskii, V. Chudoba, S. A. Krupko, S. G. Belogurov, D. Biare, E. M. Gazeeva, M.S. Golovkov, A. V. Gorshkov, L. V. Grigorenko, G. Kaminski, , D. A. Kostyleva, M. Yu. Kozlov, B. Mauyey, Yu. L. Parfenova, W. Piatek, A. M. Quynh, V. N. Schetinin, A. Serikov, S. I. Sidorchuk, P. G. Sharov, R. S. Slepnev, S. V. Stepantsov, A. Swiercz, P. Szymkiewicz, G. M. Ter-Akopian, R. Wolski, B. Zalewski

ACCULINNA-2 team

Thank you for your attention!