

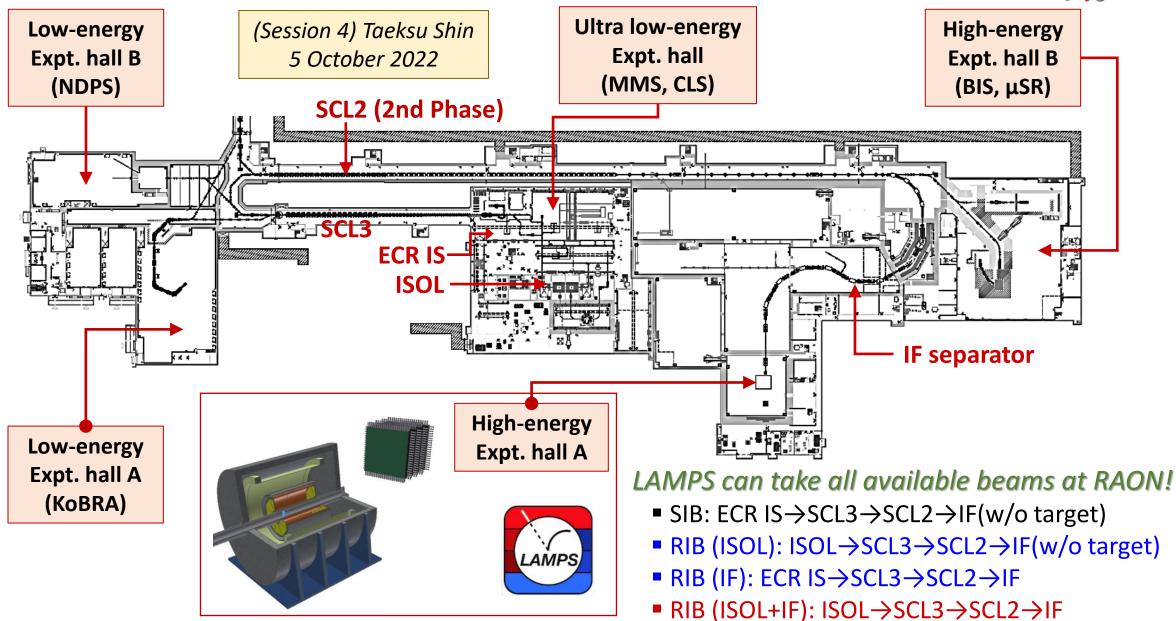
Status of LAMPS at RAON

Byungsik Hong

(Center for Extreme Nuclear Matters (CENuM), Korea University)
On behalf of LAMPS Collaboration

Contents

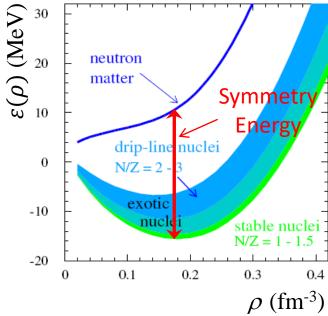
- 1. Introduction to the LAMPS system
- 2. Status of each detector component
- 3. Preparation of the low-energy experiments
- 4. Summary

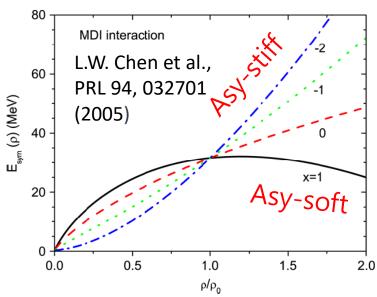

Part 1.

Introduction to the LAMPS system

Location of LAMPS @ RAON

3-7 October 2022


Physics objectives

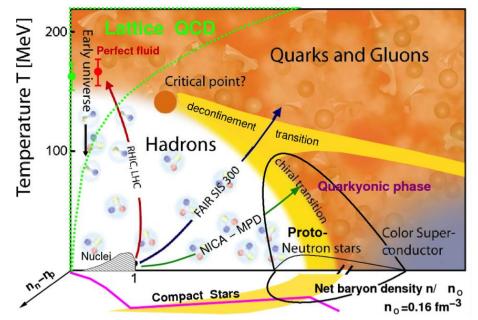


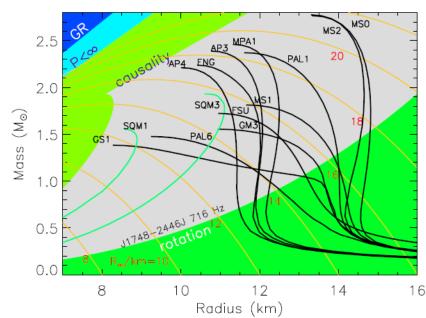
 Comprehensive understanding of the Equation of State (EoS) & symmetry energy of nuclear matter:

$$E/A = \varepsilon(\rho, \delta) = \varepsilon(\rho, \delta = 0) + E_{sym}(\rho)\delta^2 + \mathcal{O}(\delta^4) + \cdots$$

with $\delta = (N - Z)/(N + Z)$

- General approach
 - Investigate $\varepsilon(\rho,\delta)$ as functions of baryon density ρ and isospin asymmetry δ
- Theoretical approach
 - Estimate of $\varepsilon(\rho, \delta)$ by some density functionals or variational calculations
- Experimental approach
 - Constrain EoS using controlled laboratory Expts. at specific densities (determined largely by the beam energy and less effectively by the system size)





Physics objectives

- Necessity of heavy-ion collisions
 - It is the only way to create dense nuclear matter in the laboratories.
- Necessity of RIB
 - RIB enables us to access a wide range of the isospin axis $(n_n n_p \text{ or } N/Z)$.
- Essential to understand
 - Structure of the nuclear phase diagram
 - Stability of neutron stars against gravitational collapse
 - Mass and radius relation of neutron stars
 - Determination of the stella density profile and internal structure
 - Cooling rate of proto-neutron stars
 - Stella masses, radii, and moments of inertia from temperatures and luminosities of the X-ray bursters

Observables

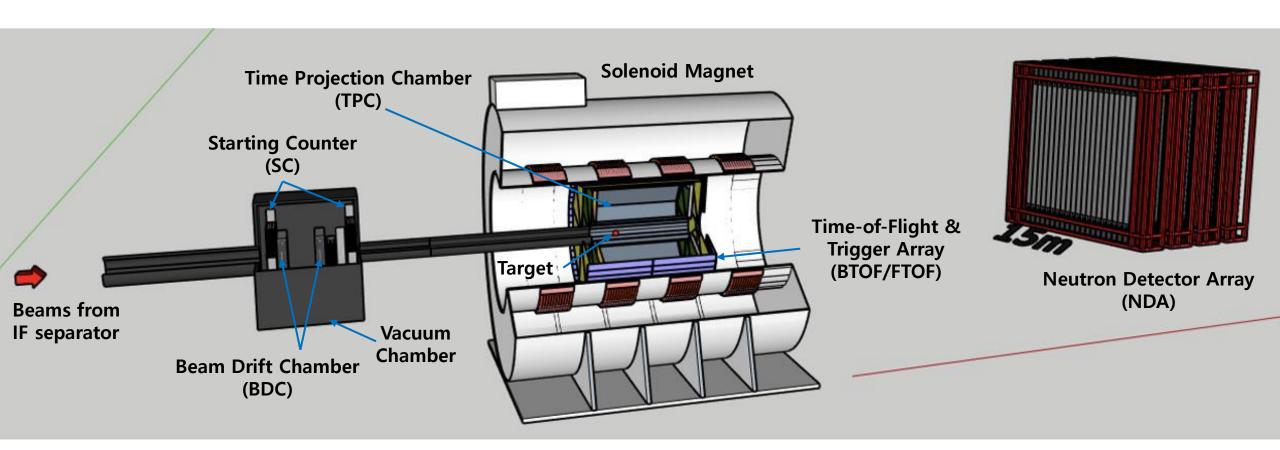
- Requirements for EoS experiments
 - Systematic change of the system size and N/Z of the collision system
 - Systematic change of the beam energy to cover a wide range of ρ/ρ_0
 - Systematic analysis as functions of the collision centrality and momentum (or kinetic energy)

Observables

- Particle spectra and yield ratios for n/p, $^3H/^3He$, $^7Li/^7Be$, π - $/\pi$ +, etc.
- Collective flow: $v_1 \& v_2$ of n, p, and fragments
- Azimuthal angle dependence of n/p ratio relative to the reaction plane
- Isoscaling phenomenon in nuclear multi-fragmentation process
- Isospin transportation: isospin diffusion and drift
- E1 transitions (giant and pygmy dipole resonances): peak position and magnitude (Some theories suggest that PDR is sensitive to the radius of the neutron skin for unstable nuclei.)
- Angular dependence of the gamma emission

Detectors needed

- Beam diagnostic detectors for tracking and timing
- Large acceptance charge particle tracking (from pions to fragments)
- Neutron (and/or gamma) detector
- Event characterization detector for centrality and the reaction plane

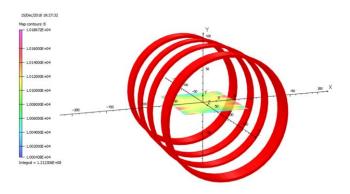

3-7 October 2022

Overall configuration of LAMPS

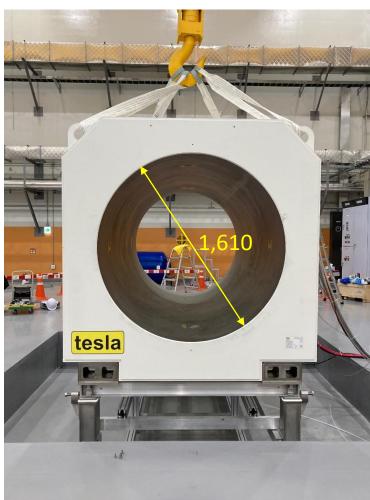
- LAMPS: Large Acceptance Multi-Purpose Spectrometer
 - TPC with $\sim 3\pi$ sr acceptance for tracking charged particles
 - Beams with energies up to 250 MeV/u for ¹³²Sn and intensity as large as 10⁸ pps
 - Useful detector system not only for nuclear EoS, but also for nuclear structure studies

Part 2.

Status of each detector component

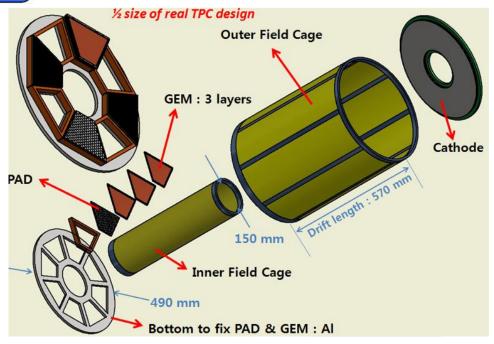


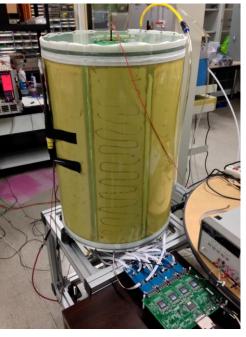
Magnet

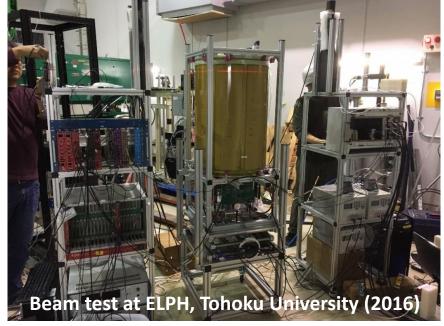

Design parameters

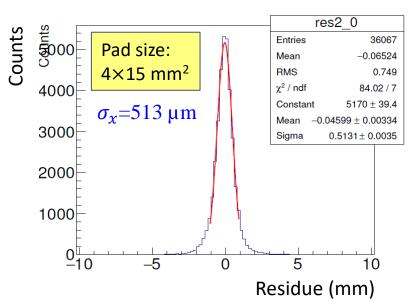
- Superconducting solenoid magnet
- Dim.: 3,300(L) X 2,100(W) X 2,600(H) mm³
- Diameter of bore: 1,610 mm
- Max. field: 1 Tesla
- Variation of field over TPC volume: ±0.94%

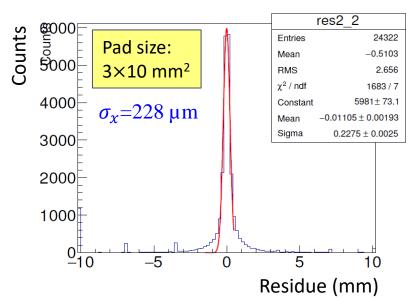
- Passive quench protection
- Conduction cooling with 4 K vessel thermal shield and vacuum vessel
- Construction
 - Vendor: Tesla Engineering Ltd., UK
 - Contracted in Feb. 2019
 - Installation completed at RAON in 2021

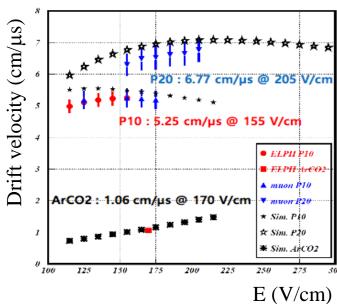


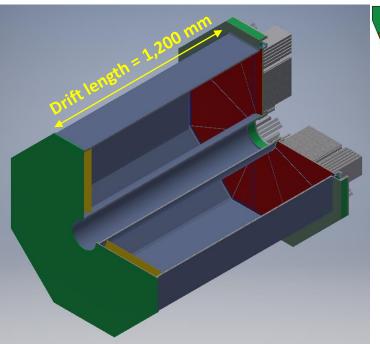


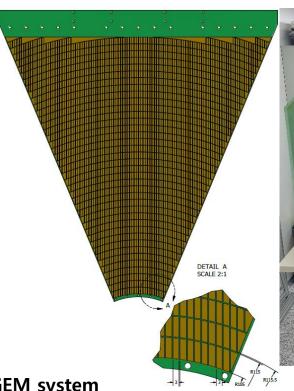



TPC: Performance test with prototype



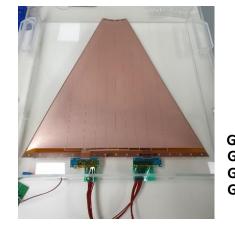


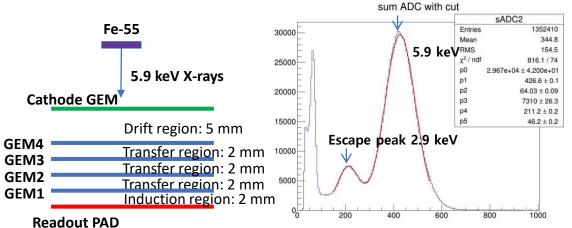


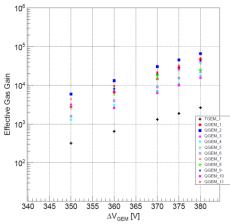


TPC: Construction of real detector

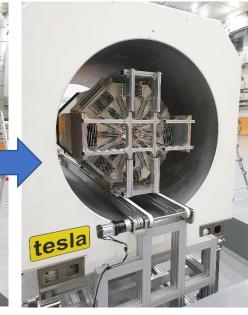
• Pad Dim.: 3×10 mm²


• Ch. #: 2,618/sector × 8 sectors = 20,944

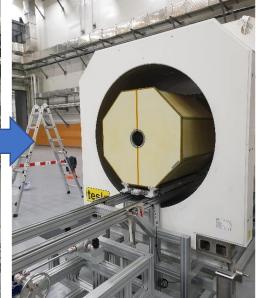

• FEE (GET electronics): 11 AsAD/sector

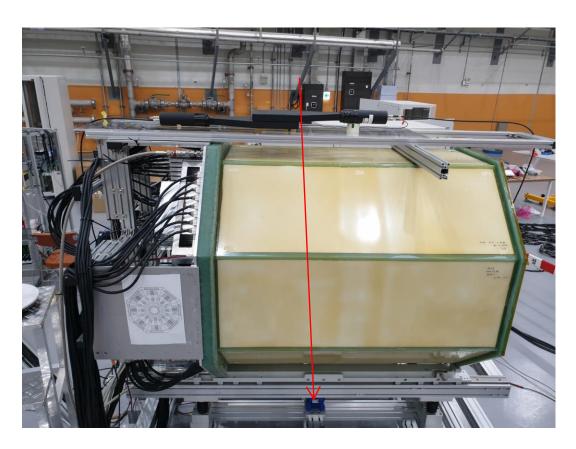

× 8 sectors

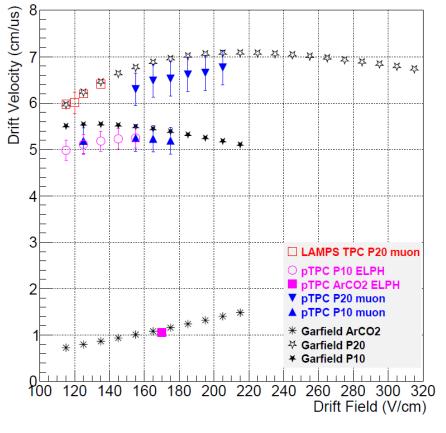
= 88 AsAD



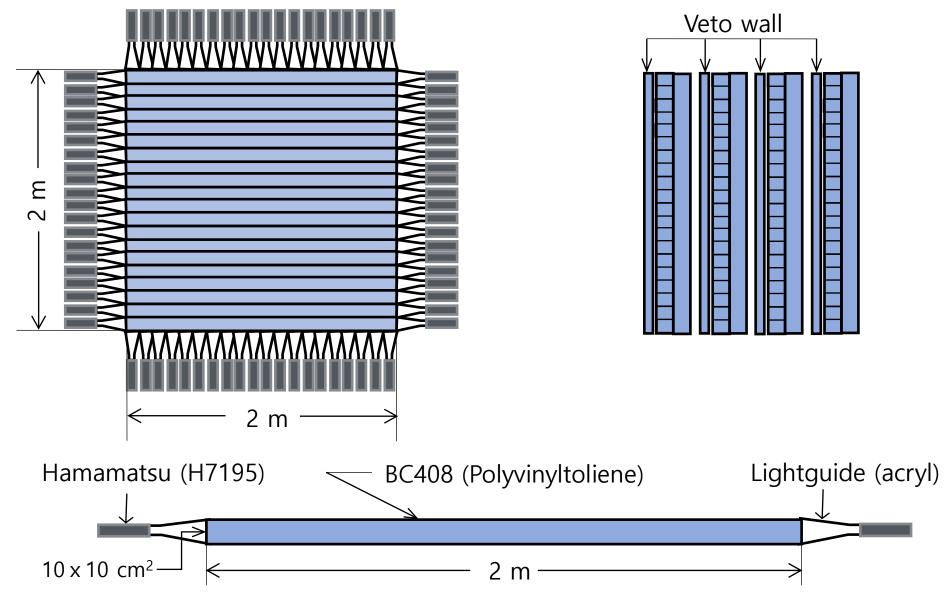
TPC: Transportation system



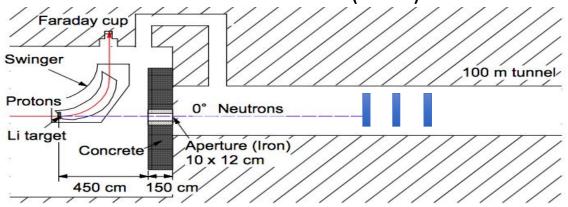



TPC: Drift velocity measurement by cosmic ray

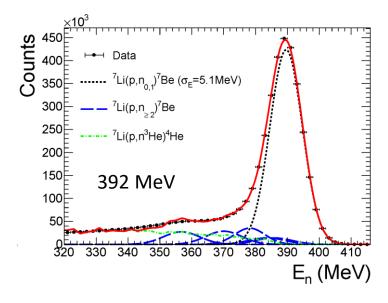
- Cosmic muon trigger
 - Coincidence of two scintillators (scintillator size: 20 x 20 cm² each)
 - Trigger position: 30, 60 and 90 cm
 - Measured drift field points: 115, 125 and 135 V/cm

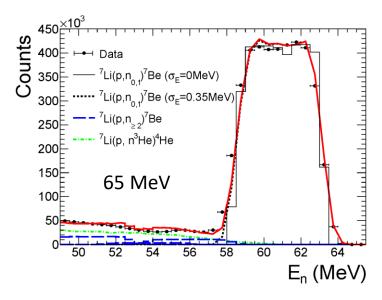

Drift velocity data (preliminary)

Neutron Detector Array (NDA): Structure

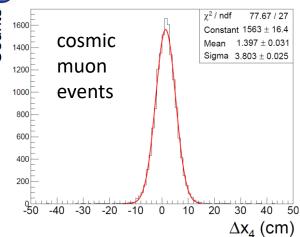


NDA: Performance test with prototype



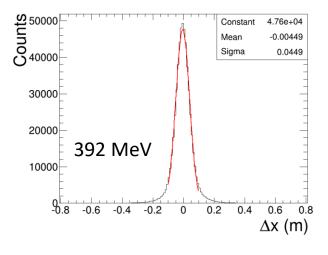

Beam test at RCNP (2016)

- Beam specifications
 - Production reaction: $p+^7Li \rightarrow n + ^7Be$
 - Neutron beam flux: $1 \times 10^{10} \, \text{n/sr/}\mu\text{C}$
 - Neutron energy: 65 and 392 MeV
 - Background neutrons above 3 MeV is < 1% [NIMA 629, 43 (2011)]



- Significant energy-loss effect in the Li target at 65 MeV
- Low-energy background dominated by the 3-body decays ${}^7{
 m Li}(p,n\,{}^3{
 m He})\,{}^4{
 m He}$
- Energy resolution (FWHM): 3.1% @ 392 MeV, 1.3% @ 65 MeV

NDA: Performance with prototype



- \leftarrow Position difference between the projected hit position and the detected hit position for cosmic muons: $\Delta x_4 \equiv x_{D4,proj} x_{D4,hit}$
- ← Relative position resolution for cosmic muons for one bar:

$$\sigma_{\chi} = \frac{\sigma(\Delta x_4)}{1.87} = 2.0 \text{ cm}: R_{\chi}(\mu) = 4.8 \text{ cm (FWHM)}$$

- \rightarrow Hit position difference between neighboring scintillators for neutrons with simultaneous hits: $\Delta x_{S1} \equiv x_{D1} x_{D2}$ for 10 MeV threshold and $\delta t < 3$ ns
- → Relative position resolution for neutrons for one bar:

$$\sigma_n = \frac{\sigma(\Delta x_{S1})}{\sqrt{2}} = 4.5 \text{ cm}$$
: $R_{\chi}(n) = 7.5 \text{ cm}$ (FWHM)

Comparison of performances by cosmic rays for similar configuration of neutron detectors [NIMA 927, 280 (2019)]

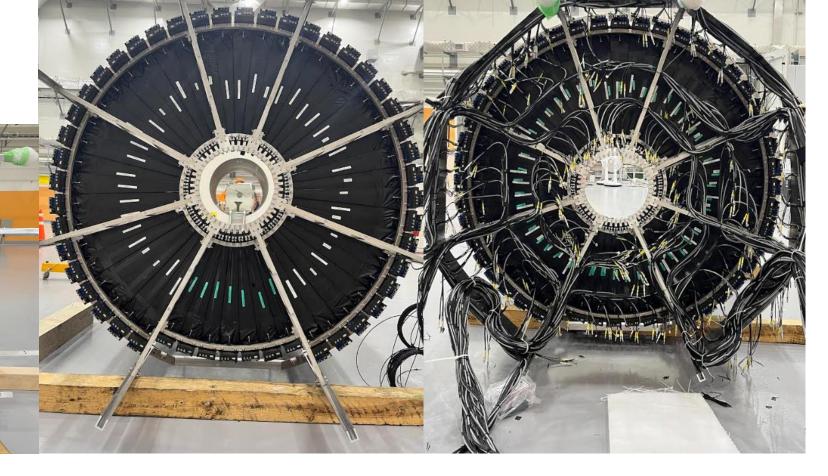
	LAMPS (this work)	MoNA [13]	NEBULAR [14]	LAND [15]
Dimensions (cm ³)	$10 \times 10 \times 200$	$10 \times 10 \times 200$	$12 \times 12 \times 180$	$10 \times 10 \times 200$
Time resolution (ps)	309	423	376	588
Position resolution (cm)	4.8	5.2	6.1	7.1

NDA: Construction

- Installation of all modules in the frame was completed at the Sejong campus of Korea University in Dec. 2018 to test the performance.
- The whole system was dissembled and transported to the RAON site in Sindong in March and assembled again with the three additional veto walls in September in 2022.
- The fully assembled system will take the cosmic muon data at the RAON site very soon.

Time-Of-Flight/Trigger Array (BTOF/FTOF)

Number of scintillators & dimensions:


■ BTOF: (48) 1500 X 90 X 10 mm³ each

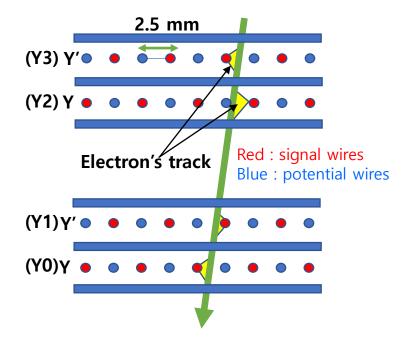
■ FTOF: (48) 500 X (90, 25) X 5 mm³ each

MPPC readout from both ends

Installation completed in 2022

 The performance test with cosmic muons is in progress.

Beam Drift Chamber (BDC): Test with prototype

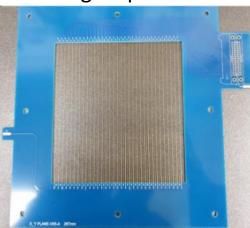

Schematic design

Active area: 160 X 160 mm²

32 channels for each plane

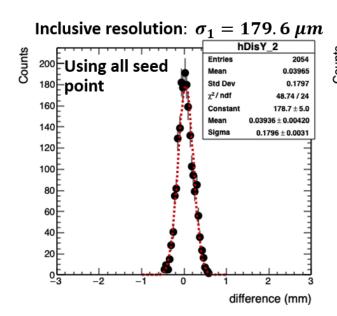
Gas: P10

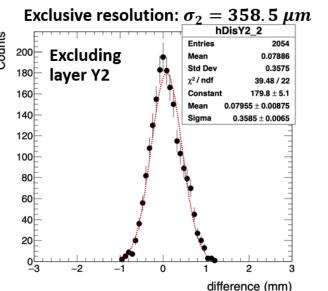
Incident particle



Cathode plane **Aluminized** mylar

Signal plane




Then, intrinsic resolution of layer Y2 σ :

 $\sigma = \sqrt{\sigma_1 \sigma_2} = 253.7 \,\mu m$

ATLAS Collaboration, JINST14, P09011 (2019)

Final goal: $\sigma = 100 \mu m$

BDC: Construction of real detector

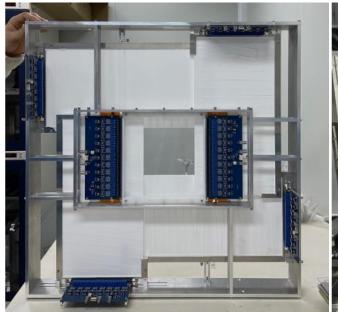
Analogue signal by Sr-90 source

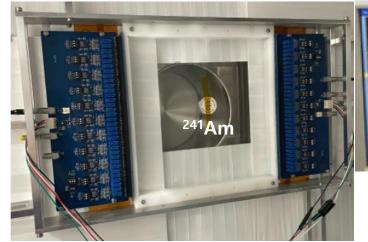

Parameter	Value
Anode wire	φ 20 μm Au-W
Potential wire	φ 80 μm Cu-Be or Au-W
Cathode	2 μm-thick Al-mylar, 9 layers
Cell size	5 mm (max. drift length 2.5 mm)
Active area	170 x 170 mm ²
Anode configuration	XX'YY'XX'YY', 8 layers
Number of channel	256 (32 wires/plane, 8 planes)
Operation gas	i-C ₄ H ₁₀ below 1 atm P10 (Ar 90% + CH ₄ 10%) at 1 atm
High voltage	2 channels for cathode & potential wires
Readout	ASD(RP-2125)+TDC(V1190A)+QDC(V792)
Body dimension	490(L) x 360(H) x 100(W) mm ³
Beam window (variable)	12 μm Al-mylar (up to 20 kPa) 50 μm Al-mylar (up to 50 kPa)

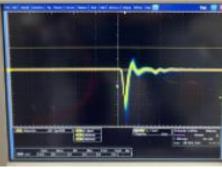
- HV & vacuum tests completed
- Performance test with electronics in progress

Anode X X' Y Y'

BDCs in the beam diagnostic chamber




Starting Counter (SC)



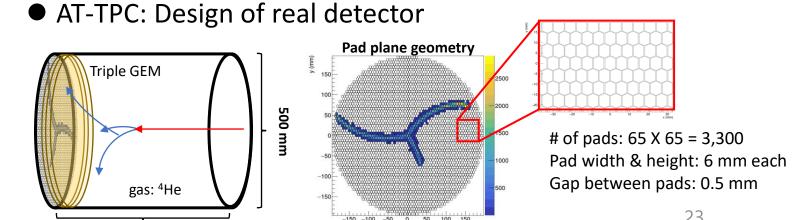
- Primary function
 - Providing an accurate reference time ($\sigma_t \lesssim 100$ ps) for entire experiment when actual beams arrive.
- Structure & dimensions
 - Two sets of (1 SC + 4 Veto counters)
 - SC: 210 X 210 X 0.2 mm³ (Active area: 200 X 200 mm²)
 - Veto: 410 X 210 X 5 mm³ (Adjustable area)
- Material
 - SC & Veto: EJ-230 polytoluene-based scintillator
 - Lights collected by MPPC on a sensor board
 - 2 sensor boards on a SC scintillator & 1 board for Veto
 - 33 MPPCs on a sensor board for SC & 24 MPPCs for Veto
- Electronics
 - Conventional CAEN TDC, QDC for the time and charge information
- Installation & α source (²⁴¹Am) test
 - Full system installed in the vacuum chamber
 - $\sigma_t \sim 130 \text{ ps} \rightarrow \text{Using two SC's}, \sim 92 \text{ ps is achievable}.$

Part 3.

Preparation of the low-energy experiments

by Center for Extreme Nuclear Matters

AT-TPC and **SC** magnet

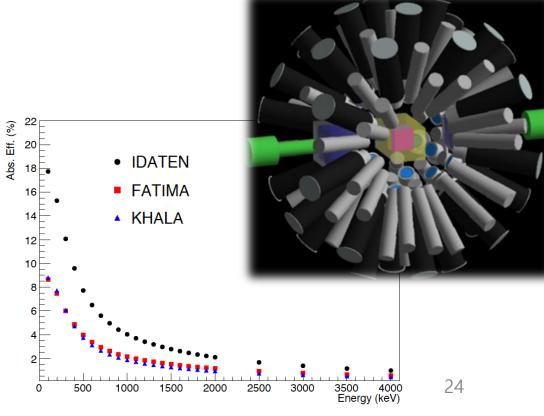

- Superconducting magnet
 - B_{max} = 1.5 T
 - Diameter & length of the detector space = 60 cm each
 - Conductive cooling
 - Construction done in 2019

- AT-TPC: Construction of prototype
 - # of pads: 64 X 16 = 1024
 - Pad size: 1.9 X 11.9 mm² (gap between pads: 0.1 mm)
 - Performance test is on going using cosmic muons & alpha source.
 - Beam test using (α, p) reaction at CRIB is forseen in 2023.

500 mm

KHALA: LaBr₃ γ-detector array

KHALA: Korea High-resolution Array of LaBr₃(Ce) Talk by B. Moon in 11:10 on Friday (Session 8)

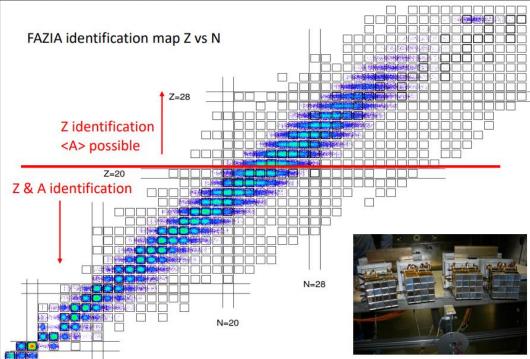

Characteristics

Poster by J. Lee (PS8-9)

• R_t < 150 ps (fast timing measurement), R_E < 3.5%

- Total 36 [LaBr₃(Ce)+PMT] modules
- Formed IDATEN Collaboration = KHALA at CENuM + FATIMA in Europe.
 - IDATEN will perform extensive campaign experiments at RIBF in 2023.

Si+Csl charged particle detector


- FAZIA: A charged-particle detector for heavy-ion collisions at intermediate beam energies
- One FAZIA block consists of 16 Si_1+Si_2+CsI telescopes with a cross-sectional area of 2 X 2 cm². \bigcirc

Talk by M. Kweon in 14:30 today (Session 14)

PID from ⁸⁰Kr+⁴⁰⁻⁴⁸Ca at 35 AMeV in the IsoFAZIA experiment @ LNS, Catania in 2015

New 750 µm thick Si detector modules

New FEE card made in Korea

Summary

Purpose of LAMPS

- Detailed investigation of nuclear equation of state (EoS)
- Precise measurement of symmetry energy as a function of the baryon density
- Structure of exotic nuclei
- Status of the LAMPS detector system
 - All detector systems were developed, manufactured and assembled.
 - The performance tests with cosmic muons and radiation sources are in progress.
 - Machine commissioning of the integrated LAMPS system with the trigger electronics is expected in the end of 2022.

Plan

- In the beginning we will concentrate on the low-energy experiments because the high-energy beams from RAON will be available in 2029 or later.
- We want to exploring the possibility to use the low-energy beams at the high-energy experimental hall.

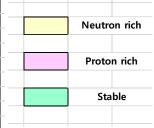
3-7 October 2022 26

LAMPS Collaboration

- Status of Collaboration (7 Universities & 2 Institutes)
 - Chonnam National University
 - Institute for Basic Science (IBS)
 - Inha University
 - Jeonbuk National University
 - Korea University
 - Korea Research Institute of Standards and Science (KRISS)
 - Pusan National University
 - Sejong University
 - Sungkyunkwan University
- Number of active collaborators
 - 8 Professors, 9 Ph.D. researchers, ~15 students
- We are looking forward to the globalization!

Backups

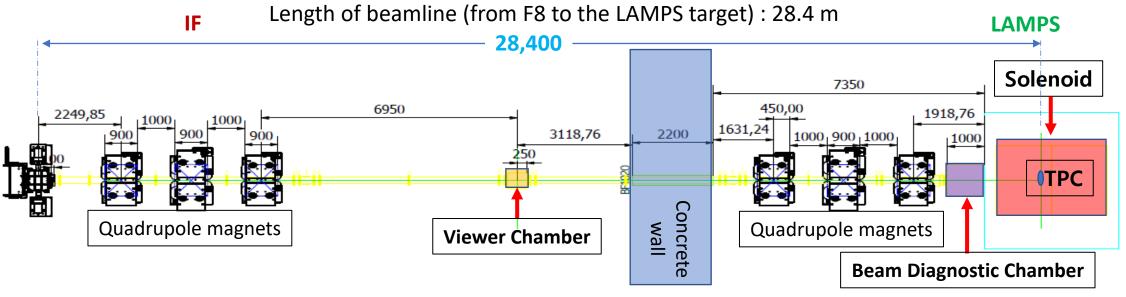
Run plan without SCL2


- SCL2 postponed to the second phase
 - No high-energy beams for LAMPS until ~2027
 - LAMPS may explore the step-by-step approach to reach the normal operational mode:
 - (Step 1) Use the low-energy stable ion beams (e.g., O or Ar) from the ECR ion source
 - (Step 2) Ca isotopes from IF, e.g., for ^{40,50,54}Ca + ⁴⁰Ca
 - (Step 3) 70 Zn, 78 Kr and 238 U primary beams from SCL2 after the 2nd stage: 58,68,70,72,78,79 Ni + 58 Ni and 100,106,112,124,130,132 Sn + $^{112-124}$ Sn

lons/Q	1+	2+	4+	6+	8+	9+	11+	14+	20+	23+	25+	26+	27+	30+	31+	32+
Н	2000															
H ₂	1000															
Нз	700															
Не	2000	1000														
С	500	350	200	3												
N	1000	300	100	10												
0	1000	400	300	200												
Ne	1000	300	200	160	25											
Ar	1000	350	250	200	200	90	30	1								
Kr	1000						25	15								
Ag			250	250	200	90	30		4							
Xe	500				220				15	14	10	5				
Та									4	0.8						
Au												10	6	1	0.7	0.2
Pb									10		5	3	1			

ir Ki beam i	ist (400 KW p.				RI beam	RI beam	RI Beam	-
Fragment	Decay Type	Primary bea	m (400 kW)	Production	eneryg	Intensity	purity	
		Type	에너지 (MeV/u)	Reaction	(MeV/u)	(pps)	(%)	-
132Sn	Beta- decay	238U	200	in-flight fission	133.2	8.21E+06	1.4661	-
130Sn	Beta- decay	238U	200	in-flight fission	133.1	3.74E+08	13.6	
124Sn	stable	124Sn	230	transmission	230	8.77E+13	100	-
112Sn	stable	112Sn	263	transmission	263	8.49E+13	100	
106Sn	Beta+ decay	124Xe	252	fragmentation	155.9	5.31E+08	18.5	
100Sn	Beta+ decay	112Sn	263	fragmentation	161.1	1.41E+01	0.0128	
96Zr	stable	96Zr*	248	transmission	248	1.05E+14	100	
82Cu	Beta- decay	96Zr	248	fragmentation	166.8	2.72E-03	1.2557	
81Cu	Beta- decay	238U	200	in-flight fission	140	5.91E+00	0.000012	
80Cu	Beta- decay	238U	200	in-flight fission	139.9	6.17E+01	0.0002	
79Ni	Beta- decay	96Zr	248	fragmentation	167.1	2.64E-03	1.3223	
78Ni	Beta- decay	238U	200	in-flight fission	140.3	8.99E+00	0.000045	
72Ni	Beta- decay	82Se	256	fragmentation	167.5	5.63E+06	77.8	
70Ni	Beta- decay	76Ge	260	fragmentation	169.4	2.57E+08	15.7	
68Ni	Beta- decay	76Ge	260	fragmentation	168.4	2.65E+09	18.6	
77Co	Unknown	86Kr	258	fragmentation	172.2	1.87E-02	97.59	
76Co	Beta- decay	82Se	256	fragmentation	164.3	5.80E-01	99.93	
76Fe	Unknown	86Kr	258	fragmentation	173.5	1.05E-04	99.8	
75Fe	Beta- decay	82Se	256	fragmentation	165.1	6.13E-03	100	
74Fe	Beta- decay	82Se	256	fragmentation	170.4	6.24E-01	99.82	
54Ca	Beta-decay	82Se	256	fragmentation	173.4	1.07E+03	96.2	
50Ca	Beta-decay	48Ca	264	fragmentation	155	2.11E+07	100	٠.
44Si	Beta- decay	48Ca	264	fragmentation	163	2.73E-02	100	
43Si	Beta- decay	48Ca	264	fragmentation	171.3	1.42E+01	100	
42Si	Beta- decay	48Ca	264	fragmentation	180.5	1.50E+03	100	
40Mg	Beta- decay	48Ca	264	fragmentation	184.8	1.45E-02	100	
33Na	Beta- decay	48Ca	264	fragmentation	181.9	2.66E+03	100	
32Na	Beta- decay	48Ca	264	fragmentation	181.5	3.70E+04	100	
31Na	Beta- decay	48Ca	264	fragmentation	181.1	4.36E+05	100	
32Ne	Beta- decay	48Ca	264	fragmentation	183.2	1.77E+01	100	
31F	Beta- decay	48Ca	264	fragmentation	184.8	5.57E-02	100	
29F	Beta- decay	48Ca	264	fragmentation	183.3	4.34E+01	100	
12N	Beta+ decay	16O	333	fragmentation	214.4	1.33E+11	100	
22C	Beta- decay	48Ca	264	fragmentation	185.7	2.91E+00	100	
20C	Beta- decay	48Ca	264	fragmentation	185.8	2.60E+03	100	
16C	Beta- decay	48Ca	264	fragmentation	186.3	7.91E+07	99.997	
14C	Beta- decay	180	299	fragmentation	200.3	1.00E+12	100	
11C	Beta+ decay	160	333	fragmentation	219.4	7.85E+11	100	
10C	Beta+ decay	160	333	fragmentation	215.8	7.75E+10	100	
12B	Beta+ decay	18O	299	fragmentation	203	3.61E+11	100	
12Be	Beta- decay	180	299	fragmentation	208.3	3.63E+09	80.67	
11Be	Beta- decay	180	299	fragmentation	206.5	3.07E+10	100	
10Be	Beta- decay	180	299	fragmentation	205.7	1.35E+11	100	
8Не	Beta- decay	18O	299	fragmentation	212.3	7.29E+07	100	
3Н	Beta- decay	16O	333	fragmentation	235.8	8.74E+09	100	

IF RI beam list (400 kW primary beam condition)



IF-LAMPS beamline

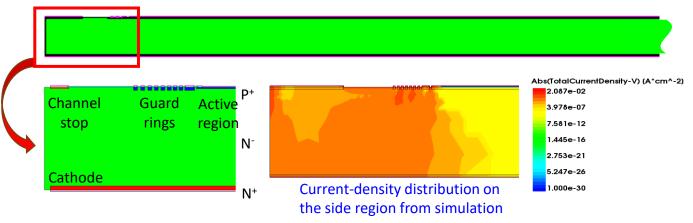
Beamline on the IF side

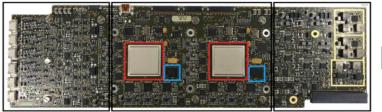
Viewer chamber & control system

Beamline on the LAMPS side

3-7 October 2022 31

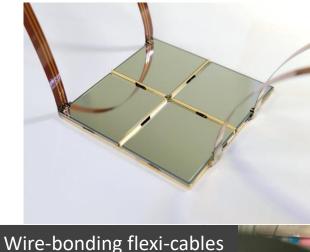
Si+Csl charged particle detector


Talk by Minjung Kweon in 14:30 this afternoon (Session 14).

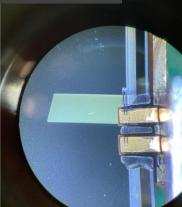

- Design and construction of the new thick Si detectors
 - The detailed structure, dimensions, and doping profiles are finalized by intense simulations.
 - Low total current, O(10 nA), is expected in the working-voltage range.
 - Si wafers will be processed at ETRI & NNFC in Korea.
- Development of the new FEE card

The FAZIA setup. NIMA. Volume 930, 2019, Pages 27-36

- Original schematics were provided by the FAZIA Collaboration.
- But several changes were applied for more effective functioning.
- The next step is to design and produce the 150 μ m thick detectors.



FAZIA / FEE(Front-End Electronics) Old Card



- Design and construction of the new thick Si detectors
- The detailed structure, dimensions, and doping profiles are finalized by intense simulations.
- Low total current, O(10 nA), is expected in the working-voltage range.
- Low total current, O(10 IIA), is expected in the working-voltage
- Si wafers will be processed at ETRI & NNFC in Korea.
- Development of the new FEE card
- Original schematics were provided by the FAZIA Collaboration.
- But several changes were applied for more effective functioning.
- The next step is to design and produce the 150 μ m thick detectors.

Assembly of quartetto

