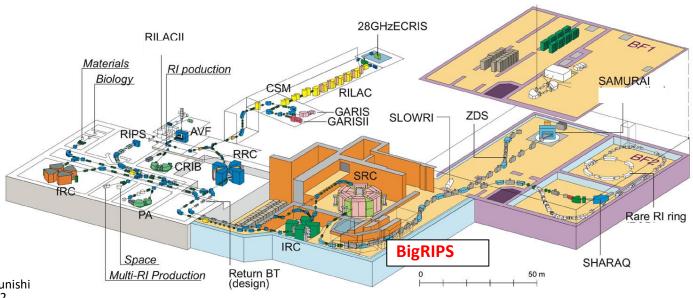
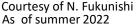
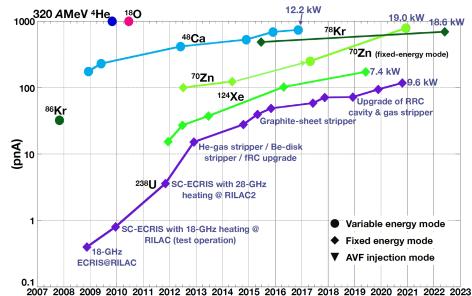
Operational Experiences of High-Power Production Target and High-Power Beam Dump at BigRIPS separator at RIKEN RI beam factory


K. Yoshida, Y. Yanagisawa, M. Ohtake, T. Kubo BigRIPS Team RIKEN Nishina Center


EMIS 2022, Daejeon, South Korea



RIKEN RI-beam factory

SCRIT

Beam energies of the beams without explicitly indicated are 345 AMeV.

Operation of RIBF started in 2007

Goal: Intensity is 1puA for all ions up to ²³⁸U Energy is 345MeV/u for heavy ions

up to ²³⁸U

²³⁸U 345MeV/u, 1puA: 82kW

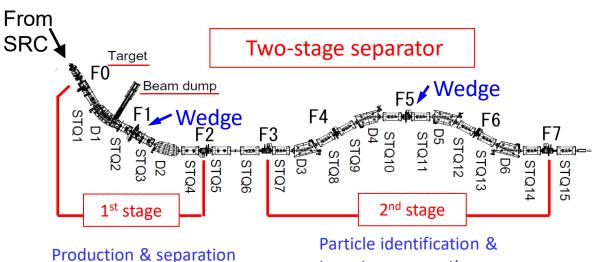
Present: Intensities increase year by year

1/4 Goal beam power is achieved

²³⁸U 345MeV/A, 117pnA: 9.6 kW

¹²⁴Xe 345MeV/A, 173pnA: 7.4kW

⁷⁸Kr 345MeV/A, 690pnA: 18.6 kW

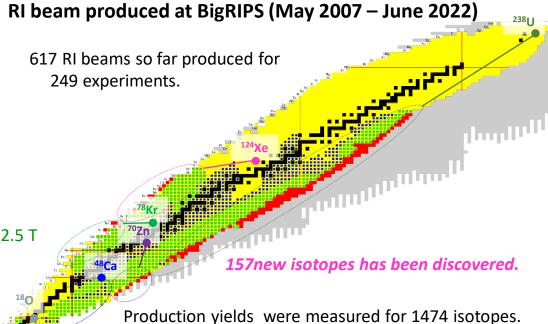

⁷⁰Zn 345MeV/A, 790pnA: 19.0kW

⁴⁸Ca 345MeV/A, 737pnA: 12.2 kW

⁴He, ¹⁸O 1puA...

BigRIPS Fragment Separator

two-stage separation


Photo of 2nd stage

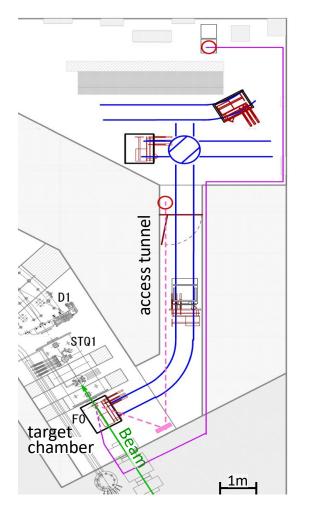
Production of RI beams

- Projectile fragmentation
- In-flight fission of ²³⁸U beam

Major features of BigRIPS

- Large acceptances ±50 mr, ±3%
- Superconducting quadrupoles
- ➤ Pole-tip radius = 17 cm, pole tip field = 2.4—2.5 T
- Two-stage separator scheme
- ➤ 2nd stage with high resolution
- ightharpoonup Max. Rigidity B ρ = 9 Tm

Production cross section were deduced for 881 isotopes.

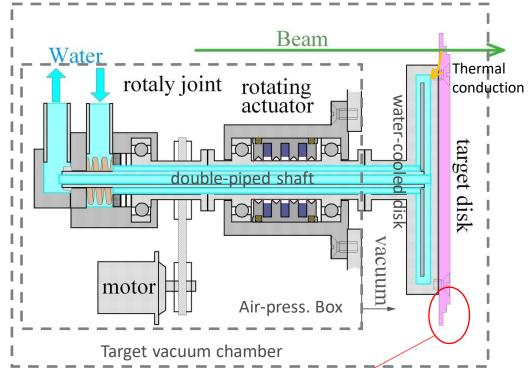

BigRIPS Target System

Designed, constructed in 2002 – 2011 by Dr. A.Yoshida and Dr. T .Kubo NIMA521(2004)65, NIM A590(2008)204 NIM A655(2011)10

Water-cooled rotating target that use conduction cooling to the cooling water, not radiation cooling.

It is intended to use Be as a production target.

Be has higher RI beam productivity than C, but Be has lower melting point (1287°C) than carbon's 3642°C



- -Two rotating target units and one target ladder (fixed target) are mounted on the side flange.
- -The side flange can be carried out by the maintenance cart for maintenances.

Schematic view of water-cooled rotating target

Step structure: One disk has

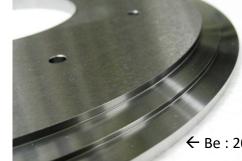
three different thicknesses.

(Components)
•Rotating solid target disk

to dissipate the heat of the beam spot

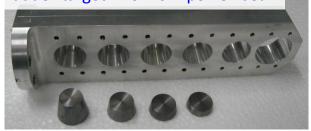
 Water-cooled disk to remove heat from the target disk

Rotating actuator & motor


to rotate the disks in high speed ~ 500rpm Rotating actuator: radiation tolerance 1.8 MGy A. Yoshida et. al. NIM A590, 204(2008)

Double-piped shaft & rotary joint

to introduce cooling water into the water-cooling disk.


Disk target: for High-power beam

- *Size : \$\phi 30cm
- *Material: Be, W
 *Step shaped edge
 20,15,10 mm thick
 for N, Ca, Ar beams
 10, 7, 5 mm thick
 for Kr, Xe, U beams

← Be: 20,15,10 mm thick

Ladder target: for Low-power beam

Beam viewer Demarquest Co.

*Diameter: ~ 20 mm

*Thickness: 1 ~ 20, ~ 60 mm

Operation of Rotating Target

Since 2015 Fall, rotating targets were mainly used for experiments.

Two set of side flanges were used alternately.

Be with 2-4-5 mm thick for ¹²⁴Xe, ²³⁸U Beam

5-7-10 mm thick for ⁷⁰Zn, ⁷⁸Kr, ¹²⁴Xe, ²³⁸U Beam

10-15-20 mm thick for ⁴⁸Ca, ⁷⁰Zn Beam

From 2018 Fall, Be 1-2-3, 4-6-8 mm thick target mounted on one side flange.

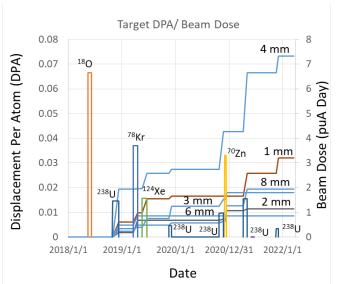
Overlapping use: 1 – 11 mm, 1 mm step for all primary beams

thick target (20, 30mm) for ¹⁸O Beam mount on target ladder (fixed target)

< 10-20 DPA

< 1 M Gy (EPDM)

< 1.8 M Gy



Target: 4mm thick 1.8x10¹¹ Gy, 7.3x10⁻² DPA

Rot. Actuator: 29 kGv

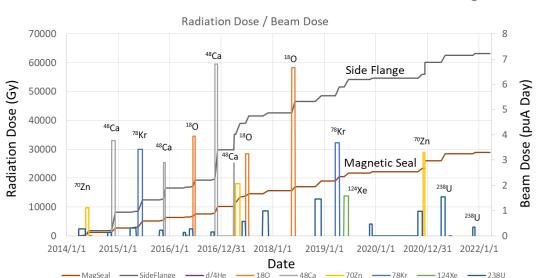
Side Flange(O-ring): 63 kGy

No deterioration was observed.

1pμA ²³⁸U irradi.

50-100 days

900 days*


500 days*

*with 8mm thick target

thick disk

thin disk

Beam

Troubles encountered so far

No serious trouble but....

- Positioning Motor of the rotating target unit Jan. 2019 strange sounds (used since 2010)
- Rotating actuator worn bearing (used since 2008)

Feb. 2016

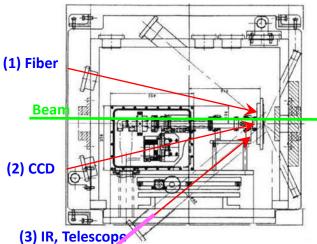
 Solenoid valve of pneumatic actuator air leakage from O-ring --- normal rubber (NBR) <100 kGy

Vacuum Gate Valve Aug. 2022

Faraday CUP Mar. 2019, Feb. 2021

Vacuum UNIT June 2017, Feb. 2021

Turbo-Molecular Pump of Target Chamber sensor failure


May 2022

Beam-spot temperature measurement

IR thermal image camera

Target chamber (upper view)

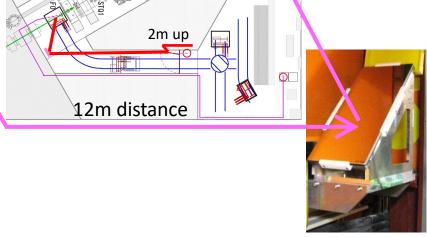
IR camera:

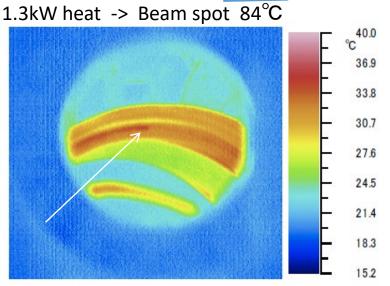
TVS-8500 AVIO (Japan)

Very weak for radiation Can be used only for a short time.

Calibration of Temperatures

- **Emissivity**
- attenuation in window mirrors, air

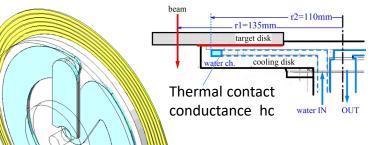


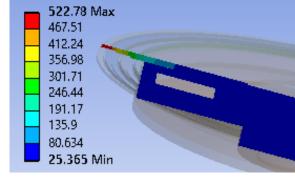

Heater + Be plate + Thermocouple

Rotating target

reduced rotation speed 1.100rpm

Be 15mm, 48Ca 420pnA, 100rpm





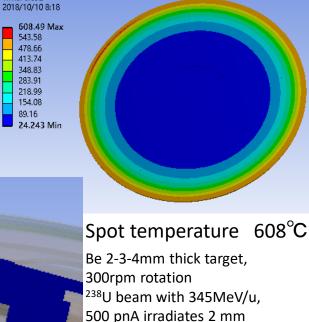
Simulation of Rotating target

- ANSYS workbench is used for simulation.
- Moving source method was utilized for rotating motion.
- 1mm x 1mm Beam spot is assumed.
- Cooling-water channel is precisely described in the model.
- Heat transfer coefficient hw between cooling-water and wall of cooling channel Smooth tube with hydro-dynamic diameter, turbulence flow V= 1.5 m/s P= 0.4MPa, T=24°C
 - -> hw = 7.2kW/m²@25°C, 8.5kW/m²@100°C
- Thermal contact conductance hc between Be target and cooling disk. Estimated from contact pressure between the target and the disk $hc = 3 \text{ kW/m}^2$ (fixed screw M6 x 8)

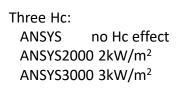
Radiation cooling is considered. Emissivity 0.5

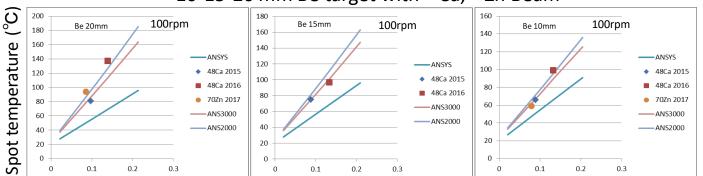
B: 過渡伝熱 温度

Unit: °C Time: 0.652


Type: Temperature

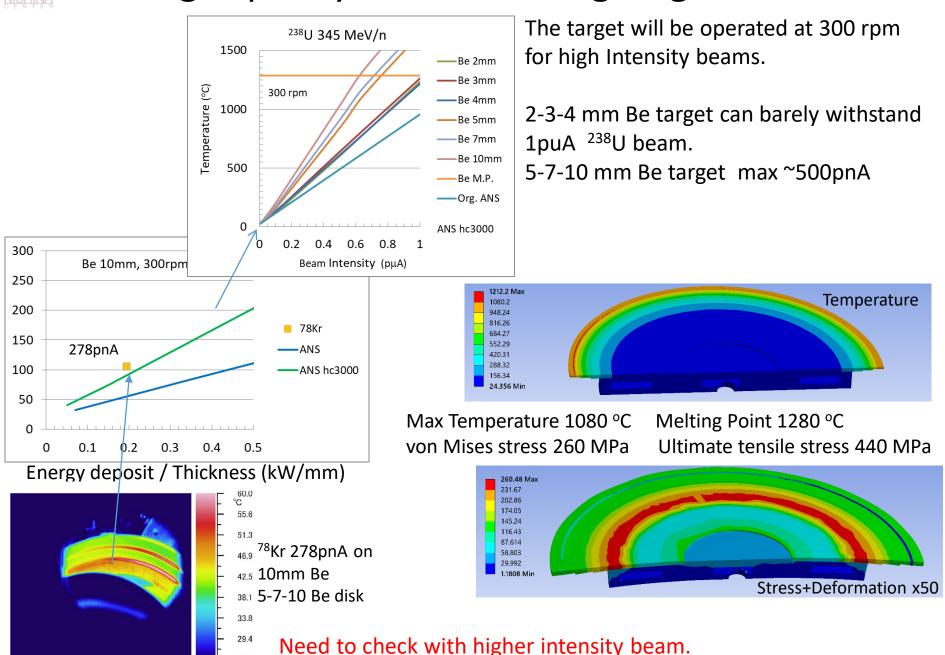
543,58


478.66 413.74


348.83 283.91 218.99 154.08

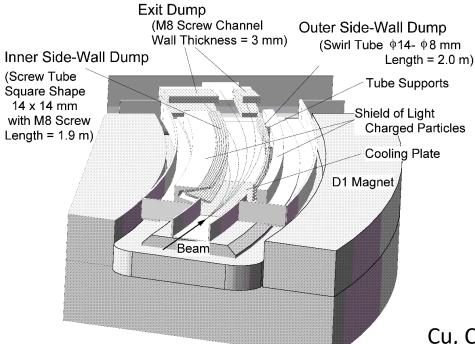
89.16

Comparison of measured temperature 10-15-20 mm Be target with ⁴⁸Ca, ⁷⁰Zn Beam

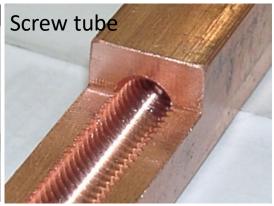


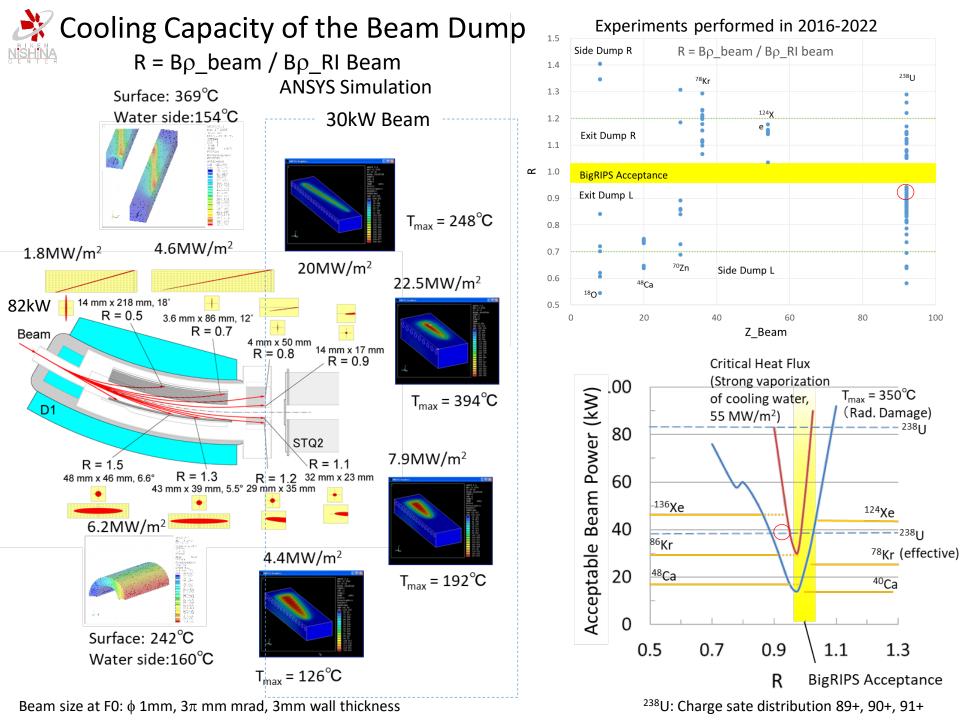
Heat deposit/thickness (kW/mm)

Cooling capacity of the rotating target


Water cooled stationary Beam Dump

Designed by T. Kubo, H. Mizoi, and N.Fukuda




238U 345MeV/n 1pμA 82kW Max 1GW/m² Tilted Wall 100MW/m²

Cu, Cu-Ag, Cu-Cr-Zr

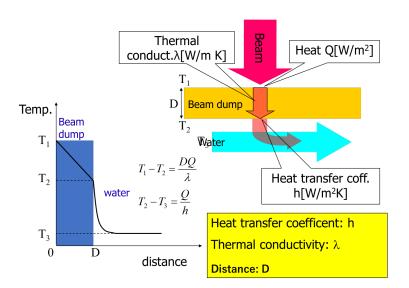
Cooling tubes with a high heat transfer coefficient.

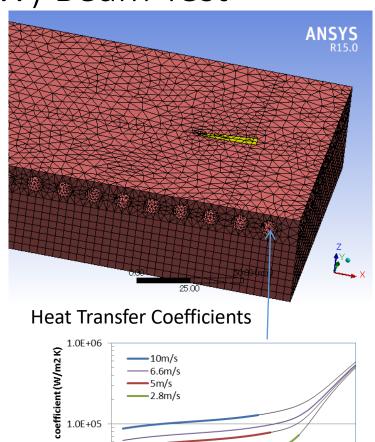
⁴⁸Ca 345MeV 500pnA (8.3kW) Beam Test

Beam was stopped near the thermocopule mounted on exit beam dump.

(Beam Brho / D1 Brho =0.845)

Beam Spot: estimated from the beam emittance measured at F2


F0 in $\sigma~$ x: 0.74mm, 3.3 π mm mrad

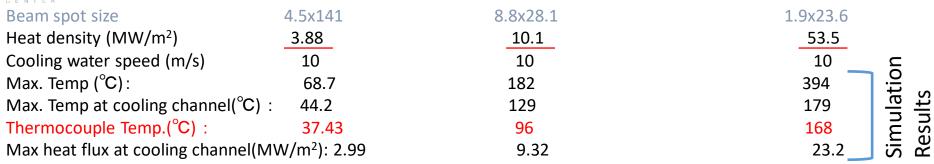

y: 0.45mm, 1.9 π mm mrad

Tuning STQ1 Field: three different spot sizes

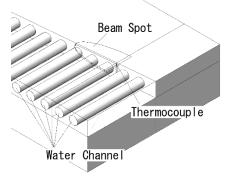
 $x \times y$: 4.5 x 141, 8.8 x 28.1, 1.9 x 23.6

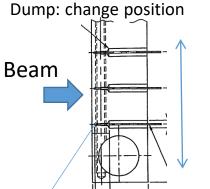
Thermal Conductivity: Cu-Cr-Zr 320 W/m K http://conductivity-app.org/

Heat transfer coefficients are calculated by using empirical formula.

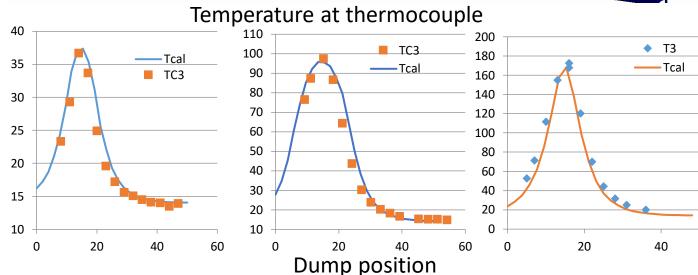

Wall Temperature (°C)

50


J. Boscary et al., Fusion Eng. Des. 43 (1998) 147K. Masaki et al., Fusion Eng. Des. 61-62 (2002) 171

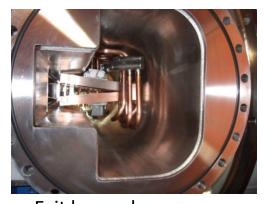

Temperature measurement with ⁴⁸Ca 345MeV/n 500pnA (8.3kW)


Thermo-couples mounted on the exit beam dump



To get temperature profile, Beam: fixed position Dump: change position

3 mm behind the surface



Good agreement between the measurements and the simulations

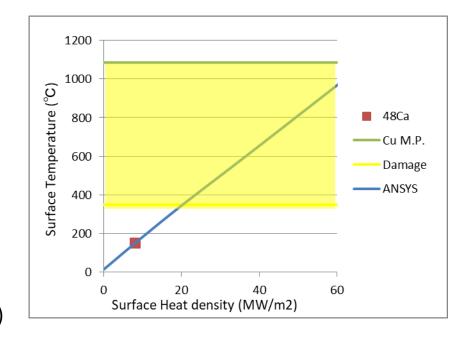
Surface temperature measurement

Exit beam dump (Cooling water :10m/s 1MPa)

Surface temperature of the exit beam dump (highest temperature) was measured with the infrared thermal camera for ⁴⁸Ca beam with 345MeV/u, 0.5puA (8.3kW).

Due to the strong radiation from the dump, the camera only works within 1 min.

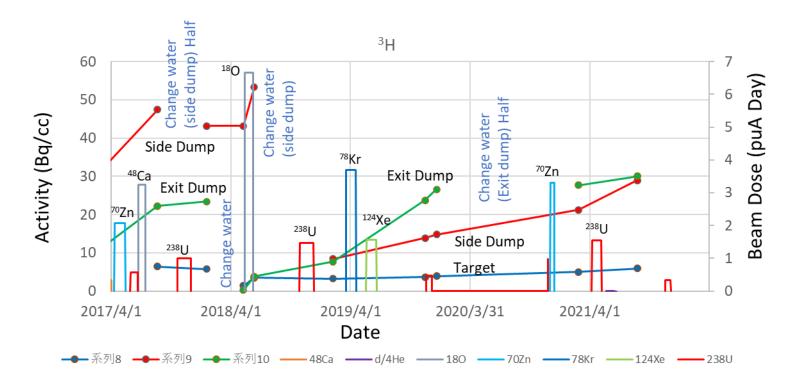
Observed temperature is well reproduced by the ANSYS beam dump model which used in the beam dump design.



⁴⁸Ca beam with 345MeV/u, 0.5puA

Spot size: X 30mm, Y 22mm

Max temp. 65° C(raw) \rightarrow 150°C (emissivity correction)


Heat density of 20 MW/m² corresponds to ²³⁸U 345MeV/u 0.25 puA without target. 0.5 puA with a target

For 1puA ²³⁸U beam, dedicate dump is necessary. (This is originally expected.)

Activation of Cooling water of target and beam dump

- Dedicated cooling water system for Target, Side Beam Dump, Exit Beam Dump
- They have own ion exchanger cell.
- De-oxygen system was installed in the Exit Beam Dump system to reduce erosion/corrosion
- Activity of the cooling water is measured by radiation control group. Main activity is ³H.
- We change cooling water before ³H activity exceeds 60 Bq/cc which corresponds the effluent limit of wastewater.

Summary

Production Target

- System structure is briefly reported.
- Radiation Dose are estimated: Still small enough against the Radiation Damage
- Measurement of Beam Spot Temperature and ANSYS simulation
- Cooling Capacity:

 1-2-3mm Be target withstands ²³⁸U 1pμA Beam
 To obtain the concrete result, test with higher beam intensity is necessary.

Beam Dump

- System structure and design are briefly reported
- Cooling Capacity:
 Dump temperature were measured with thermocouple and infrared camera with ⁴⁸Ca 500 pnA beam. (8.2kW beam power)
 Results are well reproduced by ANSYS simulation.

 suggesting the beam dump has the cooling capacity as we designed.

Activation Cooling water

Activation of cooling water of the target and beam dump is reported.