

EMIS 2022

The 19th International Conference on Electromagnetic Isotope Separators and Related Topics

October 3-7, 2022 (Science Culture Center, IBS)

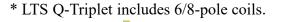
Outline

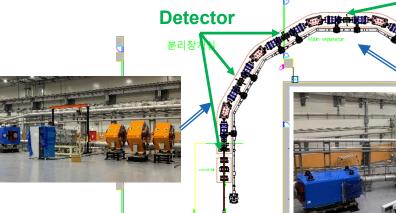
- Overview
- Beam Optics of IF separator
- Target & Beam dump system
- Magnet system
- Particle Identification system
- Summary

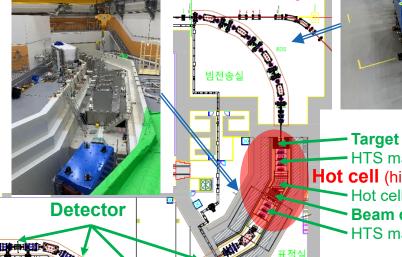
Overview

Main features of IF separator

- RI beams are produced by projectile fragmentation, and also by in-flight fission of uranium beam for neutron rich exotic nuclei
- Projectile fragmentation using ISOL RI beam for more neutron rich exotic nuclei
- Two-stage separator scheme
 - : Pre-separator for RI beam production and remove the primary beam
 - : Main separator for PID of RI beams
- Large momentum and angular acceptance
 - momentum acceptance : ± 3 %
 - angular acceptance : \pm 40 mrad and \pm 50 mrad in horizontal and vertical, respectively
 - → Large aperture superconducting (HTS, LTS) quadrupoles are adopted (HTS : High temperature superconducting, LTS : low temperature superconducting)
- Main specifications of IF magnet were set based on magnetic rigidity of 7.5 Tm considering a uranium beam with an energy of 200MeV/u.






Layout of IF separator

\Delta List of major components

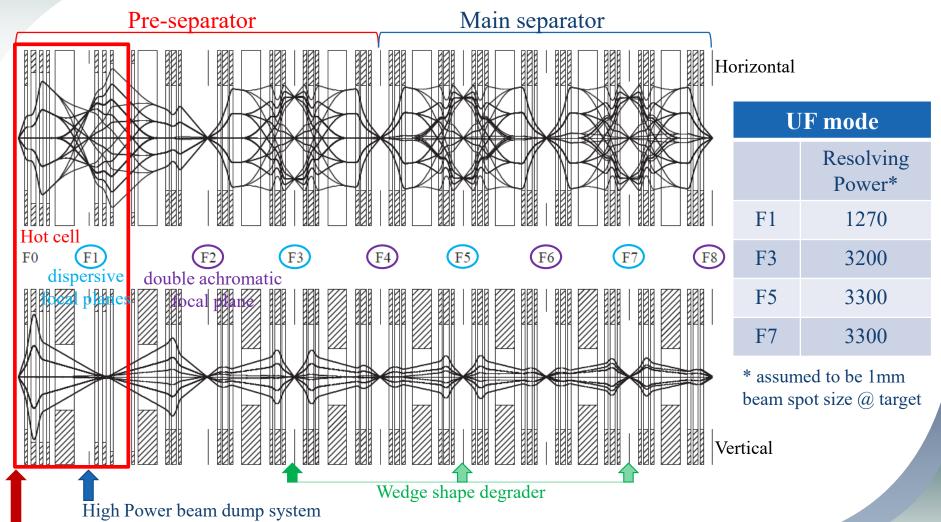
- Target & Beam dump system
- Detector system (F2~F8)
- Magnet system
 - 8 dipole magnets (NC)
 - 15 sets of quadrupole triplet (HTS & LTS*)
 - 2 sextupole magnets (HTS, NC)

HTS magnet (HQ1,2,3, HSx) Hot cell (high radiation region)

Hot cell dipole

Beam dump

HTS magnet (HQ4,5,6)



Beam Optics

Optics calculation of IF separator

115 기초과학연구원

High power rotation target system

Rare Isotope Science Project

Target & Beam dump System

Target system requirement

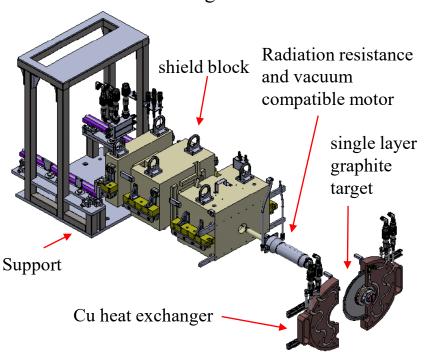
- Optical requirements: 1 mm diameter beam spot, Max. extension in beam direction < 50 mm
- Target lifetime of 2 weeks to meet experimental program requirements
- High power capability: Up to 80 kW in a 1.85 g/cm³ target material for rare isotope production by in-flight fission with 200 MeV/u uranium beam with 400 kW

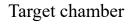
Beam dump system requirement

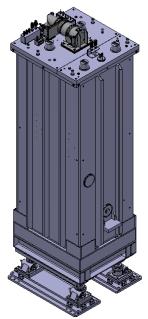
- High power capability: up to about 330 kW
- Long-lived life time : >1 year
- Horizontally move up to \pm 30 cm from center
- Remote replacement and maintenance

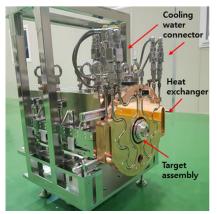
Development strategy

- RISP baseline design: primary beam energy of 200 MeV/u for ²³⁸U, max. beam power of 400 kW
- According to a ramp-up schedule of primary beam power, the target and beam dump system are developed step by step.
- As the first step, target and beam dump system that can be used up to 80 kW primary beam has been made and tested.



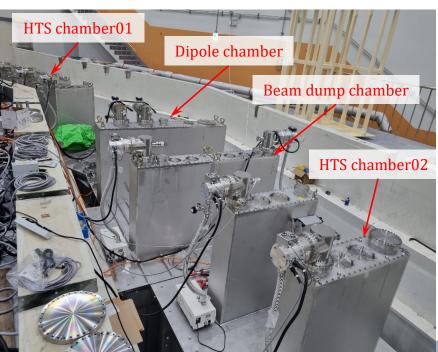

Target & Beam dump System

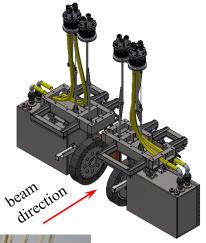



Characteristics of the IF target system

- Self rotating radiation-cooled single or multi-slice target was designed based on the FRIB design.
- Material: graphite (allowable temperature : 1900 °C)
- Single slice target: 1.6 mm x1 ea below 80 kW
- Multi-slice target: 0.2 mm x8 ea with 400 kW
- A target of 2 mm thick is tapered to be 0.2 mm or 1.6 mm
- Installed inside a large vacuum chamber

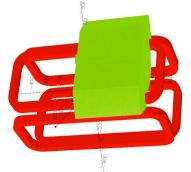
Target & Beam dump System

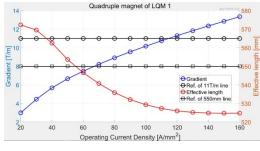



Characteristics of the beam dump system

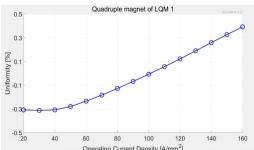
❖ 80kW beam dump system

- Self rotating graphite cylinder type
- Material: graphite (allowable temperature : 1900 °C)
- Outside diameter of graphite cylinder: 70 cm
- The height of graphite cylinder: 12 cm
- Rotation speed : ~ 400 rpm

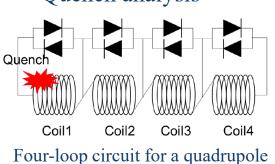


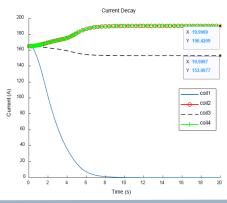


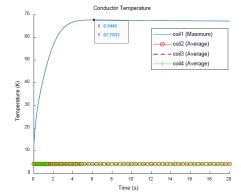
- LTS Q-magnet Triplet (Design, numerical analysis)
- LTS triplet requirement


Ite	requirement			
Field gradient	LQ1	≥ 11.0 T/m		
	LQ2	≥ 11.0 T/m		
	LQ3	≥ 11.0 T/m		
	LSx	≥ 10 T/m ²		
	LOc	≥70 T/m³		
Effective length	LQ1, LQ3, LSx, LOc	550 mm ± 1mm		
	LQ2	900 mm ± 1mm		
Field uniformity	LQ1, LQ2, LQ3	≤± 0.5%		
Heat load	Helium vessel(4.5K)	≤5 W		
	Thermal shield(40K)	≤120 W		

• Electromagnetic analysis



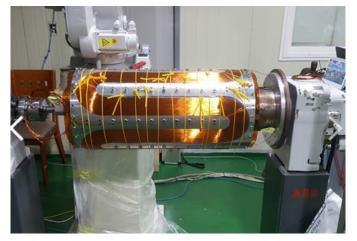




Quench analysis

- $T_{coil,max} = 68 \text{ K}$
- (design requirement : < 150K)
- $V_{max} = 286 \text{ V}$

(design requirement : < 2 kV)



• LTS Q-magnet Triplet (Manufacturing)

Quadrupole coil winding (automatic winding method)

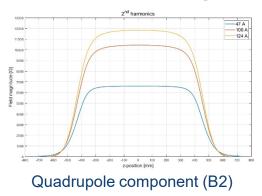
Sextupole & Octupole coil winding (jointless winding method)

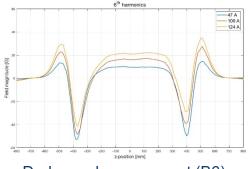
HTS current lead (performance test at 77K)

Laminated iron yoke

Quadrupole triplet assembly

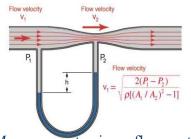
Quadrupole triplet cryostat assembly





- LTS Q-magnet Triplet (Test results)
- Quench training and field measurement of LTS magnet

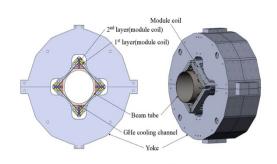
Dodecapole component (B6)

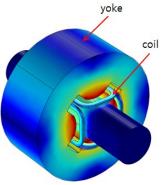

- Average 5~6 times quench occurs in quadrupole magnet. Quench not occurs in sextupole and octupole magnets.
- Vacuum and leak rate measurement

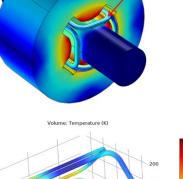
Heat load measurement

Measurement using a flow meter

Helium vessel : ~ 4.3 W, Thermal shield : ~ 92 W

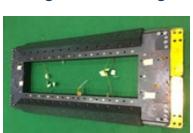

9 out of 13 LTS quadrupole triplets have completed the performance test, and all of them have satisfied the magnetic field and cryogenic requirement so far.

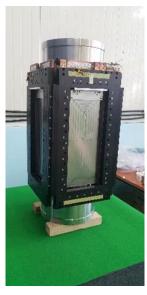




HTS Magnet (Design, fabrication)

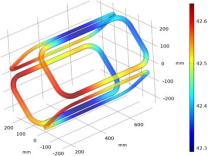
Magnet	HQ1	HQ2	HQ3	HQ4	HQ5	HQ6	HSx
Effective length [mm]	550	800	550	550	550	550	450
Aperture radius[mm]	120	150	150	150	150	170	150
Field gradient [T/m, T/m²]	10.5	9.2	7.9	3.3	2.9	4.0	1.4
Field uniformity	≤±0.5%						
Heat load	≤150	≤180	≤180	≤160	≤160	≤200	≤170





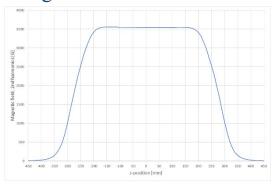
Single coil winding

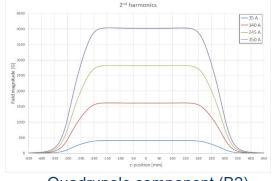
Single coil assembly

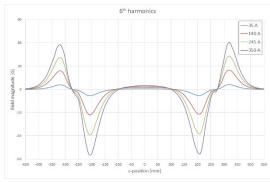

Coil assembly

Cryostat assembly

Performance test

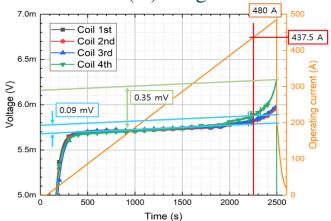






• HTS Magnet (Test results)

Magnetic field measurement of HTS magnet (HQ4)

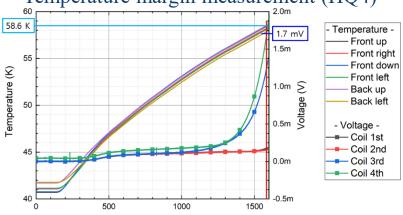


Radial component (Br, Θ =45°, 350A)

Quadrupole component (B2)

Dodecapole component (B6)

• Critical current (Ic) margin measurement (HQ4)



Hold GHe temperature 40K & Ramping up Current

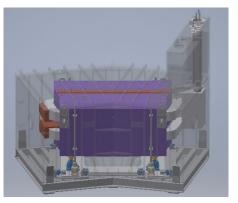
→ 0.35 mV(0.02 μV/cm < criterion of 0.1 μV/cm) at 437.5A

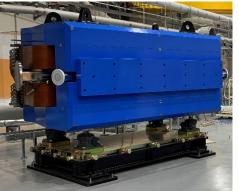
Critical current margin is more than 30%

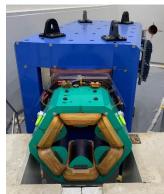
• Temperature margin measurement (HQ4)

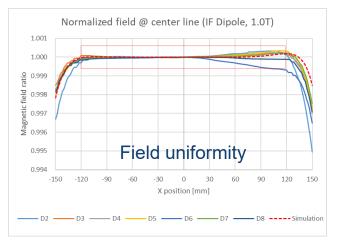
Hold target current of 350A & increase GHe temperature

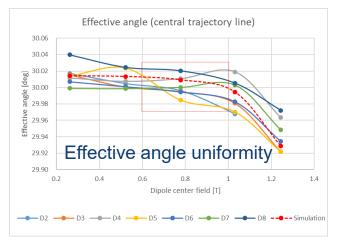
→ Quench occurs at 58.6K Temperature margin is 13.6K





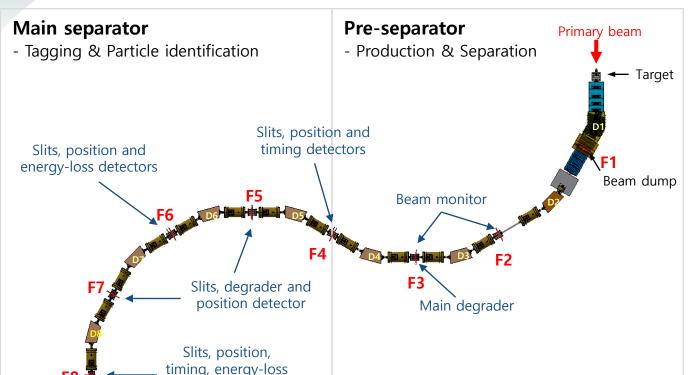

NC (Resistive) Magnet


- Hot cell dipole (D1): Coil molding using radiation-resistant epoxy (cyanate ester), in production
- NC dipole (D2~D8) & sextupole : On-site installation after completion of manufacturing


Dipole parameter	Value			
Bending angle	30°			
Bending radius	6.0 m			
Magnetic field	1.25 T			
Aperture height	150/110 mm			
Good field region	120 mm			

Main operation range : 0.6 ~ 1.0 T

• NC dipoles satisfy the field requirements (field uniformity: $\pm 0.05\%$, effective angle uniformity: $\pm 0.1\%$).



Particle Identification System

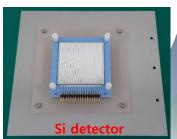
and γ-ray detectors

Particle identification (PID) of RI beams

Bρ-TOF-ΔE method

$$B\rho = \frac{A}{Q} \frac{m_u c}{e} \beta \gamma$$

$$TOF = \frac{L}{\beta c}$$


$$\Delta E \sim Z^2 / \beta^2$$

measurement PID plot

- Detectors for PID
- Position (Bρ) : PPAC
- Timing (TOF) : plastic scintillator
- Energy-loss (ΔΕ): Si-detector/IC

** Refer to "Development Status of the Detector System for IF Separator at RAON (PS-8-6)" at the poster session.

Summary

Current status

- Most of the components of the IF Separator have been fabricated and are being installed on site.
 - : 80kW class target and beam dump, HTS magnets (6 quadrupole, 1 sextupole), NC magnets (7 dipole, 1 sextupole), and detector system are all manufactured and performance test completed
 - : Of the 13 LTS Q-triplets, 9 have been performance tested and the remaining 4 are in testing.
 - : Hot cell dipole magnet and power supplies for magnets are in production.
 - : The large vacuum chamber (for hot cell) is undergoing vacuum testing after field installation.

Future plans

- By the end of this year, the production and performance tests of all components will be completed, and field installation will be completed.
- Next year, we plan to conduct a single-acting test of each component and establish a control system for the IF separator.

Thank you for your attention

