Developments towards high resolution laser spectroscopy of ²³⁵mU

A. Raggio¹, L. E. Reed², J. Warbinek^{2,3}, I. Pohjalainen¹, R.P. de Groote⁴, I. D. Moore¹, Ch. E. Düllmann^{2,3,5}, M. Block^{2,3,5} and the IGISOL group¹

¹Accelerator Laboratory, Department of Physics, University of Jyväskylä, Finland ²Department Chemie - Standort TRIGA, Johannes Gutenberg-Universität Mainz, Germany ³GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany ⁴KU Leuven, Instituut voor Kern-en Stralingsfysica, Leuven, Belgium ⁵Helmholtz Institute Mainz, Mainz, Germany

MOTIVATION

measurement of hyperfine structures and isotope shifts high-resolution with laser spectroscopy offers access to fundamental nuclear structure properties including spins, radii mean-square charge

electromagnetic moments. and Within the LISA framework [1], a new measurement campaign has been started on uranium by means of collinear laser spectroscopy at the IGISOL facility. The final aim is the study of the second lowestlying isomeric state in the nuclear landscape, the 76-eV isomer in ²³⁵U.

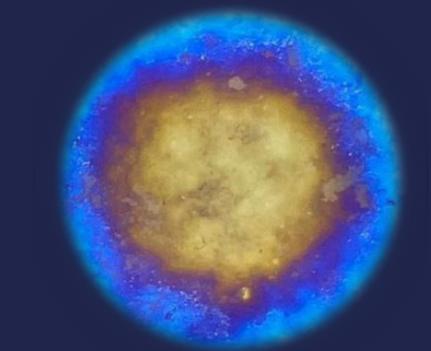
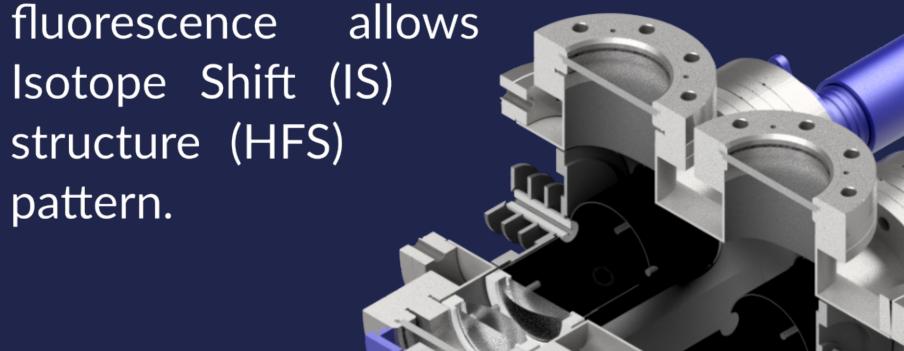



Fig. 1: Picture of a 22 mm diameter ²⁴⁰Pu source.

COLLINEAR LASER SPECTROSCOPY (CLS)

After mass separation, ions are cooled and bunched in a radiofrequency cooler-buncher, before being reaccelerated to 30 keV and delivered to the collinear beamline. There, ions are overlapped in a counter-propagating geometry with a CW laser beam which excites them from either the ground state or low-lying metastable state. Detection of laser-induced

measurement of Hyperfine and from the frequency

4 Photomultiplier Tubes: 2x R6427 300nm to 650nm 2x R6834 160nm to 330nm

Fig. 4: Cross-sectional view of the upgraded IGISOL collinear line light collection region [4].

GAS-CELL STUDIES

To generate an isomeric beam, a set of 27 molecular plated [2] ²³⁹Pu alpha-recoil sources have been produced at Mainz University (JGU) with an average activity of 200 kBq/source. The ^{235m}U isomer is populated directly with a 71% branching ratio by the alpha decay of ²³⁹Pu and has a halflife of 26 minutes.

Fig. 2: Cross-sectional view of the actinide gas-cell with two sources mounted inside.

The sources have been initially tested in the actinide gas cell [3] where the alpha-recoils are stopped in a buffer gas (He) and extracted towards the IGISOL beamline.

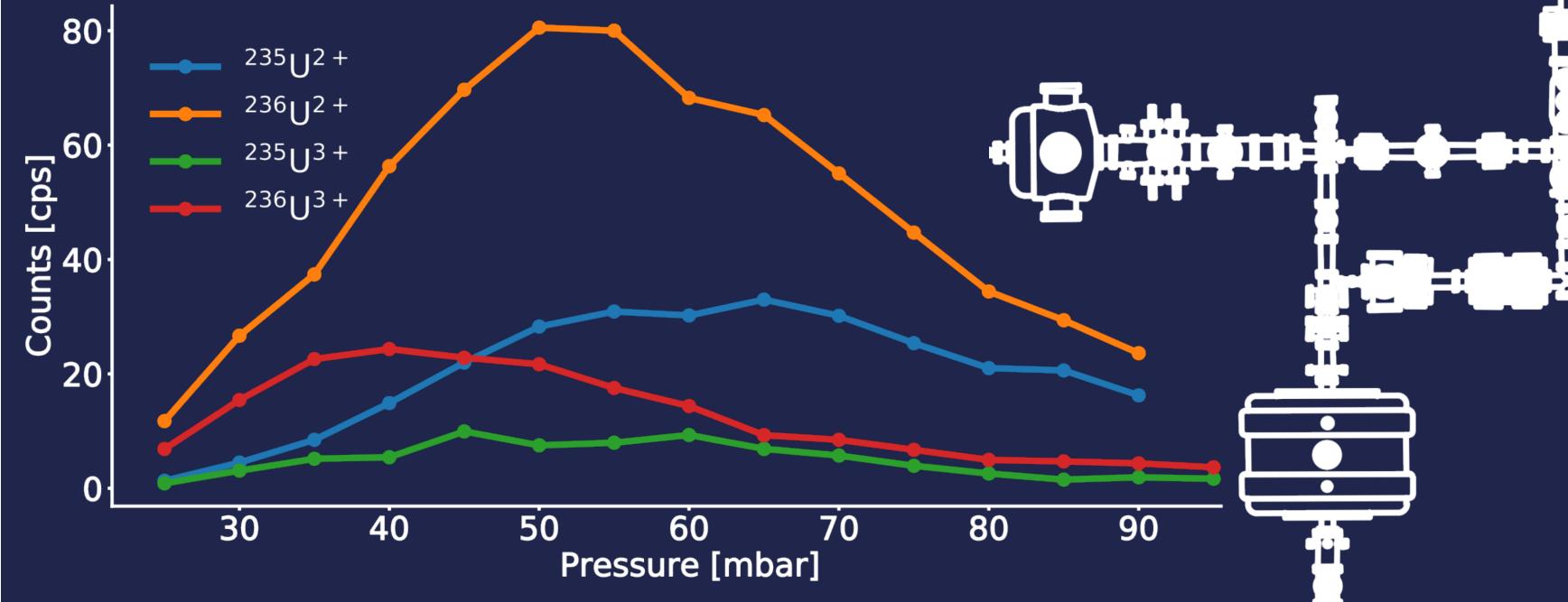


Fig. 3: Uranium recoil yields measured using an MCP detector at IGISOL switchyard after gas-cell extraction and mass separation. In addition to the ²³⁹Pu source, a reference ²⁴⁰Pu source was additionally installed providing ²³⁶U alpha recoils. The charge distribution of the recoils reflects the purity of the He buffer gas in the gas cell. For the final measurement, manipulation of the charge state will be needed to produce singly-charged ions.

Using an electric discharge source placed in the IGISOL target chamber more than 10 ionic transitions have been studied in the three natural uranium isotopes: 234 (0.0054%), 235 (0.72%) and 238 (99.27%). A detection efficiency of 1 photon per 3000 ions was measured on ²³⁸U resonance.

GROUND STATE TEMPLATE

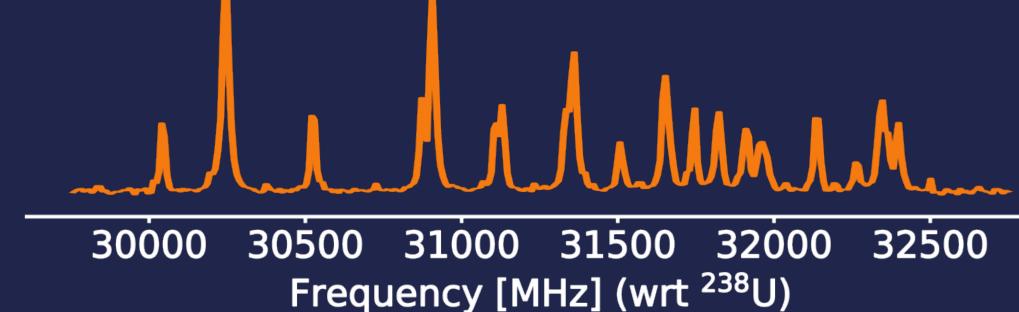


Fig. 5: 235gs U hyperfine structure of the 305.02 nm transition from J=4.5 to J=4.5. The nuclear angular momentum of the ground state is 7/2, producing therefore 22 HFS peaks.

HYPERFINE SPLITTING

$$\Delta E_{\text{hfs}} = \frac{1}{2} A_{\text{hfs}} C + B_{\text{hfs}} \frac{\frac{3}{2} C(C+1) - 2I(I+1)J(J+1)}{2I(2I-1)2J(2J-1)}$$

$$C = F(F+1) - I(I+1) - J(J+1)$$

 $A_{\rm hfs}$ and $B_{\rm hfs}$ are the dipole and quadrupole coupling constants

ISOTOPE SHIFT

$$\delta \nu_i^{A,A'} = M_i \frac{A' - A}{A,A} + F_i \delta \langle r^2 \rangle^{A,A'}$$

 M_i and F_i are the mass and the field shift constants

OUTLOOK

CLS of ^{235m}U isomer planned for 2023

- Extraction and transmission efficiency need to be improved, test with different gas cells planned in the fall.

> - Manipulation of recoils charge state needs to be investigated

EMIS 2022, October 3-7, 2022, RISP/IBS Daejeon, Korea

REFERENCES

- [1] LISA Laser Ionization and Spectroscopy of Actinides, https://lisa-itn.web.cern.ch/
- [2] Vascon, A., et al., NIM A, 696 (2012): 180-191.
- [3] Pohjalainen, I. et al., Nucl. Instr. Meth. Phys. Res. Sect. B, 376 (2016) 233-239.
- [4] Koszorus A. et al. submitted to Spectrochimica Acta Part B: Atomic Spectroscopy.

UNIVERSITAT MAINZ

