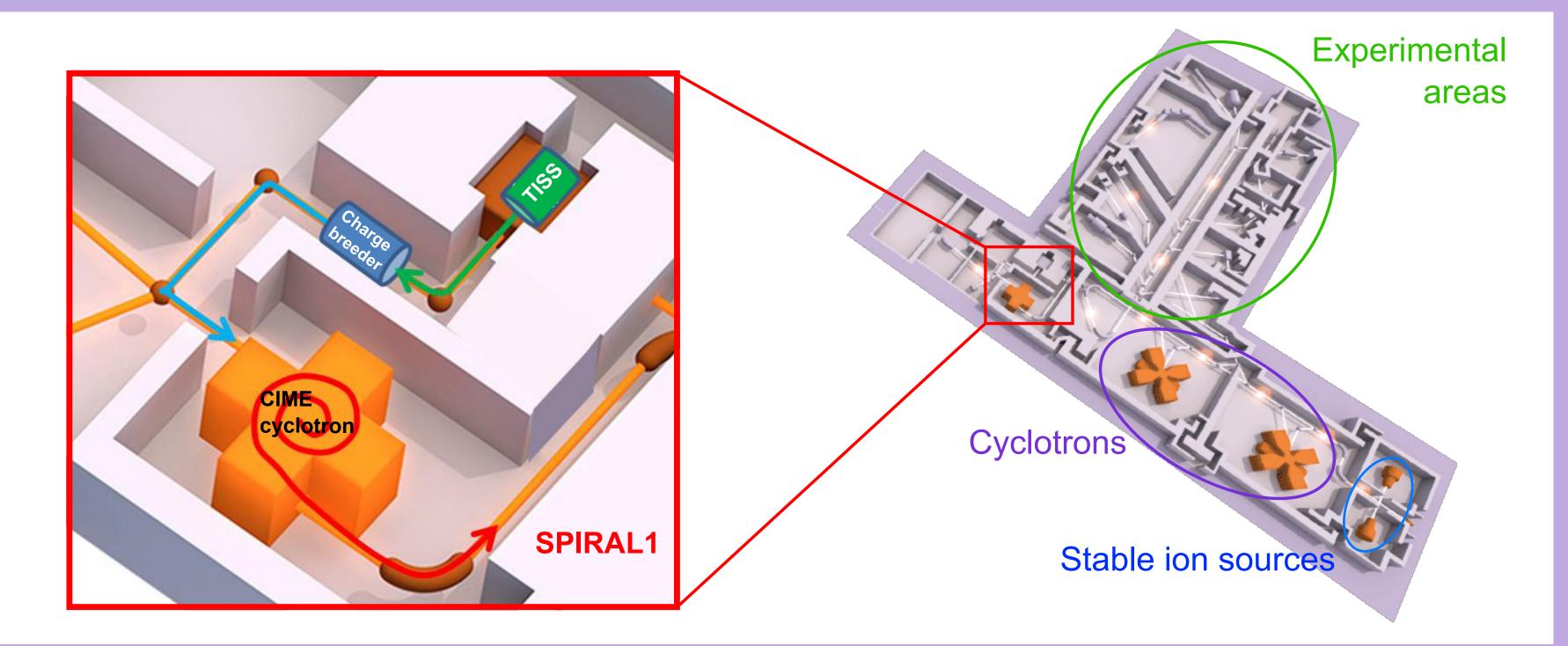
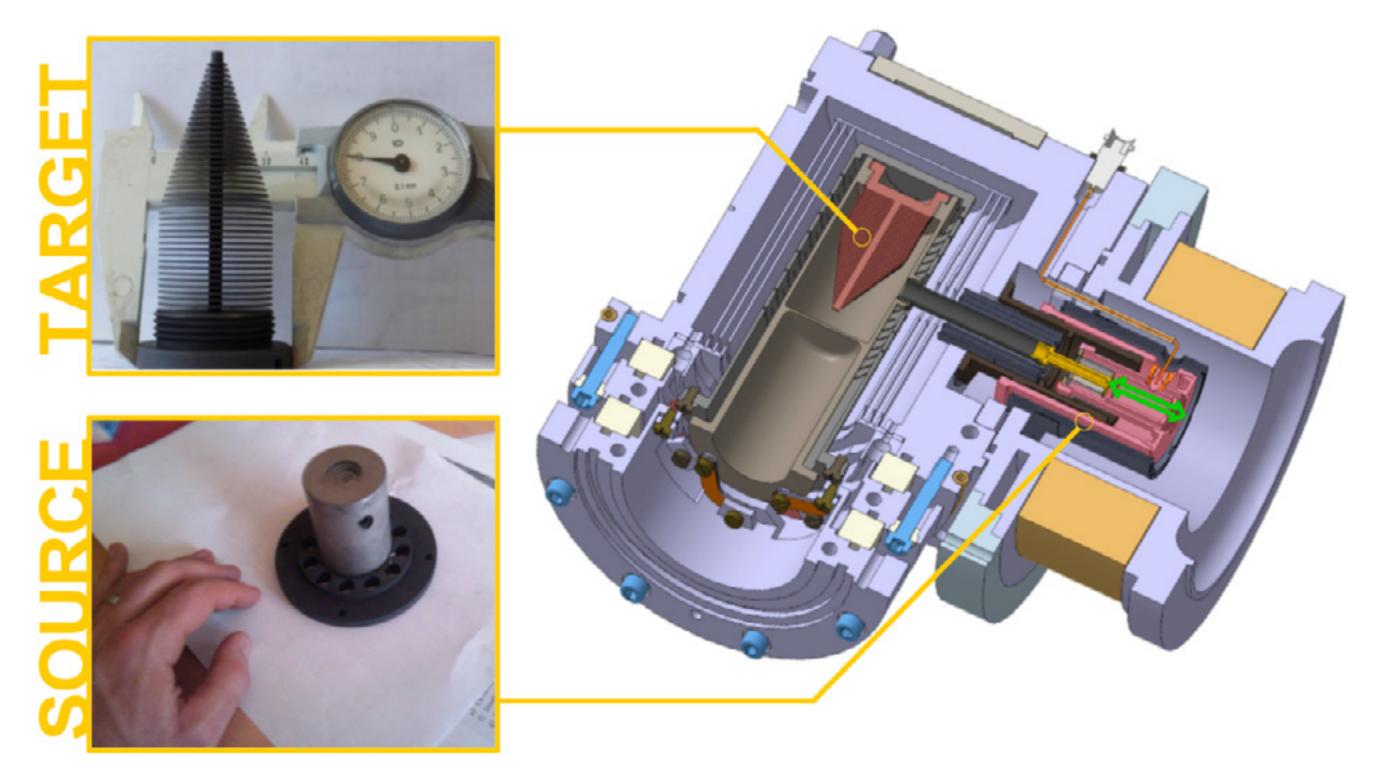
# Latest improvements of the SPIRAL1 facility at GANIL

P. Chauveau<sup>1</sup>, V. Bosquet<sup>1</sup>, S. Damoy<sup>1</sup>, P. Delahaye<sup>1</sup>, M. Dubois<sup>1</sup>, P. Jardin<sup>1</sup>, M. Lalande<sup>1</sup>, L. Maunoury<sup>2</sup>, J.-C. Thomas<sup>1</sup>


<sup>1</sup>Grand Accélérateur National d'Ions Lourds, bd Henri Becquerel, BP 55027, F-14076 Caen cedex 05, France <sup>2</sup>Normandy Hadrontherapy, 1 rue Claude Bloch, 14000 Caen, France

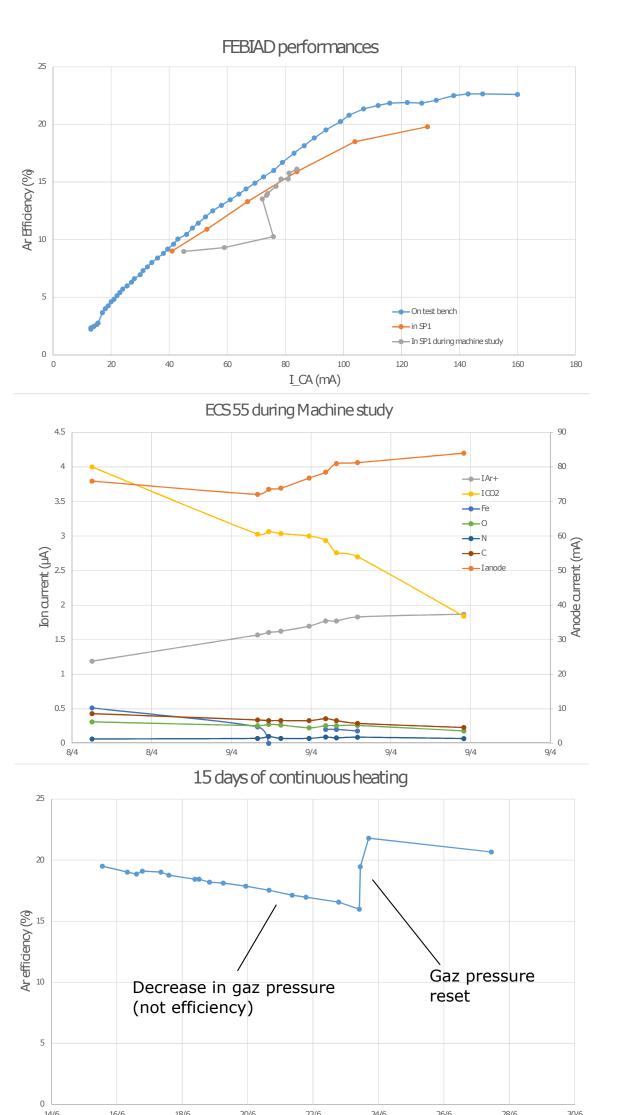





## Context

Radioactive ion beams (RIBs) offer opportunities for physicists to explore the properties of nuclear matter in ever more exotic nuclei. The SPIRAL1 facility at GANIL (Caen, France) is a RIB factory using the ISOL method. It has been providing postaccelerated RIBs to experimental areas since 2001. Over the last decade, SPIRAL1 has been upgraded [1] to provide beams of condensable elements, by combining a FEBIAD-type ion source [2] (producing 1+ ions) and a PHOENIX ECR charge breeder (to increase the charge state for post-acceleration). Significant progress has been made in the past 3 years on the FEBIAD source and the charge breeder.



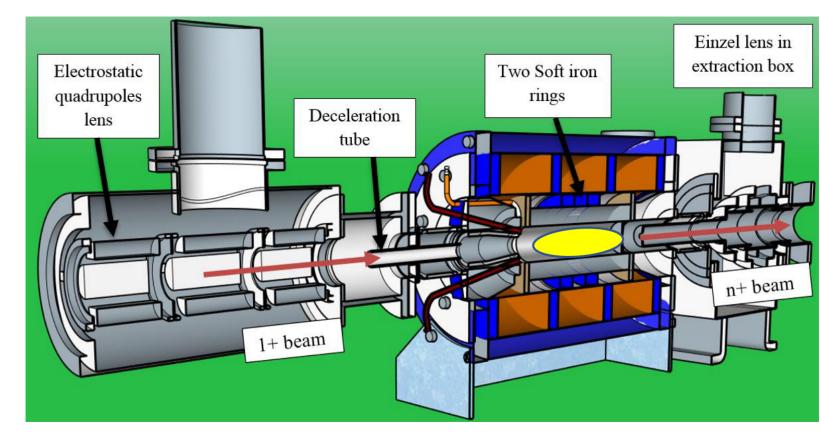

## The FEBIAD ion source

Spiral1 was initially limited to gaseous elements with a Nanogan ECR source, but was then upgraded to be compatible with other types of source. In particular the FEBIAD ion source, capable of producing 1+ ions of condensable elements, is intended to be the work horse of the SPIRAL1 facility in the coming decade.

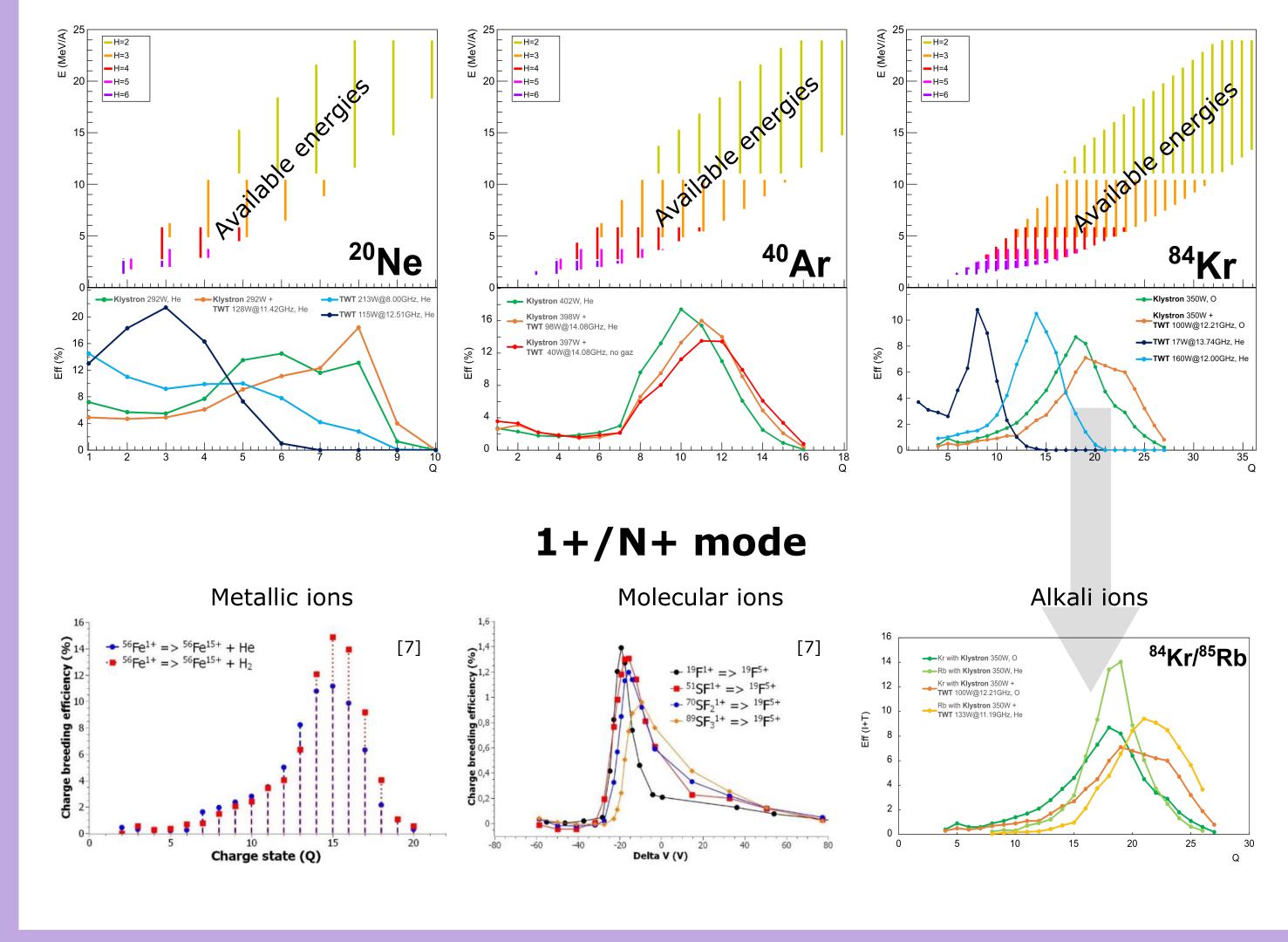


After several years of test and many design improvements [3-5] our FEBIAD ion source is now showing excellent performances:

- Efficient: <sup>40</sup>Ar efficiency up to 25%
- Resilient: TISS (Target-Ion Source System) #55 has been irradiated 36 hours was kept at  $Eff_{Ar}=20\%$  for 15 days without loss of performance.
- Stable over time: same performances 3 months appart.
- Reliable: same results on test bench and Spiral, and between 2 TISS.




### Latest online results


|                                    |             |          | Isotope    | Post-acce    | elerated rate                    |           | ergy (MeV/A) |  |
|------------------------------------|-------------|----------|------------|--------------|----------------------------------|-----------|--------------|--|
| post-accelerated 38mk              |             |          |            |              | 00E+05                           | S         |              |  |
| beams: 47K                         |             |          | 47K        | 6.00E+05 7.7 |                                  |           |              |  |
|                                    |             |          |            |              |                                  |           |              |  |
| Low energy rates.                  |             |          |            |              | 84Kr@67MeV/A 10W beam->12Ctarget |           |              |  |
| /100 for post-accelerated beams.   |             |          | Mass       | Isotope(s)   | T1/2 (s)                         | rate@500W |              |  |
| 264 0744 1//4 0501//               |             |          |            | 80           | 80Rb                             | 34        |              |  |
| 36Ar@74MeV/A 850W beam ->12Ctarget |             |          |            |              | 79mKr                            | 50        |              |  |
| Mass                               | Isotope(s)  | T1/2 (s) | rate@1200W | 79           | 79Kr                             | 126144    |              |  |
| 20                                 | 8Li         | 0.84     |            |              | 79Rb                             | 1374      |              |  |
| 21                                 | 20Na        | 0.4479   |            |              | 79mBr                            | 4.85      |              |  |
|                                    | 21Na        | 22.49    |            |              | 78mRb                            | 344.4     |              |  |
| 23                                 | 1H20F       | 11       |            | 78           | 78Rb                             | 1059.6    |              |  |
|                                    | 23Ne        | 37.25    | 1.43E+06   |              | 78Br                             | 387       | 4.69E+07     |  |
| 24                                 | 23Mg        | 11.3046  | 4.27E+06   |              | 77Rb                             | 226.8     |              |  |
|                                    | 24Ne        | 202.8    | 2.18E+05   |              | 77Kr                             | 4275      | 2.81E+07     |  |
|                                    | 24Na        | 53989.2  | 9.29E+07   | 77           | 77mBr                            | 256.8     | 5.29E+07     |  |
|                                    | 24Na_m      | 0.0202   | 2.87E+05   |              | 77Br                             | 205344    | 7.59E+07     |  |
| 25                                 | 24AI        | 2.053    | 9.47E+02   |              | 77mSe                            | 17.36     | 3.08E+04     |  |
|                                    | 25AI        | 7.183    | 3.80E+04   |              | 76Rb                             | 36.5      | 2.37E+04     |  |
|                                    | 25Na        | 59.1     | 8.67E+06   | 76           | 76Kr                             | 53280     | 7.21E+06     |  |
|                                    | 25Ne        | 0.602    | 6.52E+03   | '            | 76Br                             | 58320     | 6.00E+07     |  |
| 26                                 | 25Na 100V   | 59.1     | 8.00E+06   |              | 76mBr                            | 1.31      | 1.53E+06     |  |
| 20                                 | 26Na        | 1.07128  | 2.21E+05   |              | 75Kr                             | 276       | 8.03E+05     |  |
| 27                                 | 26Al_m      | 6.346    | 9.22E+04   | <i>7</i> 5   | 75Br                             | 5802      | 4.26E+07     |  |
| 28                                 | 27Mg        | 567.5    | 2.62E+06   | /3           | 75Ga                             | 126       | 1.22E+04     |  |
| 29                                 | 28AI        | 134.7    | 3.27E+06   |              | 75Ge                             | 4966.8    | 1.98E+05     |  |
|                                    | 29Al        | 394      | 1.14E+06   |              | 71Se                             | 284.4     | 2.63E+04     |  |
| 30                                 | 29Mg        | 1.3      | 2.27E+03   | 71           | 71As                             | 235080    | 2.26E+07     |  |
| 31                                 | 30AI        | 3.62     | 1.30E+03   | '1           | 71 <i>Z</i> n                    | 147       | 1.96E+04     |  |
|                                    | 31 <b>G</b> | 0.19     | 8.05E+02   |              | 71mZn                            | 14256     | 1.67E+05     |  |
| 32                                 | C190        | 26.91    | 1.92E+03   |              | 69As                             | 912       | 1.86E+05     |  |
|                                    | 32Ar        | 0.098    | 1.16E+03   | 69           | 69Ge                             | 140580    | 1.39E+07     |  |
| 33                                 | 32 <b>0</b> | 0.298    | 8.52E+04   | 09           | 69mZn                            | 49521.6   | 2.66E+06     |  |
|                                    | 33Ar        | 0.173    | 9.81E+04   |              | 69Cu                             | 171       | 4.22E+04     |  |
| 34                                 | 33 <b>0</b> | 2.511    | 2.21E+06   | 68           | 68mCu                            | 225       | 7.03E+04     |  |
|                                    | 34Ar        | 0.8438   | 7.02E+06   |              | 68Ga                             | 4062.6    | 1.42E+07     |  |
|                                    | 34 <b>0</b> | 1.5266   | 2.39E+07   | 67           | 67Ge                             | 1134      | 1.74E+05     |  |
|                                    | 34ma        | 1919.4   | 7.90E+07   | 6/           | 67Ga                             | 281810.88 | 4.42E+07     |  |
| 35                                 | 35Ar        | 1.7756   | 1.54E+08   | CE           | 65Ga                             | 912       | 6.92E+06     |  |
|                                    | H34mCl      | 1919.4   | 1.89E+07   | 65           | 65Ni                             | 9061.884  | 4.53E+04     |  |

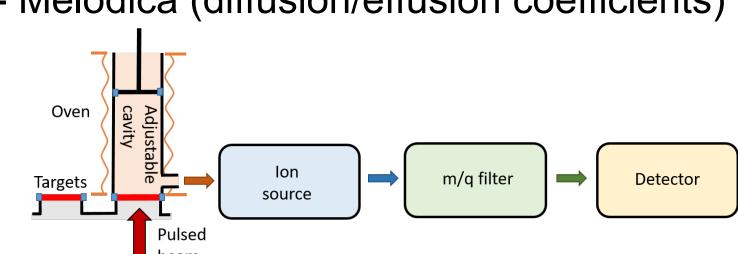
## The Charge Breeder

The charge breeder (CB) [6] is used to increase the charge state of the 1+ beams from the FEBIAD source for postacceleration. It can also be used directly as a gaseous ion source in parallel of the FEBIAD beams.



The CB has been recently equiped with a TWT-type amplifier, in addition to the existing Klystron. This enables variable single frequency heating and double frequency heating, allowing some control over the charge state distribution and improved plasma stability. These new modes have been tested both with gaz and 1+ beams, with promising results.




# Perspectives

Fully operational FEBIAD source and charge breeder — Spiral1 could be the place for your experiment. Please tell us what you need!

New are beams of interest are being developped (<sup>8</sup>Li, <sup>85</sup>Kr, <sup>48</sup>Cr)

### Ongoing R&D:

- Tulip (new TISS for production n-deficient RIBs)
- Melodica (diffusion/effusion coefficients)





# **EMIS 2022**

The 19th International Conference on Electromagnetic Isotope Separators and Related Topics

October 3 - 7, 2022 | Science Culture Center, IBS

### References

[1] Status of the SPIRAL I upgrade at GANIL, P. Jardin et al, Review of Scientific Instruments 83, 02A911 (2012) [2] Development of high efficiency Versatile Arc Discharge Ion Source at CERN ISOLDE, L. Penescu et al, Review of Scientific Instruments 81, 02A906 (2010) [3] Development of target ion source systems for radioactive beams at GANIL, O. Bajeat et al, Nuclear Instruments and Methods in Physics Research B 317 (2013) 411–416 [4] A new FEBIAD-type ion source for the upgrade of SPIRAL1 at GANIL, P. Chauveau et al, Nuclear Instruments and Methods in Physics Research B 376 (2016) 35–38 [5] New exotic beams from the SPIRAL 1 upgrade, P. Delahaye et al, Nuclear Inst. and Methods in Physics Research B 463 (2020) 339–344

[6] Charge breeding of light metallic ions: Prospects for SPIRAL, P. Delahaye et al, Nuclear Instruments and Methods in Physics Research A 693 (2012) 104–108 [7] Charge Breeder at GANIL: metal charge-bred elements, L. Maunoury et al, Journal of Physics: Conference Series 2244 (2022) 012066