













Y. Cho<sup>1, 2</sup>, Y. H. Kim<sup>2</sup>, S. Choi<sup>1</sup>, J. Park<sup>2</sup>, S. Bae<sup>2</sup>, Y. Son<sup>1, 2</sup>, N. Alahari<sup>3</sup>, A. Lemasson<sup>3</sup>, M. Rejmund<sup>3</sup>, D. Ramos<sup>3</sup>, D. Ackermann<sup>3</sup>, A. Utepov<sup>3</sup>, C. Fougeres<sup>3</sup>, J. C. Thomas<sup>3</sup>, J. Goupil<sup>3</sup>, G. Fremont<sup>3</sup>, G. de France<sup>3</sup>, P. John<sup>4</sup>, A. Andreev<sup>5</sup>, W. Korten<sup>6</sup>, F. Recchia<sup>7</sup>, K. Rezynkina<sup>7, 8</sup>, G. de Angelis<sup>8</sup>, R. Perez Vidal<sup>8</sup>, F. Didierjean<sup>9</sup>, P. Marini<sup>10</sup>, D. Treasa<sup>10</sup>, I. Tsekhanovich<sup>10</sup>, J. Dudouet<sup>11</sup>, S. Bhattacharyya<sup>12</sup>, G. Mukherjee<sup>12</sup>, S. Bhattacharya<sup>12</sup>, R. Banik<sup>12</sup>, Y. Watanabe<sup>13</sup>, Y. Hirayama<sup>13</sup>, S. Jeong<sup>13</sup>, T. Niwase<sup>13</sup>, H. Miyatake<sup>13</sup>, P. Schury<sup>14</sup>, M. Rosenbusch<sup>14</sup>, M. Mukai<sup>14</sup>, K. Chae<sup>15</sup>, C. Kim<sup>15</sup>, S. Kim<sup>15</sup>, G. Gu<sup>15</sup>, M. Kim<sup>15</sup>, J. Ha<sup>16</sup>

Second Arm at VAMOS++ Spectrometer

Proof of Principle of Newly Installed

<sup>1</sup>Seoul National University, Seoul, Korea, <sup>2</sup>Center for Exotic Nuclear Study, Institute of Basic Science, Daejeon, Korea, <sup>3</sup>Grand Accélérateur National d'Ions Lourds, Cean, France, <sup>4</sup>Technische Universität Darmstadt, Darmstadt, Germany, <sup>5</sup>University of York, Heslington, England, <sup>6</sup>French Alternative Energies and Atomic Energy Commission (CEA), Paris, France, <sup>7</sup>Università di Padova, Padova, Italy, <sup>8</sup>INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy, <sup>9</sup>Institut Pluridisciplinaire Hubert Curien, Schiltigheim, France, <sup>10</sup>Centre Etudes Nucléaires de Bordeaux Gradignan, Gradignan, France, <sup>11</sup>Institute of Physics of the 2 Infinities, Lyon, France, <sup>12</sup>Variable Energy Cyclotron Centre, Kolkata, India, <sup>13</sup>High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan, <sup>14</sup>Institute of Physical and Chemical Research (Riken), Wako, Saitama, Japan, <sup>15</sup>Sungkyunkwan University, Seoul, Korea, <sup>16</sup>Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven, Belgium







Second arm

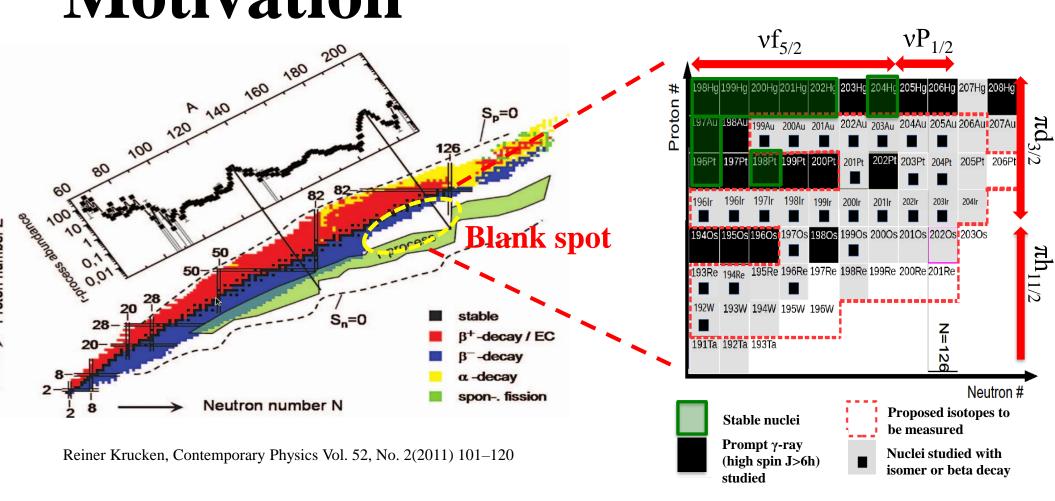








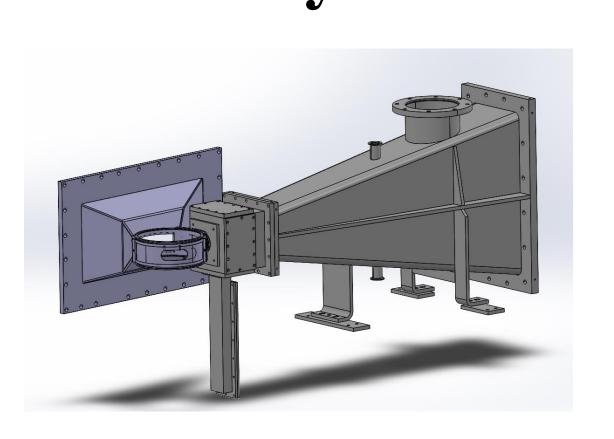
velocity


• Direct measurement of

Target-like fragments (TLFs)

• One MWPC (TOF, X&Y)




## Motivation



#### Accessing "Blank Spot" below <sup>208</sup>Pb

- Study Evolution of nuclear structure N~126 shell closured neutron rich nuclei, relevant to nuclearastrophysical r-process
- Difficult to access by conventional reaction mechanism methods (fragmentation, fission, fusion)
- Approach using multi-nucleon transfer reaction between 7MeV/u <sup>136</sup>Xe beam on <sup>198</sup>Pt target

# Necessity of the Second Arm





- Projectile-like fragments (PLFs) are fully identified by VAMOS++ spectrometer
- The nuclides of interested are on target-like fragments (TLFs) difficult to identify directly
- Many isomeric states in TLF nuclides exists
- Additional setup for TLFs→ **Second arm!**
- Velocity and TOF of TLFs are measured by second arm to calculate excitation energy and mass before neutron evaporation
- Measurement can help TLFs identification and reaction mechanism study

## **Experimental Setup**

• Delayed gamma-rays

• 4 HPGe clover array

•  $T_{1/2}$  measurement for

from TLFs

isomeric state



Focal plane of the VAMOS++ spectrometer



AGATA tracking array



EXOGAM clover detector

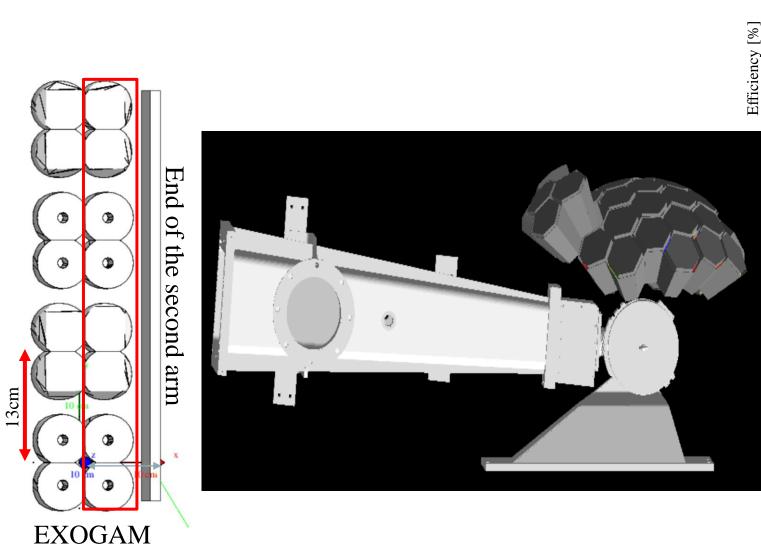
**AGATA HPGe tracking array** Scaled ×0.5 with 13-triple cluster • Prompt gamma-rays form PLFs and TLFs • 39 crystals with nominal configuration VAMOS++ spectrometer MNT reaction of 7MeV/u <sup>136</sup>Xe beam on 1.3mg/cm<sup>2</sup> <sup>198</sup>Pt target • Large acceptance magnetic spectrometer • Direct detection of Projectile-like

• Two MWPCs (TOF, X&Y)

fragments(PLFs)

• Segmented IC (IC[0]~IC[6]) • Ion track reconstruction (Bp, Path)

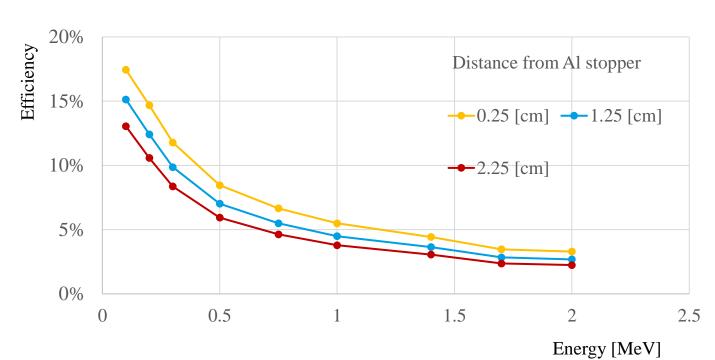
**EXOGAM HPGe** 


**Delayed** 

Gamma-rays

clover detector

Second arm and AGATA

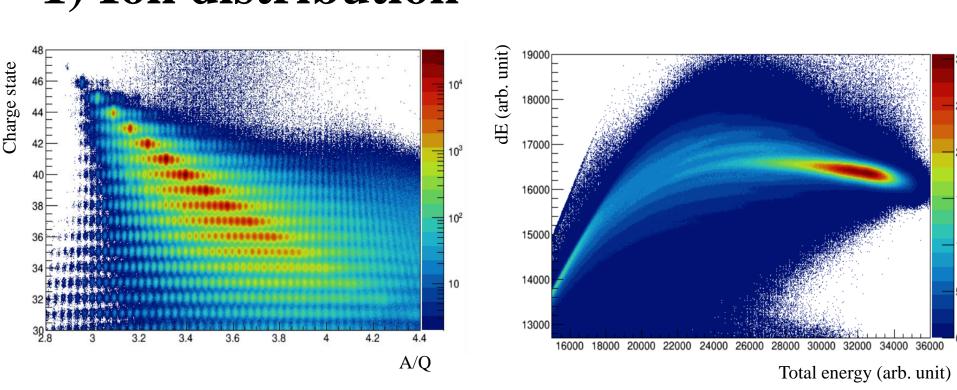

## **Second Arm Simulation**



- A new setup developed in SNU, for TLFs detection
- Composed of vacuum chamber with multi-wire proportional counter
- GEANT4 simulation verifying second arm can be used for this experiment

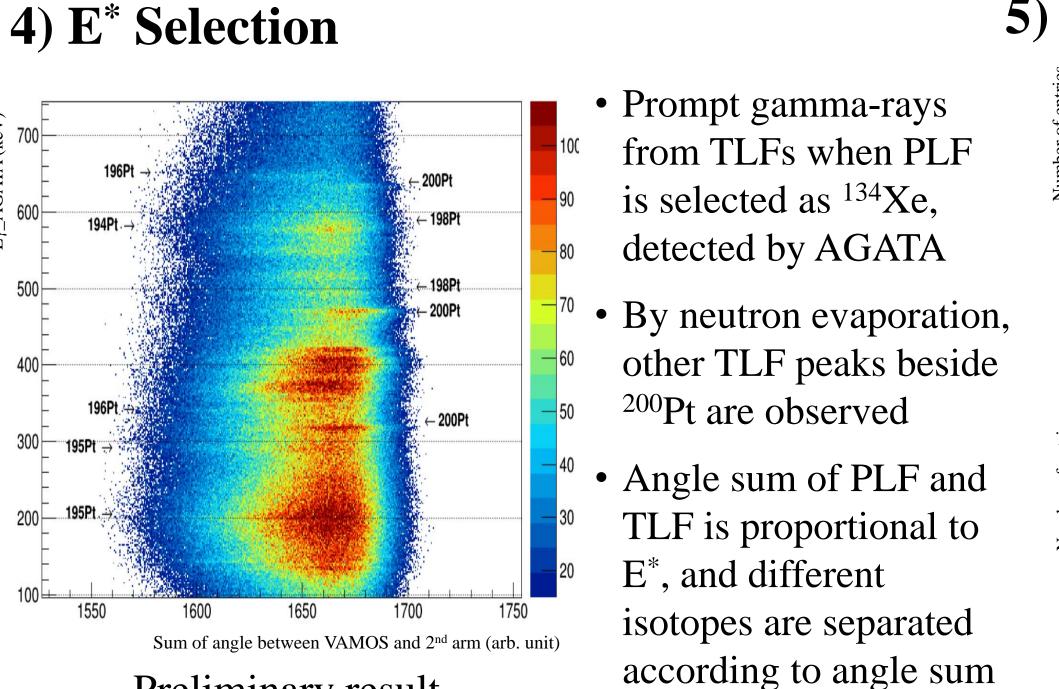
## Projectile-like (beta~10%) Target-like (beta~5%) Exsisting Al chamber new chamber+2nd arn new chamber+2nd arm

For prompt gamma-ray, 4~7% loss in efficiency compared to original setup, and it is not crucial loss

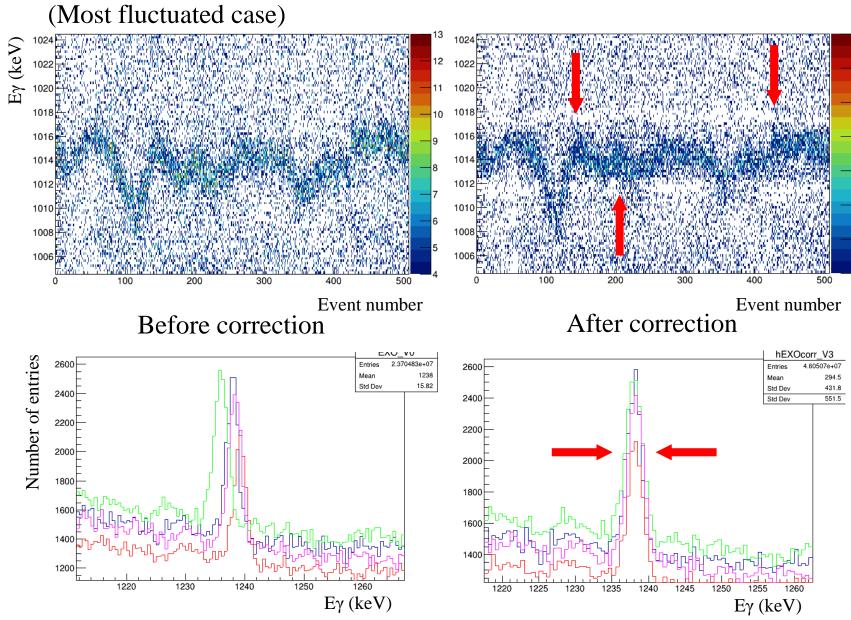



For delayed gamma-ray, sufficient efficiency for the experiment

## **Experimental Result**


#### 1) Ion distribution

Preliminary result




Projectile-like fragments are well identified for preliminary result (Q/ $\Delta$ Q ~ 80, M/ $\Delta$ M ~ 210)

• Charge states and mass numbers are identified using machine learning (Y. Cho)



#### 2) Energy Calibration & Time correction



5) Isomer results less exotic side

Preliminary result

Preliminary result

• Delayed gamma-rays from the decay of isomeric states of TLFs stopped at the end of the second arm, detected by **EXOGAM** 

The gain of

over time

EXOGAM crystal

changes slightly

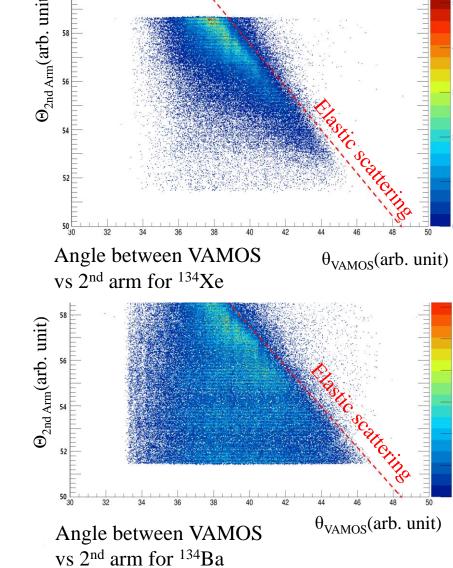
Event-by-event

correction using

reference energy

E<sub>ref</sub>, change gain

 $w \cdot (E_{ref}/E)$  if event


counts near E<sub>ref</sub>

slowly using

weight w as

• Peaks from <sup>195</sup>Ir and <sup>193</sup>Os decay scheme was observed at n-evaporation channels (2n,3n respectively)

#### 3) Second arm angular correlation



- Clear angular correlation between PLF and TLF
- MNT-(Quasielastic vs deep inelastic) observed

## Summary

- Second arm was developed to detect target-like fragment difficult to identify directly
- By GEANT4 simulation, it is verified that second arm is available for experiment
- Proof of principle demonstrated by preliminary result with ion detection at MWPC and prompt and delayed gamma rays from target-like fragment