CP Violation, Baryon Oscillations, and Baryogenesis

work with David McKeen, arXiv:1512.05359 and in progress with Kyle Aitken, David McKeen, Thomas Neder See also Seyda Ipek, David McKeen, A.E.N., arXiv:1407.8193 Akshay Ghalsasi, David McKeen, A.E.N., arXiv:1508.05392 Seyda Ipek, John March-Russell, arXiv:1604.00009

talk at Light Dark World 2016, Daejeon, Korea

July 14, 2016

CPV beyond the Standard Model

- Needed to produce early universe asymmetry of 10-8 between quarks and anti-quarks? (baryogenesis)
 - Effects of CKM phase in early universe highly suppressed by small mixing angles and mass differences.
 - non standard CPV
 - non standard enhancement of standard CPV

Particle Oscillations

- quantum interference due to coherent superposition of particles with slightly different masses
 - production conserves some *approximate* symmetry
- Observed in neutrinos (lepton flavor oscillations), neutral K,D,B mesons (particle-anti-particle oscillations)
 - masses must be near degenerate-
 - wave packet propagation must be similar enough so spatial separation does not occur over an oscillation time
 - oscillation time must not be too fast or too slow or oscillations not observable

CPV in Oscillations

- CP Violation: amplitude depends on CP odd phase in Hamiltonian and CP even phase in propagation
 - $|A(i \rightarrow f)|^2 \neq |A(i_{CP} \rightarrow f_{CP})|^2$
 - without decays, CPV in oscillations requires oscillations between 3 states
 - (this kind of CPV has not yet been observed)
 - increasing hints of CPV in v flavor oscillations

Oscillations among 2 states can only violate CP when they are unstable

$$\begin{aligned} \operatorname{CPT}: & \operatorname{Prob}(A \to A) = \operatorname{Prob}(\bar{A} \to \bar{A}) \\ \operatorname{Unitarity}: & \operatorname{Prob}(A \to A) + \operatorname{Prob}(A \to \bar{A}) = 1 \\ & \operatorname{Prob}(\bar{A} \to \bar{A}) + \operatorname{Prob}(\bar{A} \to A) = 1 \\ \operatorname{So} & \operatorname{Prob}(\bar{A} \to A) = \operatorname{Prob}(A \to \bar{A}) \end{aligned}$$

CPV in oscillations of unstable states

- Only requires 2 oscillating states
- Observed in neutral kaon anti-kaon and neutral B mesonanti-B meson oscillations
- Large effect possible when oscillation and decay rates comparable

O(1)!LHCb $B^{0} \rightarrow J/\psi K_{S}^{0}$ 0.1 0.2 0.3 0.4 0.2 0.3 0.4 0.4 0.3 0.4 0.4 0.3 0.4 0.4 0.4 0.5 0.1 0.4 0.4 0.4 0.5 0.1 0.4 0.4 0.4 0.5 0.1 0.4 0.4 0.4 0.5 0.1 0.4 0.4 0.4 0.5 0.1 0.4 0.4 0.4 0.5 0.1 0.4

Pseudo-Dirac Fermion Oscillation: Two state system, similar to neutral mesons

- pseudo-Dirac fermions have 4 states, but mix in 2 x 2 blocks:
- Charge+, spin 1 can oscillate into Charge -, spin 1
- Charge+, spin ↓ can oscillate into Charge -, spin ↓
- Rotational invariance (in rest frame) guarantees that these
 2 x 2 blocks have same effective Hamiltonian

CPT and rotation constraints

- CPT: exchanges spin î particle in initial state with spin ↓
 anti particle in final state
- can rotate spin
- H_{eff} must have form:

$$\left(egin{array}{cc} m_D - i \Gamma/2 & m_{12} - i \Gamma_{12}/2 \ m_{12}^* - i \Gamma_{12}^*/2 & m_D - i \Gamma/2 \end{array}
ight)$$

- Can work in basis with m_{12} real
- looks exactly like neutral meson H_{eff}
- ullet CPV phase difference between m_{12} and Γ_{12}

CPV in Fermion particle—anti-particle oscillations

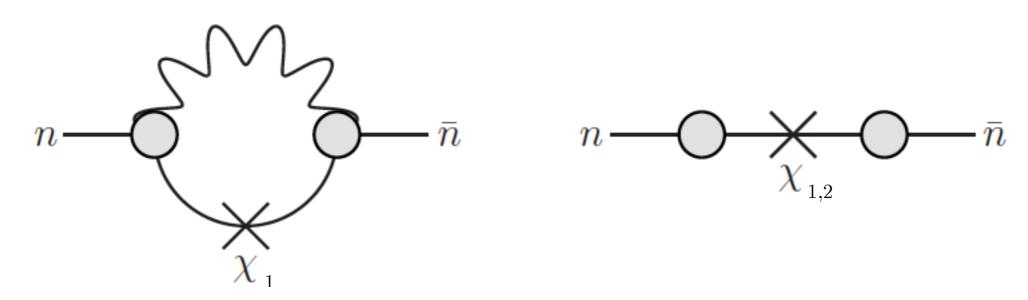
- Requires a Pseudo Dirac Fermion: massive, carries approximately conserved charge, can oscillate into own anti-particle as well as decay, requires common final state in decays of particle and antiparticle
 - fermion particle-anti-particle oscillations have never been observed
 - SM candidates: neutron, other neutral baryons
 - BSM candidates: Mesino, pseudo-Dirac gluino, neutralino

Neutron Oscillations

- Dim 9 Δ B=2 operator $\frac{1}{\Lambda^5}uddudd$
- Oscillations between equal energy states at rate which is linear in operator
- free neutron oscillation rate bound: $T > 10^8$ s
- Bound neutrons, or neutrons in an external field: split in n n n energies → rate is quadratic in operator. I 0⁸ s → I 0⁴⁰ s
 - comparable (marginally stronger) bounds on operator from dinucleon decay (SuperKamiondande)
 - $\Lambda > \sim PeV \quad \langle \bar{n} | \frac{1}{\Lambda^5} uddudd | n \rangle < 10^{-25} eV$

CPV in neutron oscillations?

$$H = \begin{pmatrix} m_n - \frac{i}{2}\Gamma_n & M_{12} - \frac{i}{2}\Gamma_{12} \\ M_{12}^* - \frac{i}{2}\Gamma_{12}^* & m_n - \frac{i}{2}\Gamma_n \end{pmatrix}$$


$$\frac{P_{|n\rangle \to |\bar{n}\rangle}}{P_{|\bar{n}\rangle \to |n\rangle}} - 1 = \frac{2\Im (M_{12}\Gamma_{12}^*)}{|M_{12}|^2 - |\Gamma_{12}|^2/4 - \Im (M_{12}\Gamma_{12}^*)}$$

Origin of M_{12} $\frac{1}{\Lambda^5}uddudd$

Origin of
$$\Gamma_{12}$$
 $\left(\begin{array}{c} \frac{1}{\Lambda^8} u d d u u d \ell ar{
u} \end{array} \right)$ or new fermion(s) χ

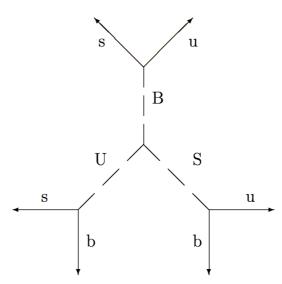
938 MeV Neutral Majorana Fermion?

- Proton stability: m_p - m_e < $M\chi$
- $M\chi < m_n \rightarrow \Gamma_{12} > 0$
- Z_2 subgroup of baryon number \rightarrow stable dark matter candidate if $M\chi < m_p + m_e$

$$\Gamma_{12} = \frac{\mu^2 m_n^2 m_\chi}{16\pi} \left(1 - \frac{m_\chi^2}{m_n^2} \right)^3 \quad << \quad M_{12} \sim \left(\frac{\kappa gy}{m_\phi^2} \right)^2 \frac{m_\chi}{m_n^2 - m_\chi^2}$$

Do not expect to see CPV in n n oscillations

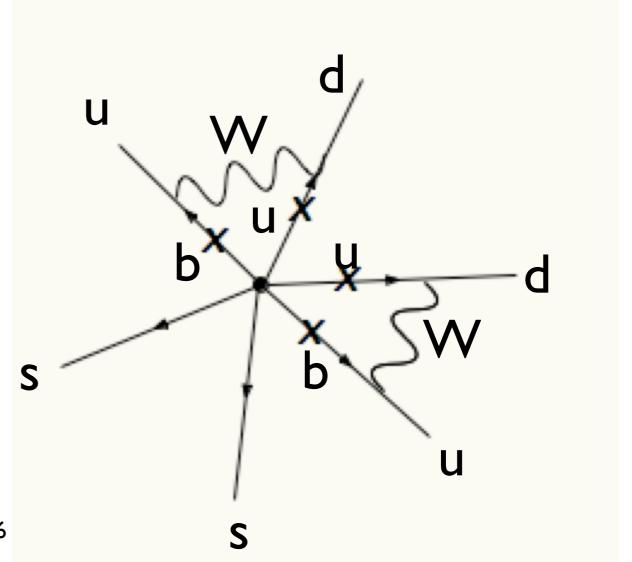
• Restrictive Kinematics: $\Delta M = M_n - M_\chi < MeV$ (proton stability)


$$\frac{P_{|n\rangle \to |\bar{n}\rangle}}{P_{|\bar{n}\rangle \to |n\rangle}} - 1 \propto \frac{|\Gamma_{12}|}{|M_{12}|} \lesssim 10^{-14} \left(\frac{\Delta M}{1 \text{ MeV}}\right)^4$$

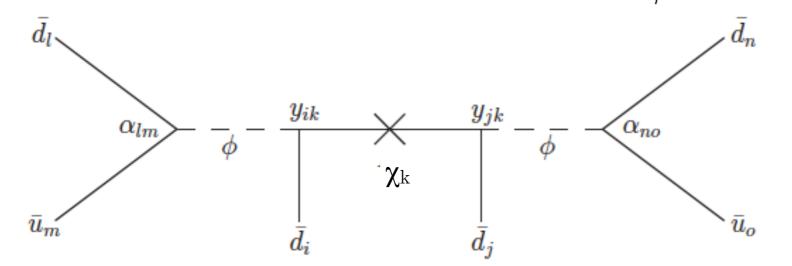
Other neutral baryons?

- What constraints on baryon violating operators containing heavy flavors?
- For $\Delta B=2$, $\Delta s=1,2,3$ operators dinucleon decay into 1,2,3 kaons is almost as constraining as neutron oscillations.
- $\Delta B=2$, $\Delta s=4$: $\overline{\Xi}{}^0-\Xi^0$ oscillations? $\Omega-\to\overline{p}$ K? Not looked for.
- $\Delta B=2$, $\Delta c=2$, $\Delta b=2$: heavy flavor baryon oscillations $bcd \rightarrow \overline{b} \overline{c} \overline{d}$
 - not looked for
- Conceivable to look for oscillations of neutral charmed baryons at Belle II

Constraints from weak flavor violation


- Do constraints from n \overline{n} make other flavors of $\Delta B=2$ unobservable?
- operators involving right-handed (SU(2) singlet) quarks much less constrained
- Kuzmin (1996) bsu $\rightarrow \overline{b}\overline{s}\overline{u}$ baryon oscillations from RPV could be as fast as decay!

Di-nucleon decay constraints


$$\frac{1}{\Lambda^5}busbus \to \left(\frac{g^2 V_{ub} V_{ud} m_b \Lambda_{QCD}}{16\pi^2 M_W^2}\right)^2 \left(\frac{1}{\Lambda^5} dusdus\right)$$

- dinucleon → kaons constraints similar to neutron oscillation constraints
- bus baryon allowed to oscillate at ~10¹⁸ faster rate than neutron: 10⁻¹⁰ s

Model for CPV in heavy flavor baryon oscillation

- same model as in "mesino oscillation" model arXiv:1508.05392, different parameters (χ lighter than heavy flavor baryon)
 - "RPV SUSY-lite"
 - New particles:
 - Neutral Majorana fermions χ_i , i=1,2,..., mass~few GeV
 - charge -1/3 colored scalar ϕ , mass >~650 GeV
 - ullet low energy effective theory: $rac{lpha_{ij}y_{k\ell}}{m_\phi^2}ar{d}_iar{u}_jar{d}_k\chi_\ell$

Dinucleon decay constraints on combinations of α_{11} , α_{21} , y_{1k} , y_{2k}

CPV in heavy flavor oscillations

- oscillation rate in neutral heavy flavor baryons could be $10^{\text{-}2}\text{---}10^{\text{-}3}$ times decay rate, when 2 weak interactions required to convert operator to one producing dinucleon decay
- Γ_{12} not kinematically suppressed, could be ~ 10^{-1} M₁₂
- could this be CPV be observable, and directly related to baryogenesis?

Baryogenesis?

- CPV in Baryon oscillations fulfills 2/3 Sakharov conditions
- Heavy flavor baryons out of equilibrium in early universe via long lived χ decay when early universe has temperature between ~1 and 200 MeV
- Some of the baryons will undergo CPV oscillations before they decay.

Summary

$$\frac{\alpha_{ij}y_{k\ell}}{m_{\phi}^2}\bar{d}_i\bar{u}_j\bar{d}_k\chi_{\ell}$$

- Low energy effective theory with neutral Majorana fermions χ with baryon violating couplings for heavy flavored quarks
- stability of matter \rightarrow lightest χ satisfies m_p-m_e< M χ
- stable dark matter candidate if lightest χ satisfies $M\chi{<}m_{p}{+}m_{e}$
- n \overline{n} oscillations consistent with heavy flavor baryon oscillations with $\tau \sim \! 10^{\text{-}10}~\mathrm{s}$
- CPV in heavy flavor baryon oscillations (requires at least one χ to be lighter than the heavy flavor baryon (need Γ_{12})
- Low energy baryogenesis? (requires 1 long lived χ)