Cosmic Birefringence & & Electroweak Axion Dark Energy

Work in collaboration with Weikang Lin, Luca Visinelli and Tsutomu Yanagida Phys. Rev. D **104**, L101302 [arXiv:2106.12602]

Gongjun Choi (CERN)

IBS-CTPU, PTC seminar Dec 1, 2021

Cosmic Birefringence

 Recently, non-vanishing rotation angle of CMB linear polarization was reported (isotropic birefringence)
 → β = 0.35 ± 0.14deg
 Y. Minami and E. Komatsu (2011.11254)

A pseudo-scalar field A coupled to photon via

$$\mathcal{L}_{\text{eff}} \supset -c_{\gamma} \frac{g_{\text{em}}^2}{16\pi^2} \frac{A}{F_A} F^{\mu\nu} \tilde{F}_{\mu\nu}$$

can induce $\beta \neq 0$

F. Takahashi, W. Yin (2012.11576)

$$\beta = 0.42 \deg \times \frac{c_{\gamma}}{2\pi} \times \frac{A(t_0) - A(t_{\rm LSS})}{F_A}$$

How to have $\beta \sim O(0.1)$ deg?

• For the case with

$$\mathcal{L}_{\text{eff}} \supset -c_{\gamma} \frac{g_{\text{em}}^2}{16\pi^2} \frac{A}{F_A} F^{\mu\nu} \tilde{F}_{\mu\nu} + \frac{V_0}{2} \left[1 - \cos\left(\frac{A}{F_A}\right) \right]$$

the easiest way to have $\beta \sim O(0.1)$ deg is

$$\beta = 0.42 \deg \times \frac{c_{\gamma}}{2\pi} \times \frac{A(t_0) - A(t_{\text{LSS}})}{F_A}$$

 $c_{\gamma} \sim 10 \rightarrow \Delta A \sim O(0.1)F_A$ with $A(t_{LSS}) \simeq \pi F_A$

• Hilltop - inflection point ~ $1.5F_A \rightarrow$ slow-roll to date

•
$$\rightarrow -1 < w_A = P_A / \rho_A < 0 \rightarrow \text{quintessence DE}?$$

Quintessence Dark Energy candidate?

A good candidate for a quintessence?
 → very light?! → pNGB → axion?

• When an axion couples to instanton with $S_{inst} \sim 2\pi/\alpha(\rho)$, the instanton generates the potential $\sim M_P^4 e^{-S_{inst}} e^{iA}$

• QCD axion potential height is too large for Λ_{DE} ~2meV

• Then the question is... could we have EW axion as dark energy candidate?

- $U(1)_{B+L}$ is anomalous w.r.t $SU(2)_{L}$
 - → can make axion massless
 - \rightarrow assume gauge invariant operator $O = QQQL/M_{P^2}$

- $U(1)_{B+L}$ is anomalous w.r.t $SU(2)_{L}$
 - → can make axion massless
 - \rightarrow assume gauge invariant operator $O = QQQL/M_{P^2}$
- Usually

$$V \sim \int^{\infty} \frac{d\rho}{\rho^5} \ e^{\frac{-2\pi}{\alpha(\rho)}} = \int^{\infty} \frac{d\rho}{\rho^5} \ e^{\frac{-2\pi}{\alpha(\rho_0)}} \left(\frac{\rho}{\rho_0}\right)^{-b}$$

- $U(1)_{B+L}$ is anomalous w.r.t $SU(2)_{L}$
 - → can make axion massless
 - \rightarrow assume gauge invariant operator $O = QQQL/M_{P^2}$
- Usually $V \sim \int^{\infty} \frac{d\rho}{\rho^5} e^{\frac{-2\pi}{\alpha(\rho)}} = \int^{\infty} \frac{d\rho}{\rho^5} e^{\frac{-2\pi}{\alpha(\rho_0)}} \left(\frac{\rho}{\rho_0}\right)^{-b}$ b = -7 for QCD

- $U(1)_{B+L}$ is anomalous w.r.t $SU(2)_{L}$
 - → can make axion massless
 - \rightarrow assume gauge invariant operator $O = QQQL/M_{P^2}$
 - Usually $V \sim \int^{\infty} \frac{d\rho}{\rho^5} e^{\frac{-2\pi}{\alpha(\rho)}} = \int^{\infty} \frac{d\rho}{\rho^5} e^{\frac{-2\pi}{\alpha(\rho_0)}} \left(\frac{\rho}{\rho_0}\right)^{-b}$ IR domination b = -7 for QCD

- $U(1)_{B+L}$ is anomalous w.r.t $SU(2)_{L}$
 - → can make axion massless
 - \rightarrow assume gauge invariant operator $O = QQQL/M_{P^2}$
- Usually

$$V \sim \int^{\infty} \frac{d\rho}{\rho^5} \ e^{\frac{-2\pi}{\alpha(\rho)}} = \int^{\infty} \frac{d\rho}{\rho^5} \ e^{\frac{-2\pi}{\alpha(\rho_0)}} \left(\frac{\rho}{\rho_0}\right)^{-b}$$

• For SU(2) in SM with QQQL operator,

$$V \sim \int^{\infty} \frac{d\rho}{\rho^5} \ e^{\frac{-2\pi}{\alpha_2(\rho)}} = \int^{\infty} \frac{d\rho}{\rho^5} \ e^{\frac{-2\pi}{\alpha_2(\rho_0)}} \left(\frac{\rho}{\rho_0}\right)^{\frac{19}{6}} \times \left(\frac{1}{\rho M_P}\right)^{6}$$

- $U(1)_{B+L}$ is anomalous w.r.t $SU(2)_{L}$
 - → can make axion massless
 - \rightarrow assume gauge invariant operator $O = QQQL/M_{P^2}$
- Usually

$$V \sim \int^{\infty} \frac{d\rho}{\rho^5} \ e^{\frac{-2\pi}{\alpha(\rho)}} = \int^{\infty} \frac{d\rho}{\rho^5} \ e^{\frac{-2\pi}{\alpha(\rho_0)}} \left(\frac{\rho}{\rho_0}\right)^{-b}$$

• For SU(2) in SM with QQQL operator,

$$V \sim \int^{\infty} \frac{d\rho}{\rho^5} \ e^{\frac{-2\pi}{\alpha_2(\rho)}} = \int^{\infty} \frac{d\rho}{\rho^5} \ e^{\frac{-2\pi}{\alpha_2(\rho_0)}} \left(\frac{\rho}{\rho_0}\right)^{\frac{19}{6}} \times \left(\frac{1}{\rho M_P}\right)^6$$

Net negative power of ρ

- $U(1)_{B+L}$ is anomalous w.r.t $SU(2)_{L}$
 - → can make axion massless
 - \rightarrow assume gauge invariant operator $O = QQQL/M_{P^2}$
- Usually

$$V \sim \int^{\infty} \frac{d\rho}{\rho^5} \ e^{\frac{-2\pi}{\alpha(\rho)}} = \int^{\infty} \frac{d\rho}{\rho^5} \ e^{\frac{-2\pi}{\alpha(\rho_0)}} \left(\frac{\rho}{\rho_0}\right)^{-b}$$

• For SU(2) in SM with QQQL operator,

EW Axion DE? - the back of the envelope estimates

- $\Lambda_{\rm DE}^4 \sim (2 \,{\rm meV})4 \sim M_{\rm P}^4 10^{-120}$
- For SU(2)_L, instanton of size $\rho \sim M_{P}^{-1}$ dominates
- In SM, $\Lambda_a^4 \sim M_P^4 e^{-S_{inst}} \rightarrow M_P^4 e^{-(-2\pi/(1/44))} \rightarrow M_P^4 10^{-130}$

EW Axion DE? - the back of the envelope estimates

Λ_{DE}⁴ ~ (2meV)4 ~ M_P⁴10⁻¹²⁰

Quite interesting to some people at 1990s

- For SU(2)_L, instanton of size $\rho \sim M_{P}^{-1}$ dominates
- In SM, $\Lambda_a^4 \sim M_P^4 e^{-S_{inst}} \rightarrow M_P^4 e^{-(-2\pi/(1/44))} \rightarrow M_P^4 10^{-130}$

EW Axion DE? - the back of the envelope estimates

- $\Lambda_{\rm DE}^4 \sim (2 \,{\rm meV})4 \sim M_{\rm P}^4 10^{-120}$
- For SU(2)_L, instanton of size $\rho \sim M_{P}^{-1}$ dominates
- In SM, $\Lambda_a^4 \sim M_P^4 e^{-S_{inst}} \rightarrow M_P^4 e^{-(-2\pi/(1/44))} \rightarrow M_P^4 10^{-130}$

- For our work, we consider SU(2)_L in MSSM
- From $\rho_{DE} \sim (2meV)^4 \sim (m_A F_A)^2$, expect $m_A \sim 10^{-33} eV$ and $F_A \sim O(10^{17}) GeV$

EW Axion DE - symmetry

• Symmetry Group Y. Nomura, T. Watari, T. Yanagida (2000)

 $G = G_{\rm SM} \otimes Z_{4R} \otimes U(1)_F \otimes U(1)_X$

U(1)_F is an approximate global symmetry
 → already explicitly broken down by QQQL operator

• Z_{4R} is the gauged discrete R-symmetry

U(1)_x is the global symmetry
 → SSB results in quintessence axion

	\frown																			
	Q	\overline{U}	\overline{D}	L	\overline{E}	H_u	H_d	$e^{-8\pi^2 au}$	\mathcal{D}^2	$\left \overline{\mathcal{D}}^2 ight $	Ψ	$\overline{\Psi}$	Φ	$\overline{\Phi}$	X	H'_u	H'_d	Σ	Σ'	$\epsilon \equiv \langle \phi \rangle / M_P$
$U(1)_Y$	1/6	-2/3	1/3	-1/2	1	1/2	-1/2	-	-	-	-	-	-	-	-	1/2	-1/2	-	-	-
$SU(2)_L$		-	-		-			-	-	-			-	-	-			Ad	Ad	-
Z_{4R}	3/5	3/5	1/5	1/5	3/5	4/5	6/5	-2	-2	+2	1	1	0	0	+2	-6/5	6/5	0	+2	-
$U(1)_F$	(2, 1, 0)	(2,1,0)	(1, 0, 0)	(1, 0, 0)	(2, 1, 0)	-	-	+10	-	-	-	-	-	-	-	-	-	-	-	-1
$U(1)_X$	-	-	-	-	-	-	-	-	-	-	-1	-	+1	-1	-	-	-	-	-	-
$\begin{array}{c} U(1)_F \\ U(1)_X \end{array}$	(2, 1, 0)	(2,1,0)	(1,0,0)	(1,0,0)	(2,1,0)	-	-	+10	-	-	- -1	-	- +1	- -1	-	-	-	-	-	-1

- MSSM \rightarrow Q, U-bar, D-bar, L, E-bar, H_u, H_d
- Ψ, Ψ-bar, Φ, Φ-bar
 → for axion coupling to SU(2)_L anomaly
- Hu', Hd'
 - \rightarrow makes the mixed anomaly of Z_{4R} x [SU(2)_L]² vanish
- Σ, Σ'
 - \rightarrow enhances $\alpha_2(M_P)$

	Q	\overline{U}	\overline{D}	L	\overline{E}	H_u	H_d	$e^{-8\pi^2\tau}$	\mathcal{D}^2	$\overline{\mathcal{D}}^2$	Ψ	$\overline{\Psi}$	Φ	$\overline{\Phi}$	X	H'_u	H'_d	Σ	Σ'	$\epsilon \equiv \langle \phi \rangle / M_P$
$U(1)_Y$	1/6	-2/3	1/3	-1/2	1	1/2	-1/2	-	-	-	-	-	-	-	-	1/2	-1/2	-	-	-
$SU(2)_L$		-	-		-			-	-	-			-	-	-			Ad	Ad	-
Z_{4R}	3/5	3/5	1/5	1/5	3/5	4/5	6/5	-2	$\left -2\right $	+2	1	1	0	0	+2	-6/5	6/5	0	+2	-
$U(1)_F$	(2, 1, 0)	(2, 1, 0)	(1, 0, 0)	(1, 0, 0)	(2, 1, 0)	-	-	+10	-	-	-	-	-	-	-	-	-	-	-	-1
$U(1)_X$	-	-	-	-	-	-	-	-	-	-	-1	-	+1	-1	-	-	-	-	-	-

- MSSM \rightarrow Q, U-bar, D-bar, L, E-bar, H_u, H_d
- Ψ , Ψ -bar, Φ , Φ -bar \rightarrow for axion coupling to SU(2)_L anomaly
- Hu', Hd'
 - \rightarrow makes the mixed anomaly of Z_{4R} x [SU(2)_L]² vanish
- Σ, Σ'
 - \rightarrow enhances $\alpha_2(M_P)$

	Q	\overline{U}	\overline{D}	L	\overline{E}	H_u	H_d	$e^{-8\pi^2 au}$	$\left \mathcal{D}^{2}\right $	$\left \overline{\mathcal{D}}^2 ight $	Ψ	$\overline{\Psi}$	Φ	$\overline{\Phi}$	X	H'_u	H'_d	Σ	Σ'	$\epsilon \equiv \langle \phi \rangle / M_P$
$U(1)_Y$	1/6	-2/3	1/3	-1/2	1	1/2	-1/2	-	-	-	-	-	-	-	-	1/2	-1/2	-	-	-
$SU(2)_L$		-	-		-			-	-	-			-	-	-			Ad	Ad	-
Z_{4R}	3/5	3/5	1/5	1/5	3/5	4/5	6/5	-2	-2	$\left +2\right $	1	1	0	0	+2	-6/5	6/5	0	+2	-
$U(1)_F$	(2, 1, 0)	(2, 1, 0)	(1, 0, 0)	(1, 0, 0)	(2, 1, 0)	-	-	+10	-	-	-	-	-	-	-	-	-	-	-	-1
$U(1)_X$	-	-	-	-	-	-	-	-	-	-	-1	-	+1	-1	-	-	-	-	-	-

- MSSM \rightarrow Q, U-bar, D-bar, L, E-bar, H_u, H_d
- Ψ, Ψ-bar, Φ, Φ-bar
 → for axion coupling to SU(2)_L anomaly
- Hu', Hd'
 → makes the mixed anomaly of Z_{4R} x [SU(2)_L]² vanish
- Σ, Σ'
 - \rightarrow enhances $\alpha_2(M_P)$

	Q	\overline{U}	\overline{D}		\overline{E}	H_u	H_d	$e^{-8\pi^2\tau}$	\mathcal{D}^2	$\overline{\mathcal{D}}^2$	Ψ	$\overline{\Psi}$	Φ	$\overline{\Phi}$	X	H'_u	H_d'	Σ	Σ'	$\epsilon \equiv \langle \phi \rangle / M_P$
$U(1)_Y$	1/6	-2/3	1/3	-1/2	1	1/2	-1/2	-	-	-	-	-	-	-	-	1/2	-1/2	-	-	-
$SU(2)_L$		-	-		-			-	-	-			-	-	-			Ad	Ad	-
Z_{4R}	3/5	3/5	1/5	1/5	3/5	4/5	6/5	-2	$\left -2\right $	+2	1	1	0	0	+2	-6/5	6/5	0	$\left +2\right $	-
$U(1)_F$	(2, 1, 0)	(2, 1, 0)	(1, 0, 0)	(1, 0, 0)	(2, 1, 0)	-	-	+10	-	-	-	-	-	-	-	-	-	-	-	-1
$U(1)_X$	-	-	-	-	-	-	-	-	-	-	-1	-	+1	-1	-	-	-	-	-	-

- MSSM \rightarrow Q, U-bar, D-bar, L, E-bar, H_u, H_d
- Ψ, Ψ-bar, Φ, Φ-bar
 - \rightarrow for axion coupling to SU(2)_L anomaly
- Hu', Hd'
 - \rightarrow makes the mixed anomaly of Z_{4R} x [SU(2)_L]² vanish
- Σ, Σ'
 → enhances α₂(M_P)

	Q	\overline{U}	\overline{D}	L	\overline{E}	H_u	H_d	$e^{-8\pi^2 au}$	$\left \mathcal{D}^{2} ight $	$\overline{\mathcal{D}}^2$	Ψ	$\overline{\Psi}$	Φ	$\overline{\Phi}$	X	H'_u	H'_d	Σ	Σ'	$\epsilon \equiv \langle \phi \rangle / M_P$
$U(1)_Y$	1/6	-2/3	1/3	-1/2	1	1/2	-1/2	-	-	-	-	-	-	-	-	1/2	-1/2	-	-	-
$SU(2)_L$		-	-		-			-	-	-			-	-	-			Ad	Ad	-
Z_{4R}	3/5	3/5	1/5	1/5	3/5	4/5	6/5	-2	$\left -2\right $	+2	1	1	0	0	+2	-6/5	6/5	0	+2	-
$U(1)_F$	(2, 1, 0)	(2, 1, 0)	(1, 0, 0)	(1, 0, 0)	(2, 1, 0)	-	-	+10	-	-	-	-	-	-	-	-	-	-	-	-1
$U(1)_X$	-	-	-	-	-	-	-	-	-	-	-1	-	+1	-1	-	-	-	-	-	-

Spurion for $U(1)_{F}$

- MSSM \rightarrow Q, U-bar, D-bar, L, E-bar, H_u, H_d
- Ψ, Ψ-bar, Φ, Φ-bar
 - \rightarrow for axion coupling to SU(2)_L anomaly
- Hu', Hd'
 - \rightarrow makes the mixed anomaly of Z_{4R} x [SU(2)_L]² vanish
- Σ, Σ'
 - \rightarrow enhances $\alpha_2(M_P)$

EW Axion DE - SU(2) gauge and PQ sector

Superpotential (SU(2) gauge and PQ sector)

$$W \supset \frac{\tau}{4} \mathcal{W}^{a\alpha} \mathcal{W}^a_{\alpha} + \Phi \Psi \overline{\Psi} + X (\Phi \overline{\Phi} - 2F_A) \qquad \tau = \frac{1}{g_2^2} + i \frac{\Theta}{8\pi^2} - \frac{2m_{1/2}}{g_2^2} \theta^2$$

EW Axion DE - SU(2) gauge and PQ sector

Superpotential (SU(2) gauge and PQ sector)

$$W \supset \frac{\tau}{4} \mathcal{W}^{a\alpha} \mathcal{W}^a_{\alpha} + \Phi \Psi \overline{\Psi} + X (\Phi \overline{\Phi} - 2F_A) \qquad \tau = \frac{1}{g_2^2} + i \frac{\Theta}{8\pi^2} - \frac{2m_{1/2}}{g_2^2} \theta^2$$

• SSB of U(1)_x leads to

$$\langle \Phi \rangle = (F_A/\sqrt{2}) \exp[\mathcal{A}/F_A]$$

 $\langle \overline{\Phi} \rangle = (F_A/\sqrt{2}) \exp[-\mathcal{A}/F_A]$

EW Axion DE - SU(2) gauge and PQ sector

Superpotential (SU(2) gauge and PQ sector)

$$W \supset \frac{\tau}{4} \mathcal{W}^{a\alpha} \mathcal{W}^a_{\alpha} + \Phi \Psi \overline{\Psi} + X (\Phi \overline{\Phi} - 2F_A) \qquad \tau = \frac{1}{g_2^2} + i \frac{\Theta}{8\pi^2} - \frac{2m_{1/2}}{g_2^2} \theta^2$$

SSB of U(1)_X leads to

$$\mathcal{L} \supset \int d^2\theta \left(\frac{1}{32\pi^2} \frac{\mathcal{A}}{F_A} \mathcal{W}^{a\alpha} \mathcal{W}^a_{\alpha} + \text{h.c.} \right) \quad \begin{array}{l} \langle \Phi \rangle \ = \ (F_A/\sqrt{2}) \exp[\mathcal{A}/F_A] \\ \overline{\langle \Phi \rangle} \ = \ (F_A/\sqrt{2}) \exp[-\overline{\mathcal{A}/F_A}] \end{array}$$

EW Axion DE - non-zero axion mass

• $U(1)_{B+L} \rightarrow anomalous w. r. t SU(2)_L$ \rightarrow can make axion massless if exact

EW Axion DE - non-zero axion mass

- $U(1)_{B+L} \rightarrow anomalous w. r. t SU(2)_L$ \rightarrow can make axion massless if exact
- assume gauge invariant QQQL operator
 → explicitly breaks U(1)_{B+L}

EW Axion DE - non-zero axion mass

- $U(1)_{B+L} \rightarrow anomalous w. r. t SU(2)_L$ \rightarrow can make axion massless if exact
- assume gauge invariant QQQL operator
 → explicitly breaks U(1)_{B+L}
- QQQL can induce the proton decay

Sakai-Yanagida (1982), Weinberg (1982)

- → should be sufficiently suppressed
- → use the approximate U(1)_F symmetry with $\varepsilon = \langle \phi \rangle / M_P \sim 1/17$ Sato-Yanagida (1998)

- Good reference → arXiv:hep-ph/9809286
 "Small Instanton Contribution to the Axion Potential in Supersymmetric Models"
 K. Choi and H. Kim
- The effective Lagrangian at $\rho^{-1} \sim M_P$

$$\mathcal{L} = \int d^{2}\theta d^{2}\bar{\theta} \left[\sum_{r} Z_{r} \Phi_{r}^{\dagger} \Phi_{r} + \sum_{i} \frac{Y_{i}}{M_{\text{pl}}^{d_{i}-2}} \mathcal{O}_{i} \right]$$

$$= \int d^{2}\theta d^{2}\bar{\theta} \left[\sum_{r} Z_{r} \Phi_{r}^{\dagger} \Phi_{r} + \sum_{i} \frac{Y_{i}}{M_{\text{pl}}^{d_{i}-2}} \mathcal{O}_{i} \right]$$

$$= (1 + C_{i}\theta^{2} + C_{i}^{*}\bar{\theta}^{2} + |D_{i}|^{2}\theta^{2}\bar{\theta}^{2}) \eta_{i},$$

$$= (1 + B\theta^{2}) \mu,$$

$$\tilde{Y}_{i} = (1 + B\theta^{2}) \mu,$$

$$\tilde{Y}_{j} = (1 + A_{j}\theta^{2}) \lambda_{j},$$

$$+ \left[\int d^{2}\theta \frac{1}{4} \left(S + \frac{1}{8\pi^{2}} \frac{\Phi_{\mathcal{A}}}{F_{\mathcal{A}}} \right) W^{a\alpha} W_{\alpha}^{a} + \text{h.c.} \right],$$

$$S = \frac{1}{g^{2}} + i \frac{\Theta}{8\pi^{2}} - \frac{2m_{1/2}}{g^{2}} \theta^{2},$$

• After integrating out superfields with vanishing vev,

$$\mathcal{L} = \int d^{2}\theta d^{2}\bar{\theta} \left[e^{-\left(8\pi^{2}S + \frac{\Phi_{\mathcal{A}}}{F_{\mathcal{A}}}\right)} K_{\text{eff}}(\Phi_{r}, \Phi_{r}^{\dagger}, \mathcal{D}^{\alpha}, \bar{\mathcal{D}}_{\dot{\alpha}}, Z_{r}, Y_{i}, \tilde{\mu}, \tilde{\mu}^{\dagger}, \tilde{Y}_{j}, \tilde{Y}_{j}^{\dagger}, e^{S+S^{\dagger}}; \rho) + \text{h.c.} \right] \\ + \left[\int d^{2}\theta e^{-\left(8\pi^{2}S + \frac{\Phi_{\mathcal{A}}}{F_{\mathcal{A}}}\right)} W_{\text{eff}}(\Phi_{r}, \tilde{\mu}, \tilde{Y}_{j}; \rho) + \text{h.c.} \right],$$

Under Z_{4R} transformation, θ shifts by 2α
 → R-charge of e^{-8π^2τ} is -2
 → R[K_{eff}]=2 and R[W_{eff}]=4

- R-charges of two covariant derivatives = 2
- Mass dimension of two covariant derivatives = 1

$$K_{\text{eff}} = \rho^{-2} \left(\rho \bar{\mathcal{D}}^2 \right) f \left(Z_r, \, \frac{Y_i}{(\rho M_{\text{pl}})^{d_i - 2}}, \, \frac{\tilde{Y}_j}{(\rho M_{\text{pl}})^{\tilde{d}_j - 3}}, \, \frac{\tilde{Y}_j^{\dagger}}{(\rho M_{\text{pl}})^{\tilde{d}_j - 3}}, \, \mathrm{e}^{S + S^{\dagger}} \right)$$

"f" is expanded in terms of dimensionless quantities
 → contains couplings constants and coefficients
 of operators used for closing fermion zero modes

 $\mathcal{O} = Q_1 Q_2 \bar{U}_3^{\dagger} \bar{E}_3^{\dagger}, \, \tilde{\mathcal{O}} = Q_1 Q_1 Q_3 L_1, \, Q_2 Q_2 Q_3 L_2, \, Q_3 \bar{U}_3 H_u \text{ and } L_3 \bar{E}_3 H_d$

• Eventually one obtains

$$\begin{split} \Lambda_{\mathcal{A}}^{4} &\simeq c \, e^{-\frac{2\pi}{\alpha_{2}(M_{P})}} \epsilon^{10} m_{\mathrm{SUSY}}^{3} M_{P} \\ &\times \left(\frac{m_{3/2}}{M_{P}}\right)^{2T(\Box)} \left(\frac{m_{\Psi}}{M_{P}}\right)^{2T(\Box)} \left(\frac{m_{\Sigma}}{M_{P}}\right)^{2T(\mathrm{Ad})} \\ &\simeq c \, e^{-\frac{2\pi}{\alpha_{2},\mathrm{MSSM}(M_{P})}} \epsilon^{10} m_{\mathrm{SUSY}}^{3} M_{P} \\ &\simeq c \epsilon^{10} (1 \,\mathrm{eV})^{4} \,, \end{split}$$

• Slow-roll for Quintessence M. Ibe, M. Yamazaki, T. Yanagida (2018)

 $\ddot{a} + 3H_0\dot{a} = -V'(a),$

$$\ddot{a} + 3H_0\dot{a} = -V'(a), \qquad \overset{\delta a = a - \pi f_a}{\longrightarrow}$$

$$\ddot{a}+3H_0\dot{a}=-V'(a),$$
 $\stackrel{\delta a\ =\ a\ -\ \pi f_a}{\longrightarrow}$ $\ddot{\delta a}+3H_0\dot{\delta a}=rac{3H_0^2M_{
m Pl}^2}{f^2}\delta a,$

$$\ddot{a} + 3H_0 \dot{a} = -V'(a),$$
 $\delta a = a - \pi f_a$ $\ddot{\delta a} + 3H_0 \dot{\delta a} = rac{3H_0^2 M_{
m Pl}^2}{f^2} \delta a,$
 $\delta a(t) \propto \exp(\sqrt{3}H_0 M_{
m Pl} t/f))$

$$\ddot{a} + 3H_0 \dot{a} = -V'(a),$$
 $\delta a = a - \pi f_a$ $\ddot{\delta a} + 3H_0 \dot{\delta a} = rac{3H_0^2 M_{
m Pl}^2}{f^2} \delta a,$
 $\delta a(t) \propto \exp(\sqrt{3}H_0 M_{
m Pl} t/f))$

- Exponential growth of displacement from hilltop
 - → larger F_A is better for
 (1) maintaining slow-roll today and
 (2) avoiding fine-tuning of initial position

$$\ddot{a} + 3H_0 \dot{a} = -V'(a),$$
 $\delta a = a - \pi f_a$ $\ddot{\delta a} + 3H_0 \dot{\delta a} = rac{3H_0^2 M_{
m Pl}^2}{f^2} \delta a,$
 $\delta a(t) \propto \exp(\sqrt{3}H_0 M_{
m Pl} t/f))$

- Exponential growth of displacement from hilltop
 - → larger F_A is better for
 (1) maintaining slow-roll today and
 (2) avoiding fine-tuning of initial position
 - \rightarrow For quintessence, better to have F_A as large as M_P

Can a large decay constant (~M_P) arise from microscopic physics (string theory)?
 Banks, Dine, Fox and Gorbatov (2003)

Can a large decay constant (~M_P) arise from microscopic physics (string theory)?
 Banks, Dine, Fox and Gorbatov (2003)

 \rightarrow not possible to have $F_A > M_P$

- Can a large decay constant (~M_P) arise from microscopic physics (string theory)?
 Banks, Dine, Fox and Gorbatov (2003)
 - \rightarrow not possible to have $F_A > M_P$ OR $S_{inst} \sim M_P/F_A$

 Can a large decay constant (~M_P) arise from microscopic physics (string theory)?
 Banks, Dine, Fox, Gorbatov (2003)

 \rightarrow not possible to have $F_A > M_P$ OR $S_{inst} \sim M_P/F_A$

• For $F_A \sim M_P$, $\alpha_2(M_P) \sim 1 > \alpha_{2,MSSM}(M_P)$

 Hu',Hd', Ψ, Ψ-bar helps enhancing α₂, but not enough!
 → Introduce heavy SU(2)_L triplets Σ and Σ' (with m_Σ ~ O(10⁷)GeV)

$$\beta = 0.42 \deg \times \frac{c_{\gamma}}{2\pi} \times \frac{A(t_0) - A(t_{\rm LSS})}{F_A}$$

$$\beta = 0.42 \deg \times \frac{c_{\gamma}}{2\pi} \times \frac{A(t_0) - A(t_{\text{LSS}})}{F_A}$$

For quintessence, $\Delta A << 1.5F_A$
 $\rightarrow \Delta A \sim O(0.1)F_A$

$$\beta = 0.42 \deg \times \frac{c_{\gamma}}{2\pi} \times \frac{A(t_0) - A(t_{\text{LSS}})}{F_A}$$

For quintessence, $\Delta A < < 1.5F_A$
 $\rightarrow \Delta A \sim O(0.1)F_A$
 $C_{\gamma} > \sim 2\pi?$

$$\beta = 0.42 \deg \times \frac{c_{\gamma}}{2\pi} \times \frac{A(t_0) - A(t_{\rm LSS})}{F_A}$$

- In the current model, c_{γ} is at most 1
 - \rightarrow introduce Ω charged both under U(1)_X and U(1)_Y
 - → The number of Ω is limited by $\alpha_1(M_P) < 1$

$$\rightarrow c_{\gamma} \equiv \sum_{i=\Psi,\Omega} Q_{X,i} Q_{\mathrm{em},i}^2$$
 is limited as well

- From model's point of view, for each F_A, there is corresponding m_Ω and this changes #_Ω and (and #_{Ω-bar}) satisfying α₁(M_P)=1
 different F₁ corresponde to different α
 - \rightarrow different F_A corresponds to different c_y

Mapping w_{DE} to β/c_{γ}

Mapping w_{DE} to β/c_{γ}

Mapping w_{DE} to β/c_{γ}

Constraining EoS (WDE)

- Applying
 - W_{DE,0}<-0.95, β=0.35deg to the relation (Planck TT,TE,EE+lowE+lensing+BAO+SN w/ prior w_{DE,0} ≥ −1)
 C_{y,th} ensuring perturbativity of U(1)_Y
- We obtain c_γ consistent with cosmic birefringence, constraint on EoS of quintessence DE, and perturbativity of the model
 - → -0.994 < W_{DE,0} < -0.968 (68% C.L.)

Summary

- Cosmic Birefringence can be a hint for a quintessence dark energy
- Electroweak axion can be a candidate for the quintessence DE (m_A~10⁻³³eV, F_A~O(10¹⁷)GeV)
- Model's prediction for Λ_{DE}~O(1)meV is insensitive to a UV structure of the model
- Explaining β =0.35deg, the model predicts $-0.994 < w_{DE,0} < -0.968$ (68% C.L.)
- If δβ~O(10⁻²) is achieved in near-future CMB missions, -0.982 < w_{DE,0} < -0.961 (68% C.L.)