Checkmating Natural SUSY

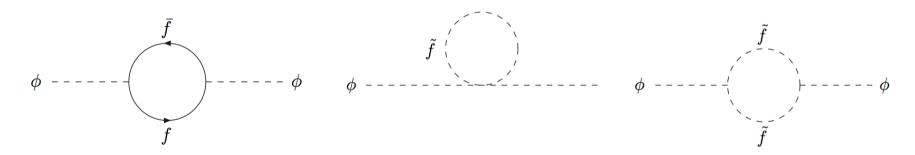
IBS, Daejeon, 2016

M. Drees, J. S. Kim

IFT Madrid

Outline

- Motivation
- Natural Supersymmetry
- Setup
- CheckMATE
- Numerical Results
- Conclusion


Motivation

Hierarchy Problem I

- One loop corrections contribute to mass renormalization of the Higgs
- Contributions diverge quadratically

$$M_H^2(M_W) pprox M_H^2(M_X) - Cg^2M_X^2$$

- A Higgs with mass at EW scale requires large cancellations!
- Solution 1: introduce a cut off @O(1) TeV
- Solution 2: for exact boson-fermion symmetry, loop corrections do not affect the Higgs mass!

Supersymmetry I

- SUSY relates bosons and fermions
- SUSY partners have same gauge numbers and masses
- SUSY removes quadratic divergencies
- SUSY fields allows for gauge coupling unification
- It provides a natural candidate for DM
- Supersymmetrization of the SM -> MSSM

Supersymmetry II

- The MSSM is the simplest supersymmetric extension of the SM
- Each SM particle has a superpartner, e.g. electron
 -> selection
- Anomaly cancellation requires additional Higgs doublet

Names		spin 0	spin 1/2	$SU(3)_C$, $SU(2)_L$, $U(1)_Y$
squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$egin{pmatrix} (u_L & d_L) \end{pmatrix}$	$(3, 2, \frac{1}{6})$
(×3 families)	\overline{u}	\widetilde{u}_R^*	u_R^\dagger	$(\overline{\bf 3},{\bf 1},-{\textstyle\frac{2}{3}})$
	\overline{d}	\widetilde{d}_R^*	d_R^\dagger	$(\overline{\bf 3},{\bf 1},{\textstyle {1\over 3}})$
sleptons, leptons	L	$(\widetilde{ u}\ \widetilde{e}_L)$	$(u \ e_L)$	$(1, 2, -\frac{1}{2})$
(×3 families)	\overline{e}	\widetilde{e}_R^*	e_R^\dagger	(1, 1, 1)
Higgs, higgsinos	H_u	$(H_u^+ \ H_u^0)$	$(\widetilde{H}_u^+ \ \widetilde{H}_u^0)$	$(1, 2, +\frac{1}{2})$
	H_d	$(H_d^0 \ H_d^-)$	$(\widetilde{H}_d^0 \ \widetilde{H}_d^-)$	$({f 1},{f 2},-{1\over 2})$

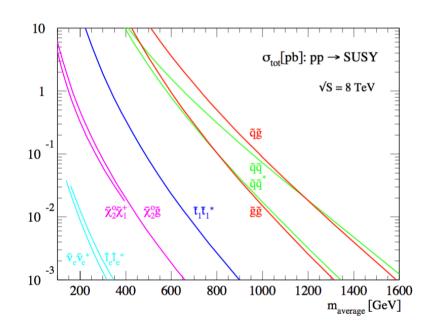
Table 1.1: Chiral supermultiplets in the Minimal Supersymmetric Standard Model. The spin-0 fields are complex scalars, and the spin-1/2 fields are left-handed two-component Weyl fermions.

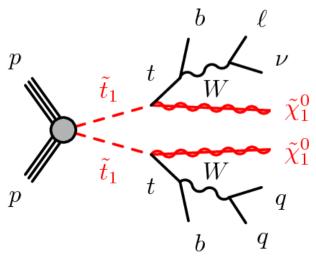
Names	spin 1/2	spin 1	$SU(3)_C, SU(2)_L, U(1)_Y$	
gluino, gluon	\widetilde{g}	g	(8, 1, 0)	
winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	W^{\pm} W^0	(1,3,0)	
bino, B boson	\widetilde{B}^0	B^0	(1,1,0)	

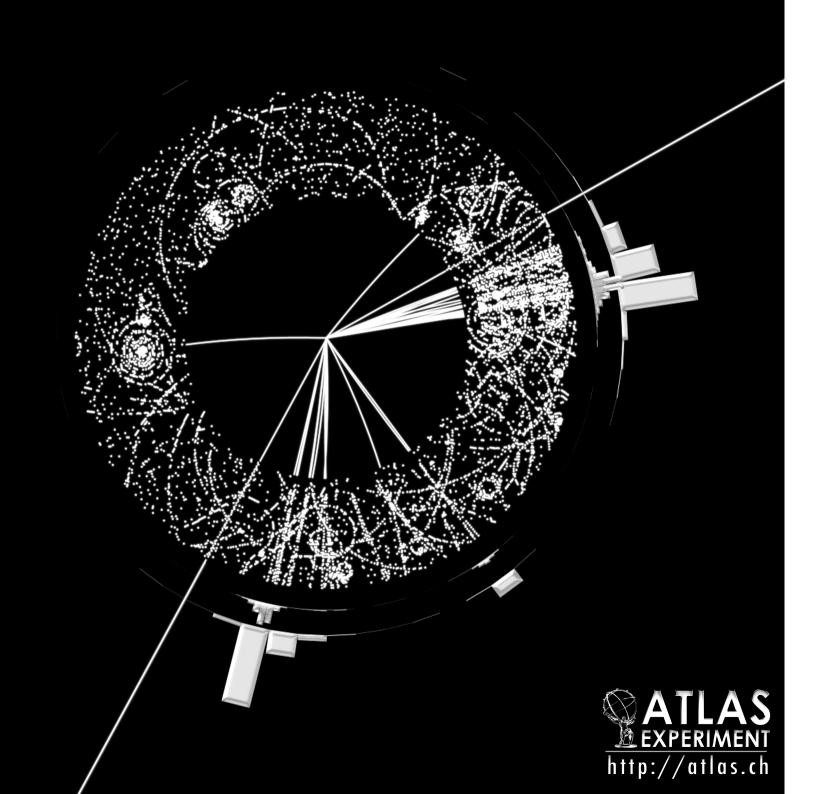
Table 1.2: Gauge supermultiplets in the Minimal Supersymmetric Standard Model.

Supersymmetry III

Superpotential uniquely defines all interactions


$$W_R = \epsilon_{ij} \left[h_\tau \widehat{H}_1^i \widehat{L}^j \widehat{E} + h_b \widehat{H}_1^i \widehat{Q}^j \widehat{D} - h_t \widehat{H}_2^i \widehat{Q}^j \widehat{U} - \mu \widehat{H}_1^i \widehat{H}_2^j \right]$$


 Since no scalar partner of the electron with the same mass has been observed, SUSY must be "softly" broken

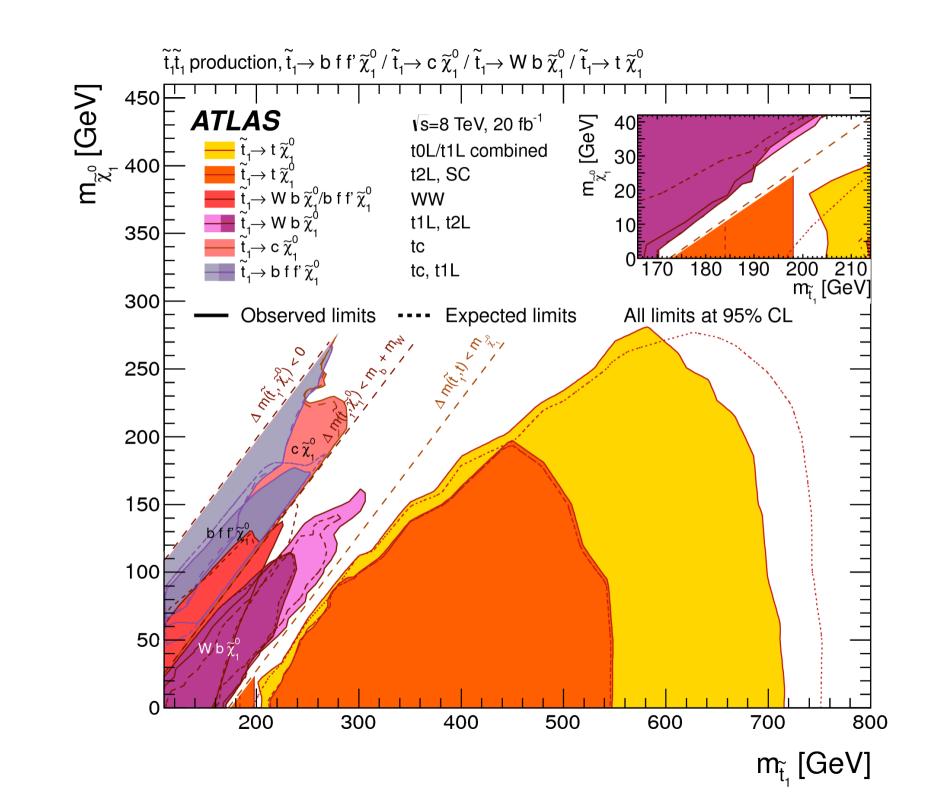

$$\begin{split} V_{\text{soft}} &= m_1^2 |H_1|^2 + m_2^2 |H_2|^2 - m_{12}^2 (\epsilon_{ij} H_1^i H_2^j + \text{h.c.}) \\ &+ M_{\widetilde{Q}}^2 \left[\widetilde{t}_L^* \widetilde{t}_L + \widetilde{b}_L^* \widetilde{b}_L \right] + M_{\widetilde{U}}^2 \, \widetilde{t}_R^* \widetilde{t}_R + M_{\widetilde{D}}^2 \, \widetilde{b}_R^* \widetilde{b}_R \\ &+ M_{\widetilde{L}}^2 \left[\widetilde{\nu}^* \widetilde{\nu} + \widetilde{\tau}_L^* \widetilde{\tau}_L \right] + M_{\widetilde{E}}^2 \, \widetilde{\tau}_R^* \widetilde{\tau}_R \\ &+ \frac{g}{\sqrt{2} m_W} \, \epsilon_{ij} \, \left[\frac{m_\tau A_\tau}{\cos \beta} H_1^i \, \widetilde{\ell}_L^j \tau_R^* + \frac{m_b A_b}{\cos \beta} H_1^i \, \widetilde{q}_L^j \widetilde{b}_R^* - \frac{m_t A_t}{\sin \beta} H_2^i \, \widetilde{q}^j t_R^* \right] \\ &+ \frac{1}{2} \left[M_3 \, \overline{\widetilde{g}} \, \widetilde{g} + M_2 \, \overline{\widetilde{W}}^a \, \widetilde{W}^a + M_1 \, \overline{\widetilde{B}} \, \widetilde{B} \right] \,, \end{split}$$

Supersymmetry IV

- Lightest supersymmetric particle (LSP) is neutral and stable in most common scenarios
- Large missing transverse momentum expected
- Hadroproduction of squarks and gluinos are dominant
- Third generation production cross section is subdominant

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: March 2016


states or phenomena is shown.

ATI AS Preliminary

 \sqrt{s} = 7. 8. 13 TeV

Natural Supersymmetry

Hierarchy Problem II

- For exact boson-fermion symmetry, loop corrections do not change the Higgs mass!
- Soft breaking terms do not affect the cancellation of quadratic divergencies
- However, corrections to squared Higgs mass parameter scale with squares of soft breaking parameters!
- @tree level: mHiggz < mZ with mHiggs=125 GeV!
- Large loop corrections needed
- mHiggs(loop)≈log(mt1 mt2/mtop^2)
- Heavy stops needed, which induces large corrections to Lagrangian parameters

Natural SUSY I

- What is natural? How to quantify fine-tuning?
- First answer:

$$\left| \frac{a}{M_Z^2} \frac{\partial M_Z^2}{\partial a} \right| \le \Delta$$

 Finetuning increases quadratically with μ as well as with stop mass (@1loop) and with gluino mass (@2loop)

Natural SUSY II

The minimization of the EW scalar potential yields

$$\frac{M_Z^2}{2} = -(m_{H_u}^2 + \Sigma_u^u) - \mu^2$$

- Naturalness requires no large cancellations on RHS
- Higgsino parameter should be small
- Loop corrections should not blow up hence no large stop masses (@1 loop) & gluino masses (@ 2 loop)
- All other particles are decoupled

SUSY under attack?

- Observed Higgs is SM like & relatively heavy
- Large Higgs mass needs highly mixed TeV scale stops
- No supersymmetric particles observed, m(gluino)>1.8 TeV and m(squark)>1.8 TeV
- Too strict direct constraints on SUSY particles jeopardize naturalness!
- Higgs and direct searches put SUSY under pressure
- Thus does SUSY have a little hierarchy problem?
- Limits are generally put on simplified/constrained models
- However, third generation limits are much weaker!
- Tree level Higgs mass can be increased in non minimal models

Natural SUSY III

- A <u>minimal</u> natural SUSY scenario consists of light higgsinos, TeV scale stops and multi TeV gluinos
- A left-handed sbottom is in the same SU(2) doublet as the stop and hence a light SU(2) doublet sbottom is required
- The right handed sbottoms do not couple strongly to the Higgs for small tan(β) and can be decoupled
- The trilinear coupling Ab has only little impact

Natural SUSY IV

Mass

$$\widetilde{g}$$

$$ilde{t}_L ilde{b}_L ilde{t}_R$$

natural SUSY

$$\frac{\tilde{l}}{\tilde{b}} \frac{\tilde{q} \, \tilde{b}_R}{\tilde{w}} \, H, A, H^{\pm}$$

decoupled SUSY

Natural SUSY V

Gluinos and third generation scalar production are dominant

$$pp \to \tilde{g}\tilde{g}, \quad pp \to \tilde{t}_i\tilde{t}_i^*, \quad pp \to \tilde{b}_i\tilde{b}_i^*$$

 In general, we expect large b-jet multiplicities from gluino decays

$$\tilde{g} \to \tilde{t}_i \bar{t}, \quad \tilde{t}_i^* t, \quad \tilde{b}_i \bar{b}, \quad \tilde{b}_i^* b$$
 $\tilde{g} \to g \tilde{\chi}_1^0$

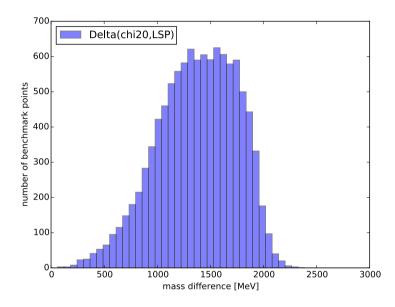
Stop decay modes depend on model parameters

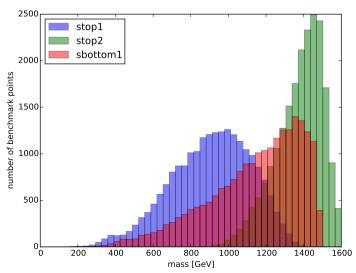
$$\tilde{t}_{i} \to t\tilde{g}, \quad \tilde{b}_{i} \to b\tilde{g},
\tilde{t}_{i} \to t\tilde{\chi}_{l}^{0}, \quad b\tilde{\chi}_{1}^{\pm},
\tilde{b}_{i} \to b\tilde{\chi}_{l}^{0}, \quad t\tilde{\chi}_{1}^{\pm},
\tilde{t}_{i} \to \tilde{b}_{j}W^{\pm}, \quad \tilde{b}_{i} \to \tilde{t}_{j}W^{\pm},
\tilde{t}_{2} \to \tilde{t}_{1}Z, \quad \tilde{t}_{2} \to \tilde{t}_{1}h$$

Setup

Scan Procedure I

- We randomly vary the soft breaking parameter of the natural SUSY parameters
- We demand a SM like Higgs and assume a decoupled MSSM Higgs sector
- LEP2 and low energy constraints must be satisfied

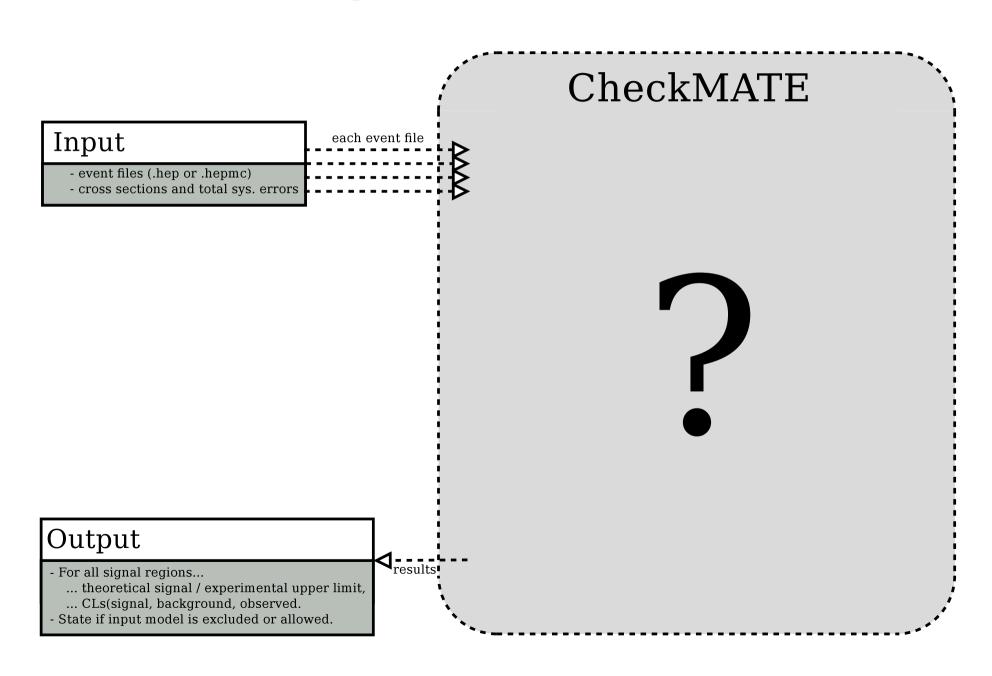

Parameter	Description	Scanned range		
$m_{ ilde{Q}_t}$	$3^{\rm rd}$ generation $SU(2)$ doublet soft breaking squark mass	[0.1 TeV, 1.5 TeV]		
$m_{ ilde{t}_R}$	$3^{\rm rd}$ generation $SU(2)$ singlet soft breaking squark mass	[0.1 TeV, 1.5 TeV]		
M_3	Gluino mass parameter	[0.1 TeV, 3.0 TeV]		
A_t	Stop trilinear coupling	$\left[-3.0~{ m TeV},3.0~{ m TeV} ight]$		
μ	Higgsino mass parameter	[0.1 TeV, 0.5 TeV]		
aneta	Ratio of vacuum expectation values	[1, 20]		


Scan Procedure II

- We use SPheno for the generation of the spectrum and decay tables
- We randomly generate 22000 benchmark point assuming flat priors
- Since higgsino mass eigenstates are nearly mass degenerate, we demand short lived higgsinos!
- Take care that the decay modes are correctly implemented for NLSP higgsino decays, e.g. higgsino->pion LSP

Mass Spectrum

- The mass between the NLSP and the LSP must be at least above the pion mass
- The heavier stop mass eigenstate is kinematically not accessible at the LHC run 1
- The sbottom mass eigenstate is slightly heavier


Numerical Tools

- We generate gluino, stop and sbottom pair production
- Higgsino pair production is negligible & is invisible
- MC Events are generated with Pythia 8
- For degenerate mass spectra, we generate matched events with Madgraph/Pythia 6
- LHC constraints are tested with CheckMATE

CheckMATE

N. Desai, M. Drees, H. Dreiner, J.S. Kim, D. Schmeier, J. Tattersall, K. Rolbiecki

Our idea

CheckMATE

Input

- event files (.hep or .hepmc)
- cross sections and total sys. errors

efficiencies

each event file

Experimental Publications

analysis procedures

number of •• expected and •• observed events

results

Delphes

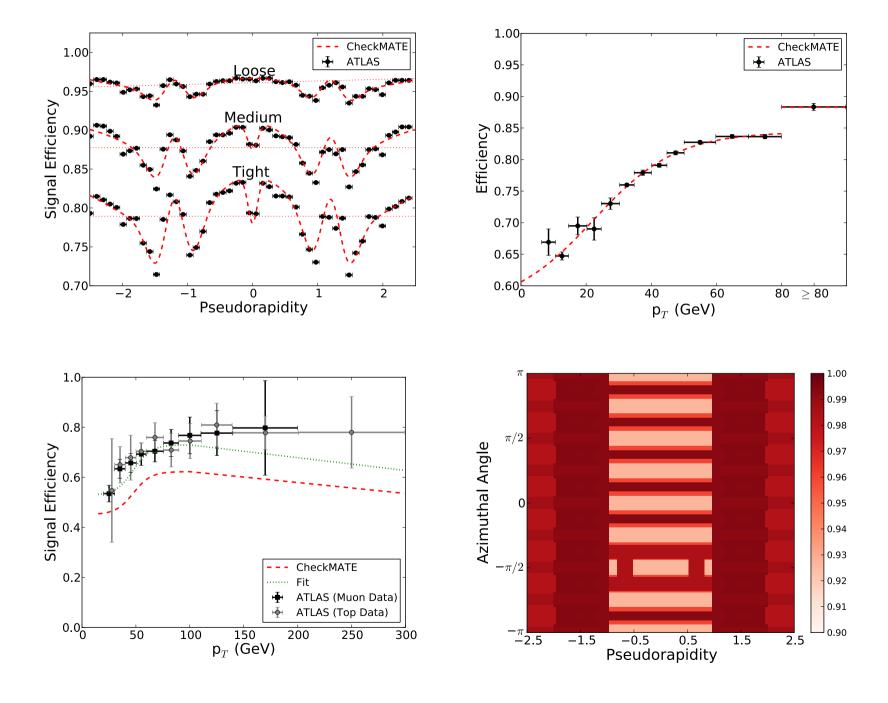
- Simulate track reconstruction.
- Determine energy deposits of all particles.
- Apply identification efficiencies for photons and leptons.
- Cluster jets.
- Perform energy/momentum smearings on reconstructed objects.
- Evaluate total missing energy
- Check isolation conditions for photons and leptons.
- Apply b- and tau-tags on jets.

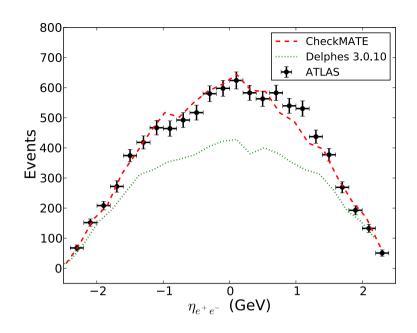
processed ROOT files

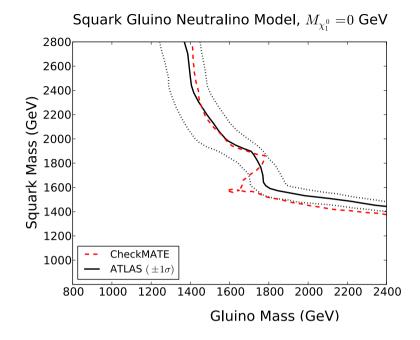
Analyses

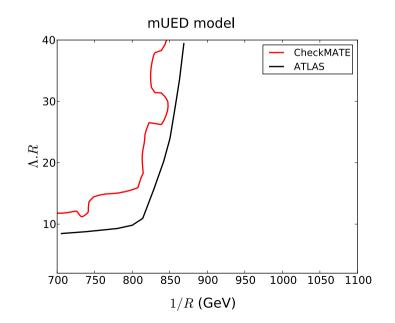
- Perform overlap removals, trigger efficiencies, kinematical cuts,...
- Follow experimental analyses as closesly as possible.
- Count how many events fall into various signal regions.

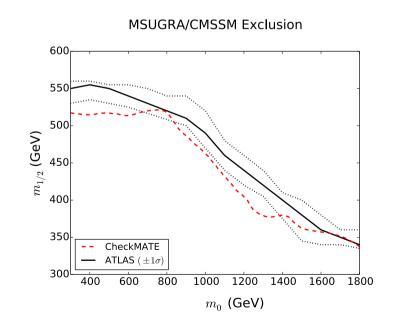
 ∇


#events of different signal regions (summed over all input events)


Output


- For all signal regions...
 - ... theoretical signal / experimental upper limit,
 - ... CLs(signal, background, observed.
- State if input model is excluded or allowed.


Evaluation


- Find signal region with largest expected exclusion potential
- Compare expected signal to experimental observation

Setting limits

- Many searches provides O, B, uncertainty on B, upper limits on signal S95
- Directly compare S to 95% upper limit on signal S95
- Calculate the ratio r=S/S95. If r>1: Excluded!
- Choose signal region with strongest expected exclusion
- Use its observed result to state "excluded" or "allowed"
- Alternatively, calculate CL. If CL < 0.05: Excluded!

Numerical Results

General Results I

- We employ 12 searches with 159 SR
- We want to be conservative and claim that a model point is excluded (allowed) if r>1.5 (r<0.67) with r=S/S95

Reference	Final State	\mathcal{L} [fb ⁻¹]
1308.2631 (ATLAS) [51]	$0\ell + 2b$ jets $+ E_T$	20.1
1403.4853 (ATLAS) [52]	$2\ell + E_T$	20.3
1404.2500 (ATLAS) [54]	SS 2ℓ or 3ℓ	20.3
1407.0583 (ATLAS) [55]	$1\ell + (b)$ jets+ E_T	20.0
1407.0608 (ATLAS) [56]	$ \!\! \!$	20.3
1303.2985 (CMS) [57]	$\alpha_T + b$ jets	11.7
ATLAS-CONF-2012-104 [58]	$1\ell + \ge 4 \text{ jets} + \cancel{E}_T$	5.8
ATLAS-CONF-2013-024 [59]	$0\ell+6$ (2b) jets+ E_T	20.5
ATLAS-CONF-2013-047 [60]	$0\ell+2$ -6 jets+ E_T	20.3
ATLAS-CONF-2013-061 [61]	$0-1\ell+\geq 3b$ jets+ E_T	20.1
ATLAS-CONF-2013-062 [62]	1 -2 ℓ +3-6 jets+ E_T	20.0
CMS-SUS-13-016 [63]	OS $2\ell + \geq 3b$ jets	19.7

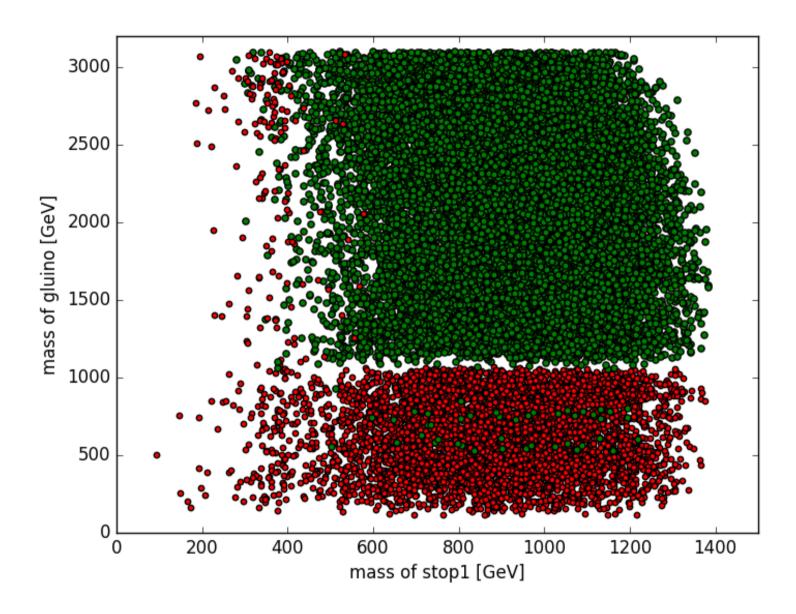
General Results II

Experiment	Final State	Best Sensitivity				Excludes
		all	excluded	ambiguous	allowed	
ATLAS [61]	$0-1\ell+\geq 3b$ jets+ E_T	0.22	0.37	0.56	0.13	0.57
ATLAS [60]	$0\ell+2$ -6 jets+ $ ot\!\!E_T$	0.37	0.25	0.056	0.44	0.69
CMS [57]	$\alpha_T + b$ jets	0.088	0.11	0.14	0.075	0.66
ATLAS [59]	$0\ell+6$ (2b) jets+ E_T	0.044	0.12	0.041	0.016	0.58
ATLAS [55]	$1\ell + (b)$ jets+ E_T	0.14	0.078	0.10	0.16	0.45
ATLAS [56]	$monojet+\cancel{E}_T$	0.013	0.042	0.018	0.002	0.23
ATLAS [51]	$0\ell + 2b$ jets+ E_T	0.10	0.019	0.085	0.13	0.051
ATLAS [62]	$1-2\ell+3-6$ jets+ E_T	0.024	0.002	0.001	0.034	0.50
ATLAS [54]	SS 2ℓ or 3ℓ	0.0	0.0	0.0	0.0	0.070
ATLAS [58]	$1\ell + \ge 4 \text{ jets} + \cancel{E}_T$	0.0	0.0	0.0	0.0	0.12
CMS [63]	OS $2\ell+\geq 3b$ jets	0.0	0.0	0.0	0.0	0.043
ATLAS [52]	$2\ell + E_T$	0.0	0.0	0.0	0.0	0.0

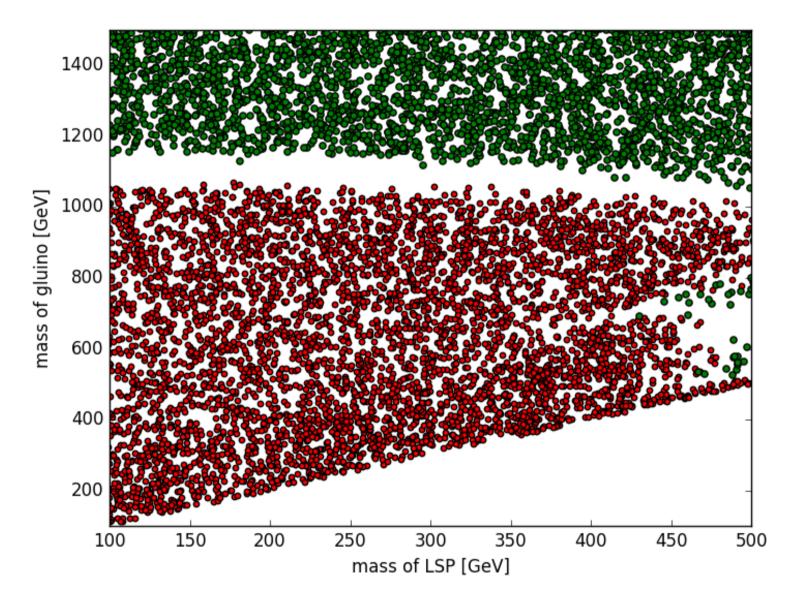
General Results III

Experiment	Final State		Best Sensitivity			
		all	excluded	ambiguous	allowed	
ATLAS [61]	$0-1\ell+\geq 3b \text{ jets}+\cancel{E}_T$	0.22	0.37	0.56	0.13	0.57
ATLAS [60]	$0\ell+2$ -6 jets+ E_T	0.37	0.25	0.056	0.44	0.69
CMS [57]	$\alpha_T + b$ jets	0.088	0.11	0.14	0.075	0.66
ATLAS [59]	$0\ell+6$ (2b) jets+ E_T	0.044	0.12	0.041	0.016	0.58
ATLAS [55]	$1\ell + (b)$ jets+ E_T	0.14	0.078	0.10	0.16	0.45
ATLAS [56]	$monojet+\cancel{E}_T$	0.013	0.042	0.018	0.002	0.23
ATLAS [51]	$0\ell + 2b$ jets+ E_T	0.10	0.019	0.085	0.13	0.051
ATLAS [62]	$1-2\ell+3-6$ jets+ E_T	0.024	0.002	0.001	0.034	0.50
ATLAS [54]	SS 2ℓ or 3ℓ	0.0	0.0	0.0	0.0	0.070
ATLAS [58]	$1\ell + \ge 4 \text{ jets} + \cancel{E}_T$	0.0	0.0	0.0	0.0	0.12
CMS [63]	OS $2\ell+\geq 3b$ jets	0.0	0.0	0.0	0.0	0.043
ATLAS [52]	$2\ell + E_T$	0.0	0.0	0.0	0.0	0.0

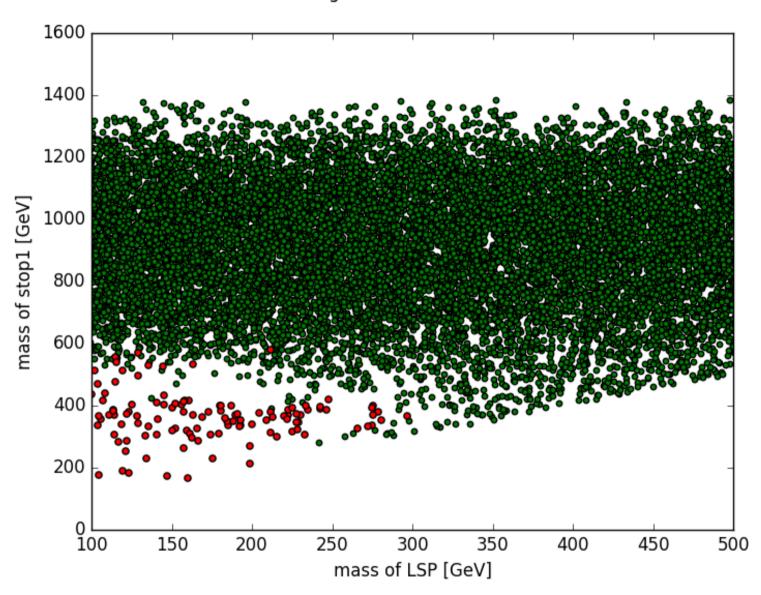
General Results IV


Experiment	Final State		Best Sensitivity			
		all	excluded	ambiguous	allowed	
ATLAS [61]	$0-1\ell+\geq 3b \text{ jets}+\cancel{E}_T$	0.22	0.37	0.56	0.13	0.57
ATLAS [60]	$0\ell+2$ -6 jets+ E_T	0.37	0.25	0.056	0.44	0.69
CMS [57]	$\alpha_T + b$ jets	0.088	0.11	0.14	0.075	0.66
ATLAS [59]	$0\ell+6$ (2b) jets+ E_T	0.044	0.12	0.041	0.016	0.58
ATLAS [55]	$1\ell + (b)$ jets+ E_T	0.14	0.078	0.10	0.16	0.45
ATLAS [56]	$ \!\! \!$	0.013	0.042	0.018	0.002	0.23
ATLAS [51]	$0\ell + 2b$ jets+ E_T	0.10	0.019	0.085	0.13	0.051
ATLAS [62]	$1-2\ell+3-6$ jets+ E_T	0.024	0.002	0.001	0.034	0.50
ATLAS [54]	SS 2ℓ or 3ℓ	0.0	0.0	0.0	0.0	0.070
ATLAS [58]	$1\ell + \ge 4 \text{ jets} + \cancel{E}_T$	0.0	0.0	0.0	0.0	0.12
CMS [63]	OS $2\ell+\geq 3b$ jets	0.0	0.0	0.0	0.0	0.043
ATLAS [52]	$2\ell + E_T$	0.0	0.0	0.0	0.0	0.0

General Results V


Experiment	Final State	Best Sensitivity			Excludes	
		all	excluded	ambiguous	allowed	
ATLAS [61]	$0-1\ell+\geq 3b \text{ jets}+\cancel{E}_T$	0.22	0.37	0.56	0.13	0.57
ATLAS [60]	$0\ell+2$ -6 jets+ E_T	0.37	0.25	0.056	0.44	0.69
CMS [57]	$\alpha_T + b$ jets	0.088	0.11	0.14	0.075	0.66
ATLAS [59]	$0\ell+6$ (2b) jets+ E_T	0.044	0.12	0.041	0.016	0.58
ATLAS [55]	$1\ell + (b)$ jets $+ E_T$	0.14	0.078	0.10	0.16	0.45
ATLAS [56]	$\text{monojet} + \rlap{/}E_T$	0.013	0.042	0.018	0.002	0.23
ATLAS [51]	$0\ell + 2b$ jets $+ E_T$	0.10	0.019	0.085	0.13	0.051
ATLAS [62]	$1-2\ell+3-6$ jets+ E_T	0.024	0.002	0.001	0.034	0.50
ATLAS [54]	SS 2ℓ or 3ℓ	0.0	0.0	0.0	0.0	0.070
ATLAS [58]	$1\ell+\geq 4$ jets $+E_T$	0.0	0.0	0.0	0.0	0.12
CMS [63]	OS $2\ell + \geq 3b$ jets	0.0	0.0	0.0	0.0	0.043
ATLAS [52]	$2\ell + E_T$	0.0	0.0	0.0	0.0	0.0

General Results VI


Experiment	Final State	Best Sensitivity			Excludes	
		all	excluded	ambiguous	allowed	
ATLAS [61]	$0-1\ell+\geq 3b \text{ jets}+\cancel{E}_T$	0.22	0.37	0.56	0.13	0.57
ATLAS [60]	$0\ell+2$ -6 jets+ E_T	0.37	0.25	0.056	0.44	0.69
CMS [57]	$\alpha_T + b$ jets	0.088	0.11	0.14	0.075	0.66
ATLAS [59]	$0\ell+6$ (2b) jets+ E_T	0.044	0.12	0.041	0.016	0.58
ATLAS [55]	$1\ell + (b)$ jets+ E_T	0.14	0.078	0.10	0.16	0.45
ATLAS [56]	$\text{monojet} + \rlap{/}E_T$	0.013	0.042	0.018	0.002	0.23
ATLAS [51]	$0\ell + 2b$ jets $+ E_T$	0.10	0.019	0.085	0.13	0.051
ATLAS [62]	$1-2\ell+3-6$ jets+ E_T	0.024	0.002	0.001	0.034	0.50
ATLAS [54]	SS 2ℓ or 3ℓ	0.0	0.0	0.0	0.0	0.070
ATLAS [58]	$1\ell+\geq 4$ jets $+E_T$	0.0	0.0	0.0	0.0	0.12
CMS [63]	OS $2\ell + \geq 3b$ jets	0.0	0.0	0.0	0.0	0.043
ATLAS [52]	$2\ell + E_T$	0.0	0.0	0.0	0.0	0.0

green (red) points are allowed (excluded)

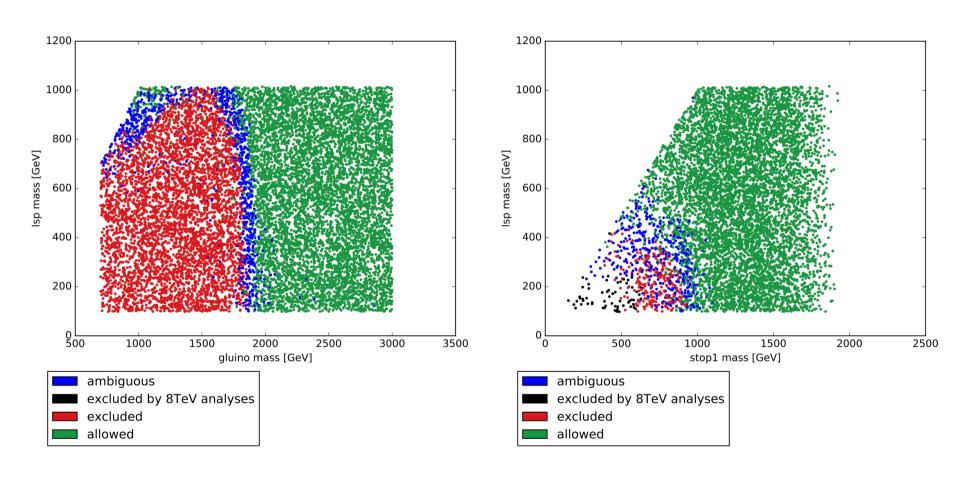
gluinos up to ~1100 GeV can be excluded

stop masses up to 600 GeV can be excluded

Type	Boundaries
Allowed	$m_{\tilde{t}_1} > 660~{ m GeV}$ and $m_{\tilde{g}} > 1180~{ m GeV}$
	$m_{\tilde{g}} > 1150 \text{ GeV}$ and $m_{\tilde{\chi}_1^0} > 370 \text{ GeV}$
	$m_{\tilde{t}_1} > 580~{ m GeV}$ and $m_{\tilde{g}} > 1070~{ m GeV}$
Not	$\left m_{ ilde{g}}>1060~{ m GeV}~{ m and}~m_{ ilde{\chi}_1^0}>300~{ m GeV} ight $
excluded	$m_{\tilde{t}_1} > 550 \ { m GeV}, m_{{ ilde \chi}_1^0} > 470 \ { m GeV}$
	and $m_{\tilde{g}} \in [600 \text{ GeV}, 760 \text{ GeV}]$
	$m_{\tilde{t}_1} < 230 \text{ GeV or } m_{\tilde{g}} < 440 \text{ GeV}$
Excluded	$m_{\tilde{g}} < 990 \text{ GeV}$ and $m_{\tilde{\chi}_1^0} < 340 \text{ GeV}$
	$m_{\tilde{g}} < 1040 \text{ GeV}$ and $m_{\tilde{\chi}_1^0} < 200 \text{ GeV}$
	$\left m_{ ilde{t}_1} < 300~{ m GeV}~{ m and}~m_{ ilde{\chi}_1^0} < 210~{ m GeV} ight $

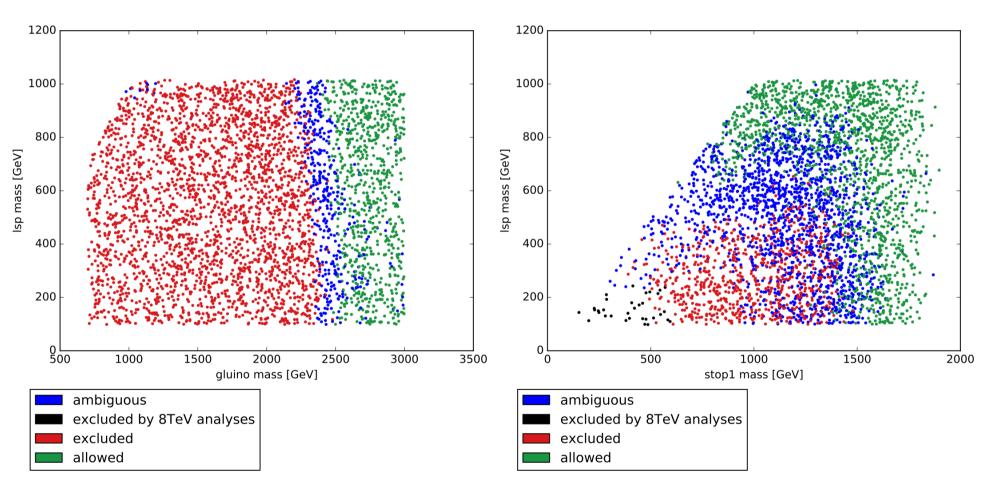
Type	Boundaries
Allowed	$m_{\tilde{t}_1} > 660~{ m GeV}$ and $m_{\tilde{g}} > 1180~{ m GeV}$
	$m_{\tilde{g}} > 1150 \text{ GeV}$ and $m_{\tilde{\chi}_1^0} > 370 \text{ GeV}$
	$m_{\tilde{t}_1} > 580 \text{ GeV}$ and $m_{\tilde{g}} > 1070 \text{ GeV}$
Not	$m_{\tilde{g}} > 1060 \text{ GeV}$ and $m_{\tilde{\chi}^0_1} > 300 \text{ GeV}$
excluded	$m_{\tilde{t}_1} > 550 \; { m GeV}, m_{{ ilde \chi}_1^0} > 470 \; { m GeV}$
	and $m_{\tilde{g}} \in [600 \text{ GeV}, 760 \text{ GeV}]$
	$m_{\tilde{t}_1} < 230~{ m GeV}$ or $m_{\tilde{g}} < 440~{ m GeV}$
$\mathbf{Excluded}$	$m_{\tilde{g}} < 990~{\rm GeV}$ and $m_{\tilde{\chi}_1^0} < 340~{\rm GeV}$
	$m_{ ilde{g}} < 1040 \ { m GeV} \ { m and} \ m_{ ilde{\chi}_1^0}^{-} < 200 \ { m GeV}$
	$m_{\tilde{t}_1} < 300 \text{ GeV}$ and $m_{\tilde{\chi}_1^0} < 210 \text{ GeV}$

Hidden scenarios


- The simplest (and most obvious) reason is a very small production cross section for heavy SUSY particles
- Compressed spectra where the mass difference between the gluino/third generation scalar and the LSP is very small
- Signal looks very similar to the top pair production process
- Is the stop1 dominantly SU(2) singlet or doublet?
- Asymmetric final states, e.g. one stop decays into top and the other to a b quark

A glimpse at 14 TeV

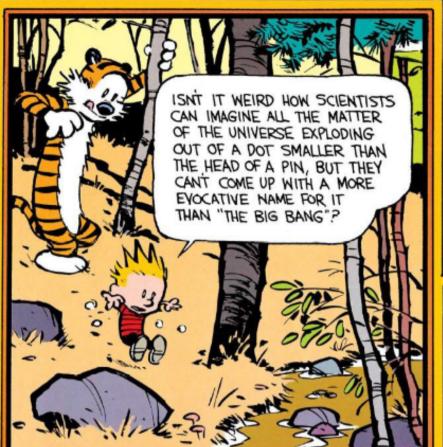
- In collaboration with K. Rolbiecki, R. Ruiz, T. Weber and J. Tattersall
- we implemented official ATLAS high luminosity searches


Analysis	Description	ECM [TeV]	lumi [fb^-1]
atlas_conf_2015_067	≥3 bjets+MET	13	3.3
atlas_phys_2014_010_300	2-6 jets+MET	14	300
atlas_phys_2014_010_sq_hl	2-6 jets+MET	14	3000
atlas_phys_pub_2013_011	hadr. & lep. stop search	14	3000
atlas_phys_pub_2014_010_s bottom	2b-jets+MET	14	3000

A glimpse at 14 13 TeV

assuming 20 inverse fb

A glimpse at 14 TeV


assuming 3000 inverse fb

Summary

- Natural SUSY satisfies the direct LHC constraints and can still be a solution of the little hierarchy problem
- We have generated 22k model points
- We derived "universal" limits @8TeV: mstop<230 GeV & mlguino<440 GeV excluded
- We have performed a projection of the high luminosity phase (work in progress)

Calvin Hobbes

THAT'S THE WHOLE PROBLEM WITH SCIENCE, YOU'VE GOT A BUNCH OF EMPIRICISTS TRYING TO DESCRIBE THINGS OF UNIMAGINABLE WONDER.

