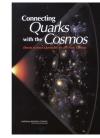

Underground Laboratories

K.T. Lesko October 2022

Outline

- Introduction and Overview of Underground Laboratories -Progress and Promise
 - Why go Underground?
 - The past 20 years
 - Opportunities for the coming 20 years
- A Partial Survey of Existing Facilities
 - Essential Laboratory Attributes
- Conclusions Regarding Yemilab

Physics - Special Environment, Low Backgrounds, Stable, Primarily Rare-search Experiments


Biology - Origins of Life, Life in Extremes, New Life

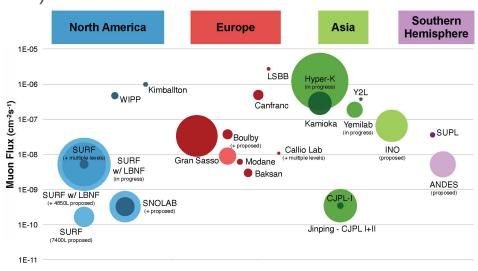
Geology - Coupled Processes (Thermal, Hydrological, Chemical, Mechanical), Resource Identification & Extraction, Earthquakes, Transparent Earth


Engineering - Properties of Rock, Societal Needs, Technologies

- Rich Literature on this topic:
 - o 2000 Nuclear Physics Long Range Plan Meeting, Institute of Nuclear Theory Seattle
 - Primarily Neutrinos
 - 2001 Underground Science Institute of Nuclear Theory Study (Bahcall Report)
 - Underground facility, Neutrinos, Proton Decay, Nuclear Astrophysics, Geoscience, Bio, Materials, ...
 - 2001 The Science Ahead: The Way to Discovery HEPAP Study
 - Lepton-Flavor Physics (SNO, Super-K, Borexino, KamLAND results expected)
 - Early Discussion of Accelerator-based neutrino beams (JPARC, BNL, FNAL)
 - US-based ILC dominated the report
 - o 2003 Connecting Quarks with the Cosmos National Academies Report
 - Dark Matter, Neutrinos, Proton Decay, Gravity, Cosmic Rays, Nuclear Astrophysics
 - 2003 Quantum Universe HEPAP Study
 - Dark Matter, CP-violation, Neutrino Oscillation, Strings, Supersymmetry
 - 2003 Neutrinos and Beyond NRC
 - ICE3 and Underground Laboratory
 - Neutrino Properties with Solar and Long Baseline neutrinos, Dark matter, Proton Decay, Double Beta Decay

- Rich Literature on this topic:
 - o 2004 The Neutrino Matrix Joint APS Study
 - Approx. dozen neutrino experiments presented, beta decay, 0vββ, neutrinos: LBL, solar, reactor
 - Neutrino mixing, sterile, CP-violation
 - 2005 Discovering the Quantum Universe HEPAP Study
 - Role of Particle Colliders Supersymmetry, Dark Matter,
 - o 2005 Deep Science NSF report
 - Companion to Facility Proposals DUSEL
 - Multidisciplinary Science
 - Strong need for underground space
 - Universe's building blocks, Dark matter, Neutrinos, CP violation, Proton Decay,
 - Dark Live, Geosciences, Engineering (ground truth)
 - o 2011 DUSEL Preliminary Design Report
 - Multidisciplinary Science Program
 - Geo, Eng, Bio, Physics

- Rich Literature on this topic:
 - 2011 Review of Options for Underground Science DOE Report (Marx report)
 - Long Baseline Neutrinos, Third Generation Dark Matter, Ton-scale Double-Beta Decay,
 - 2012 An Assessment of the Science Proposed for the Deep Underground Science and Engineering Laboratory NRC
 - Dark Matter, Neutrino Oscillations, 0vββ, Proton Decay, Supernovae neutrinos, Nuclear Astrophysics, Engineering, Geosciences, Biology, Importance of co-location
 - o 2014 The Long-Baseline Neutrino Experiment
 - BNL-FNAL Report on Physics Opportunities with LBNE
 - o 2014 Strategic Plan for US Particle Physics in the Global Context (P5)
 - Dark Matter G2 and G3, Short and Long-Baseline Neutrinos, PIP upgrades, LBNF
 - o 2022 HEPAP Long Range Plan *Snowmass* In process
 - LBNE/DUNE, G3 Dark Matter, Neutrinoless Double-Beta Decay



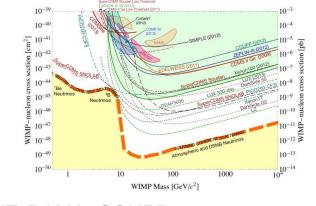
Underground Laboratories

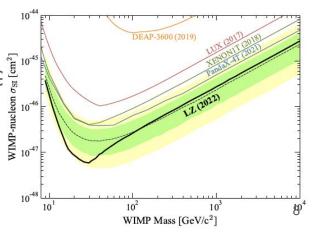
Homestake (1965), IMB (1979), Kamioka (1982), Gran Sasso (1985), SNO (1999), SNOLAB (2009), Jinping (2011, 2014), SURF Davis Campus (2012, 2025), Y2L (2003, 2014) Yemilab (2022)

Current Situation

General expansions proposed for SURF, SNOLAB, & Boulby

Dark Matter Experiments

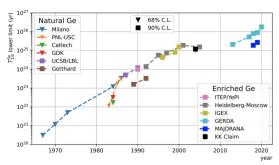

Dark Matter Completed: LUX, Xenon10, Xenon100, Xenon1T,
PandaX, PandaX-II, DEAP-3600, Darkside10, CDMS, CDMS II,
CDMS-Si, SuperCDMS Soudan, XMASS, EDELWEISS-III, COGENT, DAMA, COUPP, PICASSO, CREST, COSINE-100, DM-Ice17, CDEX, MiniClean

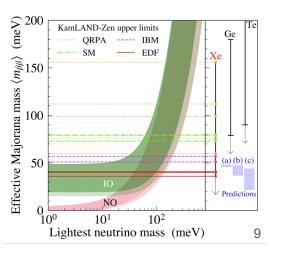

Dark Matter Running: LZ, XenonNT, PandaX-4T, Darkside50, DAMIC, SENSEI

Dark Matter Constructing/Commissioning:

SuperCDMS SNOLAB, Darkside20k, PICO, DEAP-3600, NEWS-G SABRE, COSINE-200

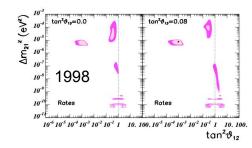
Dark Matter Planning: XLZD, TESSERACT, Low Mass Dark Matter, DarkSide-20K@LNGS, ARGO@SNOLAB

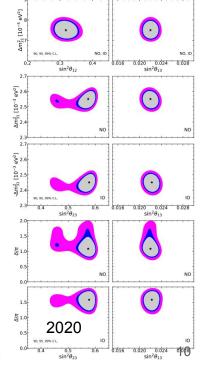

Neutrinoless Double-Beta Decay

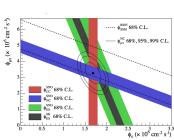

0νββ Completed: Majorana Demonstrator, EXO-200, NEMO, GERDA, KamLAND-Zen 400, Cuoricino, CUORE-0, CUPID-0, COBRA, AMORE

0vββ Running: CUORE, KamLAND-Zen 800, CUPID-Mo

0vββ Constructing/Commissioning: Legend-200, SNO+, nEXO, AMoRE


0vββ Planning: NEXT, KamLAND2-Zen, LEGENDE 1k, PANDAX 1k





Neutrino Oscillations

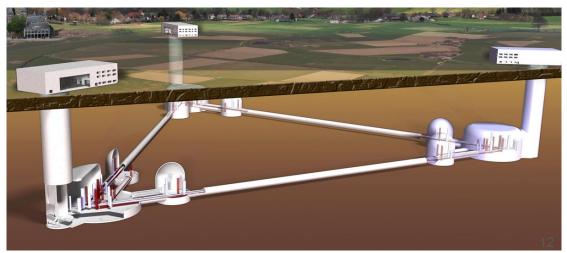
- v Oscillation Completed: Homestake, IMB, LSND, Kamioka, SuperK, Bugey, KARMEN, Palo Verde, Double Chooz, SNO, OPERA, Borexino, K2K, Minos, Daya Bay
- v Oscillation Running: T2K, NOVA, BNB
- v Oscillation Constructing/Commissioning: Juno, HyperK, DUNE Phase I
- v Oscillation Planning: DUNE Phase II, LSC

Nuclear Astrophysics

Operating Facilities:

LUNA 400kV, LUNA MV – INFN

CASPAR 1MV - SURF



Gravity Wave Detection

Operating: KAGRA (Kamioka), CLIO (Kamioka)

Proposed: Dutch next-generation Einstein Telescope

Summary of Two Decades of Building and Discovery

Low Background Assay, Rn-reduced Air, Contamination Control

Existing HPGe: BHUC (SURF), BUGS(Boulby), STELLA (INFN), SNOLAB, Y2L

Building/Commissioning: Yemilab

Rn-Reduced Air: SURF, Y2L, Kamioka, SNOLAB

DUST Control: Opportunity for Significantly Reduced Surface Contamination

and Rn emanation

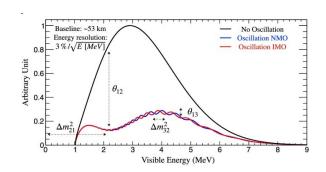
Looking to the Future

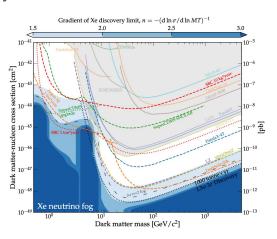
Neutrinos

Confirmed: MSW Neutrino Oscillations & Solar Model

Just Won't Die: Sterile Neutrinos

Remaining: CP-violation, Lepton-number Violation, Absolute Neutrino Mass Scale, Dirac or Majorana Neutrinos, Observe Neutrinoless Double-Beta Decay

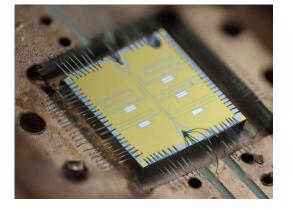

Dark Matter

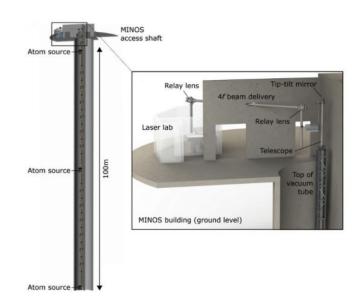

Confirmed: Theorists Prefer Light Dark Matter over WIMPs 7 to 1

Confirmed: Theorists were wrong every step of the way to discovering Neutrino Oscillations

Remaining: WIMPs down to the Neutrino fog, New Lighter

DM Models, Discover Particle Dark Matter!


Looking to the Future


Recent/New Applications

QIS

Atomic Interferometry

Industrial User(s)

Looking to the Future

Opportunities

Biology - Limits of Life, New Life, Origins of Life

Geology - Coupled processes, Resources, Earthquakes, Transparent Earth

Engineering - Properties of Rock, Societal Needs

Long-term Access, Extended Scale Access, Deep Access, Dedicated Access

(Partial) Survey of Facilities

Sanford Underground Research Facility (SURF) - US*

SNOLAB - Canada*

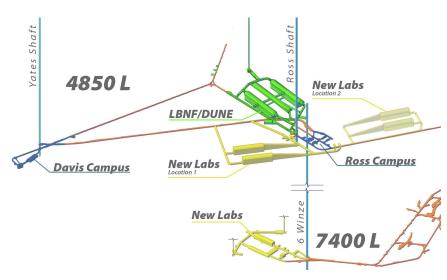
BOULBY - United Kingdom*

Kamioka Observatory - Japan*

INFN Gran Sasso - Italy

YemiLAB - Korea*

^{*} Responded to Snowmass Request for information, otherwise google


Former Homestake Gold Mine, multiple drifts and access - surface to 4850' (8000)

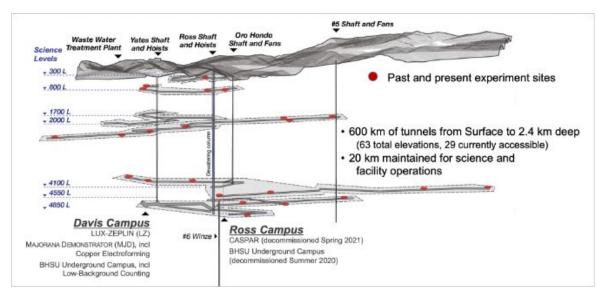
Past Experiments - Davis Solar Neutrino Experiment, LUX, Majorana Demonstrator

Current Program - LZ, MJ-¹⁸⁰Ta, CASPAR, BHUC, Geomicrobiology, Geoengineering, E&O

Under Construction - LBNE/DUNE (DUNE excavations ~ 35% complete, FY24)

Expansions proposed - 4850 (BO \sim FY27) and 7400 L

Oversight Agency - US DOE


AHJ: South Dakota Office of Risk Management

Dedicated Science Facility

In-house Safety Training Program

Staff

8 Eng Staff, 6 Scientists, 2 EH&S, 178 total Staff (16 for science) modest additions planned

Environment

Depth and Shielding 4300 mwe

5.3e-5 muons/m²/s

Temperature 24/28°C

RH 42/79%

Rn 300 Bq/m³

Neutrons 1.7e-2 n/m²/s

Gammas 1.9 γ /cm²/s

Space

Ross Campus Clean Room 12.1 x 6.1 x 2.4 m

Ross Campus Hall 30 x 3 x 2.8

Davis Detector Room 11 x (9.8 - 12.8) x 2.7

Davis Machine Shop 9.8 x 5.3 x 2.7

Davis Assay Room 7.3 x 5.6 x 2.7

Davis E-forming Room 6.3 x 8.7 x 2.7

Davis Campus 17 x 10 x 12

Surface Lab 6.6 x 5.6 x 2.7

Surface Lab Rn-reduced 6.6 x 8.4 x 3.3

Blue = available in next 10 years, Green = available now

	4 =		4 5	1	
U	11	ш	ŤI		C
	LI		L		J

Electrical Power 20,000 kW (15,000 kW available in FY27)

3 diesel generators backup

Chilled Water 246 kW (70 kW available)

Compressed air

20 Gbps, 100 Gbps planned

Access

Yates Shaft 1.39 x 3.77 x 2.58 m, 4.8 tonnes

Ross Shaft 1.40 x 3.70 x 3.62 m, 5.897 tonnes

Slung loads - to 10 m

Rail capacity 5.9 tonnes cars

Underground Assembly Support & Occupancy

Multiple Clean Rooms

Rail Truck (flat and lowboy)

Low Background Assay (8 HPGe)

Underground Refuge 144 x 4 days (250 x 4 planned)

Peak 97 people/shift, Steadystate 67/shift

Multiple Cranes 2.7 tonnes

Surface Facilities

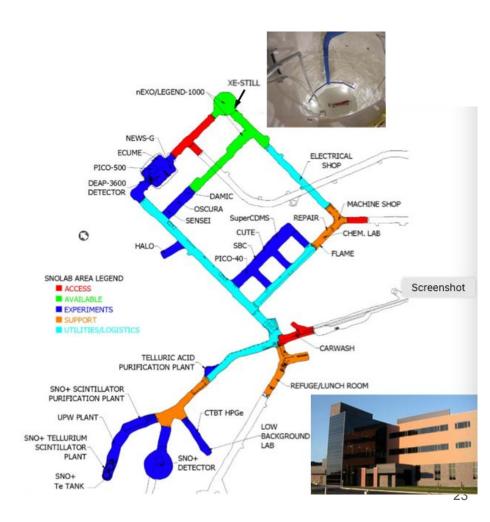
Limited Office Space

Surface Assembly Lab

Assembly Shop

Machine Shop

Storage and Warehouse


Active Nickel Mine - 6800'

Past Experiments - SNO, COUPP, DEAP1, DEAP-3600, miniCLEAN, NEWS-DM, PICASSO, PICO-2L, PICO-60

Current Program - SNO+(LS), PICO 40, CUTE, SENSEI, OSCURA, DAMIC, HALO

Constructing - SuperCDMS SNOLAB, DEAP-3600 II, PICO-500, ECUME, NEWS-G, SNO+(Te), SBC,

Expansions proposed - 6800 (?)

Oversight Agencies - CFI, NSERC, Ontario Opportunities Fund

AHJ: N/A (Suspect it is Vale and Canadian Ministry of Mines)

Shared with Vale Mining

Vale Training + SNOLAB Specific

Staff

60 Technical, 40 Science, 5 EH&S, 20 Admin

Environment

Depth and Shielding 6000 mwe

< 0.27 muons/m²/day

Temperature 18/23°C

RH 30/50%

Rn 100 Bq/m³

Neutrons 4.1 e3 n/m²/day

Gammas 510 γ/m²/d

Space

SNO Cavity 22m dia x 35 m tall - SNO+

Ladder Labs - Pico-40, SBC, CUTE, SuperCDMS, HALO, SENSEI, OSCURA, DAMIC, NEWS-G, additional labs

CUBE Hall: DEAP-3600, ECUME, PICO-500

Cryo-pit - tonne scale DBD

Blue = available in next 10 years, Green = available now

Utilities

Electrical Power 3 MW

Standby Generator 3MW

Chilled Water 320 tons

Waste heat 1.5 MW

150 CFM compressed air

10 Gbps

Access

Cage 54" x 144" x 68" 5500 lbs

2 x 10 shifts/day, 5 days/week

Mine Shutdown 2 weeks/year

Shaft work 2023-2025 to limit u/g access

Underground Assembly Support & Occupancy

Laboratory Clean Room Class 2000

Rail Truck

Low Background Assay

Peak 120 people/shift, Steadystate 50/shift

Multiple Cranes: 2., 2., 10. tonnes

Surface Facilities

Significant Office Space 34k sf

4700 sf clean room labs

Assembly Shop

Machine Shop

Storage and Warehouse

Chemistry Labs

Active Potash Mine - 2850 mwe

Past Experiments - ZEPLIN, DRIFT, NAIAD

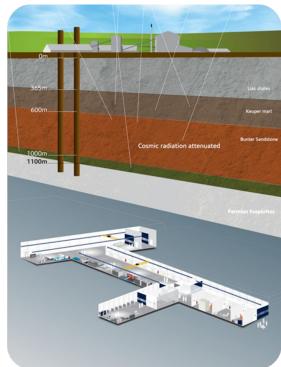
Planning - DarkSPHERE, LXe-G3

Expansions proposed - 25m x 25m tall cavity, 14,000 m³ Rooms

Oversight Agencies - STFC/UKRI

AHJ: STFC/ICL-UK

Shared with ICL-UK


Safety STFC Site Specific

Staff

5 Technical, 5 Science,

2 EH&S, 2 Admin

Environment

Depth and Shielding 2850 mwe 4e-8/cm²/s

Temperature 21°C

RH 40/50%

Rn 2.5 Bq/m³

Neutrons 4.1 e-6 n/cm²/s

Gammas $0.13 \text{ y/cm}^2/\text{s}$

Space

Main Hall: 60 x 6 x 3.8 m 10k CR

BUGS: 20 x 6 x 3.8 1k CR

LEC: 10 x 6 x 6 10k CR

Outside: 20 x 6 x 3.8

Discussion of Major New

Excavations 25m dia x 25 m tall

Utilities

Electrical Power 100 kW

Standby Generator N/A

Chilled Water N/A

Waste heat N/A

Compressed air Yes

2 x 40 Gb to surface 1 Gb offsite

Access

Cage 2m x 2m 5500 lbs

3 shifts/day

15 science/cage, 3-4 cages / shift

Peak 30, Steady-state 10, Refuge 30, expected to increase to 60/50/100

Underground Assembly Support & Occupancy

4000m³ Class 10k, 1800m³ Class 1k

Rn-reduced Air

Low Background Assay

Peak 120 people/shift, Steadystate 50/shift

Multiple Cranes: 5, 10 tonnes

Surface Facilities

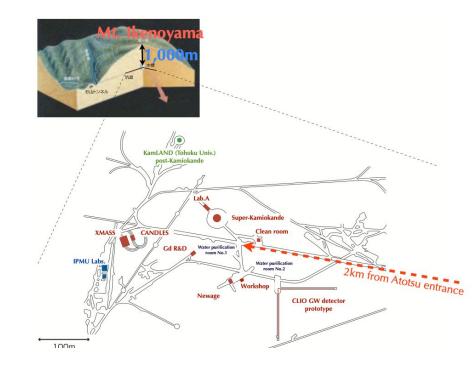
Some Office Space, planning for 2600m²

Assembly Shop N/A

Machine Shop N/A

Storage and Warehouse

Chemistry Labs N/A

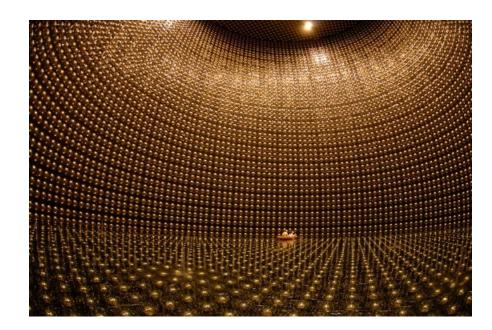

Former Mine - 2700 mwe

Horizontal Access - roadway

Past Experiments - KamiokaNDE I, II, III K2K, XMASS, KamLAND

Current Program - SuperK, T2K, KamLAND-Zen, CLIO, KAGRA, NEWAGE, CANDLES

Constructing - Hyper-Kamiokande


Oversight Agencies - MEXT

AHJ: Labour Standard Inspection Office Shared with Kamioka Mining & Smelting Mine Safety Training, University Safety Training

Staff

3 Technical, 26 Science,

0 EH&S, 8 Admin

Environment

Depth and Shielding 2700 mwe

1.5e-7/cm²/s 273 GeV

Temperature 13/13°C

RH 100% (?)

Rn 64 Bq/m³

Thermal Neutrons 12.5 e-5 n/cm²/s

Gammas 2.7e-6 γ/cm²/sr/s

Space

Super-K: 39.3 dia x 41.4 m

Hyper-K: 68 dia x 71 m

KamLAND: 29 dia x 32m

Lab C 20 x 15 x 15

Lab D 14 x 7 x 11

Lab E 15 x 10 x 9

Lab G 50 x 8 x 7

Blue = available in next 10 years, Green = available now

	4 - 1		
		liti	00
~			

Electrical Power N/A

Standby Generator N/A

Chilled Water N/A

Waste heat N/A

Compressed air N/A

XX Gb

Surface Air ~ 70 Bq/m³

Rn-free 36m³/hour

Access

Horizontal Access

Open 24/7/365

Road 3.2m tall x 4.5 wide

Rail 2.5m x 3

10 tonne truck

Peak 100, Steady-state 2,

Refuge N/A

Kamioka

Underground Assembly Support & Occupancy

100m² room Class 10, 50m² Class 200k

Rn-reduced Air, Rn-free Air

Low Background Assay

Peak 100 people/shift, Steadystate 2/shift

Multiple Cranes: 1, 2 tonnes

Surface Facilities

Office Space for 50

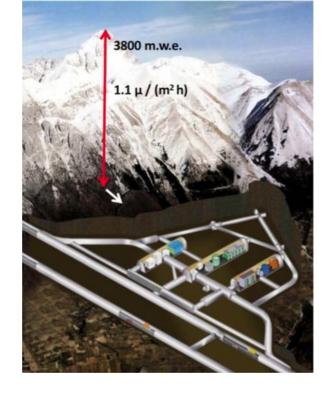
6 Meeting Rooms

Assembly Shop N/A

Machine Shop N/A

Storage and Warehouse

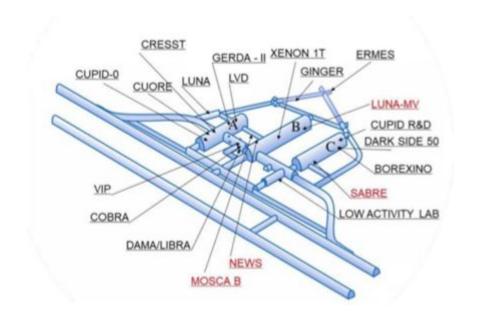
Multiple Surface Labs


Low Background Assay

Dedicated Physics Laboratory - 2800 mwe

Horizontal Access (Highway Tunnel)

Past Experiments - Borexino, OPERA, MACRO, GALLEX, Icarus, Warp


Current Program - COBRA, COSINUS, CRESST, CUORE, CUPID-0, CUPID, DAMA, DARKSIDE, ERMES, GERDA, GINGER, LUNA, LVD, NEWS-DM, SABRE, VIP, XENON

Operations Agency - INFN
Separate Environmental oversight
Issues with Chemical u/g

Staff

60 Technical, 60 Science

Environment

Depth and Shielding 2800 mwe

TBD ~ 1.e-4/cm²/s

Temperature 15-26°C

RH 30 - 90%

Rn 20 - 80 Bq/m³

Thermal Neutrons <4.6e-6 n/cm²/s

Gammas $0.3-0.4 \text{ y/cm}^2/\text{s}$

Space

3 halls each 100 x 20 x 18 m

Total volume 180,000 m³

Utilities

Electrical Power N/A

Standby Generator N/A

Chilled Water N/A

Waste heat N/A

Compressed air N/A

N/A Gbps

Rn 20 - 80 Bq/m³

Access

Highway Tunnel

20 tonnes (guess)

Access 24/7

N/A people/shift peak

Underground Assembly Support & Occupancy

No common CR

Low Background Assay

225 people average

Cranes: 5 tonnes

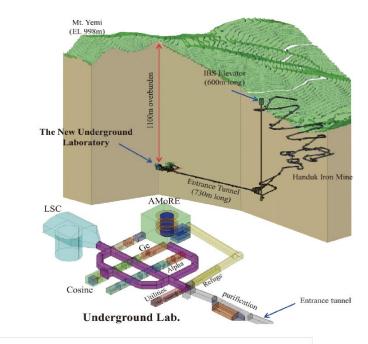
Surface Facilities

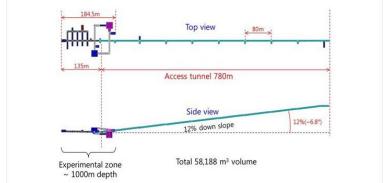
Substantial Surface Support

17000 m²

Chemistry Lab

ULB Lab


Active Mine - 2500 mwe


Vertical Access, Dedicated Access Drift

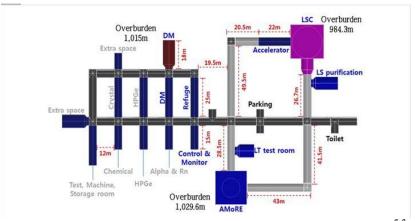
Past Experiments - none, new laboratory!

Current Program - Establishing Research Program

Constructing - COSINE, AMoRE, LSC, IsoDAR, KNU, KIGAM, Low Background Counting

Operations Agency - Center for Underground Physics in IBS

Oversight Agencies - Ministry of Science and ICT


Shared with SM Handeok Iron-Mine & Construction

Mine Safety Training, Yemilab Safety Training

Staff

7 Technical, 5 Science Expansion anticipated to: 10 Technical, 8 Science 1 EH&S, 2 Admin

Environment

Depth and Shielding 2500 mwe

TBD $\sim 1.e-6/cm^2/s$

Temperature 25°C

RH TBD%

Rn 20 - 2000 Bq/m³

Thermal Neutrons TBD n/cm²/s

Gammas 516 y/s

Space

Operations: 15 x 5 x 5 m

LSC 22 x 22 x 8 + 20 dia x 20 h

Purification: 15 x 7 x 7

AMoRE 21 x 21 x 16 + 13 x 8 x 8

COSINE 15 x 15 x 8 + 25 x 5 x 5

KNU 15 x 8 x 8

KIGAM 15 x 8 x 8

IsoDAR 15 x 12 x 10, 20 x 7 x 7

Open 25 x 5 x 5, 3x(12 x 5 x 5)

Blue = available in next 10 years, Green = available now

U	ti	lit	ies
---	----	-----	-----

Electrical Power 1800kW

Standby Generator 1800kW

Chilled Water 15 kW (35kW by 2023)

Waste heat 180 kW

Compressed air N/A

10 Gbps

Rn TBD ~ 20 - 2000 Bq/m 3

Access

Vertical Access 2.8 x 1.5 x 3.5 m

1.5 tonnes

Access TBD 3 shift/day 24 hr monitoring

40 people/shift peak

40 people refuge

Underground Assembly Support & Occupancy

No common CR

Rn-reduced Air 50 CMH

Low Background Assay

Peak 40 people/shift, Steadystate TBD/shift

Multiple Cranes: 5 tonnes

Surface Facilities

2500 m² Office Space

64 m² Clean Room

64 m² Assembly Shop

32 m² Machine Shop

64 m² Storage and Warehouse

64 m² Chemistry Labs

64 m² Low Background Assay

Conclusions

I am very excited to see the commissioning of Yemilab and a new suite of experiments taking place in a well shielded laboratory

In comparison with other and well established laboratories you have integrated essential infrastructure elements and have those that are essential for a successful world-class science program

Some of your planned experiments and unique and will provide critical new information on high profile science questions

Congratulations on making Yemilab a reality. I look forward to your upcoming publications