nEXO:

Search for Neutrinoless Double Beta Decay in 5-Tonnes of Enriched Xe

Douglas Leonard

1st Yemilab Workshop

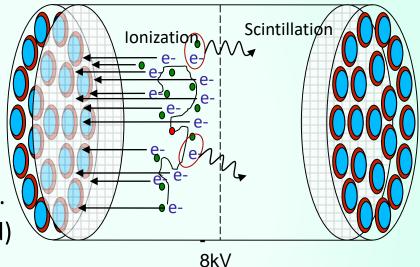
High-1, Korea

EXO-200 Liquid-Xenon Time Projection Chamber (TPC) Concept for 0vββ search

 Xe is used both as the source and detection medium.

Enriched to 80% in ¹³⁶Xe

$$Q_{\beta\beta} = 2457.8 \pm 0.4 \text{ keV}$$

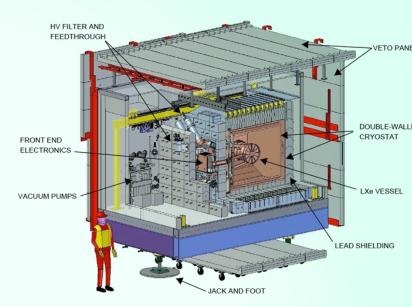

(M. Redshaw, J.McDaniel, E. Wingfield and E.G. Myers, Phys. Rev. Lett. **98**, 053003)

Simultaneous collection of both ionization and scintillation (175nm) signals.
 N_{e-}+N_{ph} = E/11.5 ev (ratio depends on field)

G. Anton et al (EXO-200) Phys. Rev. C 101, 065501 (2020)

- Full 3-D reconstruction of all energy depositions in LXe ~ 1cm spatial resolution.
- Single-site Multi-site rejection.
- Decomposition of uniform signal and non-uniform background.

TPC schematic (EXO-200)

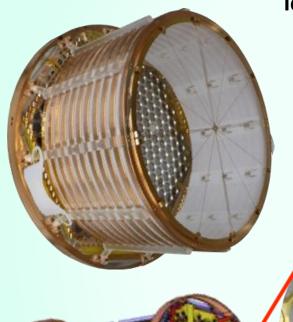



Charge collection

EXO-200 Detector System

- Aprox 1600 m.w.e under salt at WIPP, Carlsbad
 N.M. U.S.A..
- ~100 kg fiducial Xe @ 80% 136Xe
- Muon veto: plastic scintillator, ~96% coverage.
- Cu Cryostat contiained in ~ 25cm thick Pb
- Detector: Semi-cryogenic (~165K) timeprojection chamber (TPC).
- TPC sitting in HFE thermal bath/shielding.
- Xe recirculation system maintained purity (3-5 ms e- lifetime)
- Ran in two phases from 2011 to 2019, with an interruption due to accident at WIPP.
- Total 234.1 kg yr ¹³⁶Xe exposure

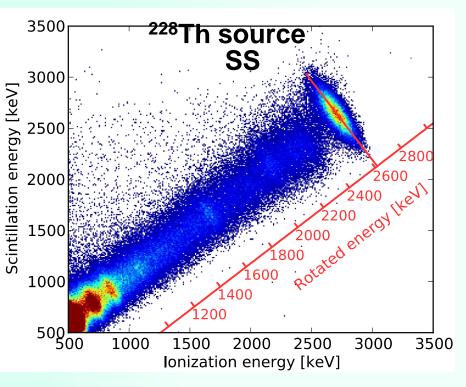
design detailed in JINST **7** (2012) P05010, JINST **17** (2022) P02015



The EXO-200 TPC

Two almost identical halves reading

ionization and 178 nm scintillation, each with:

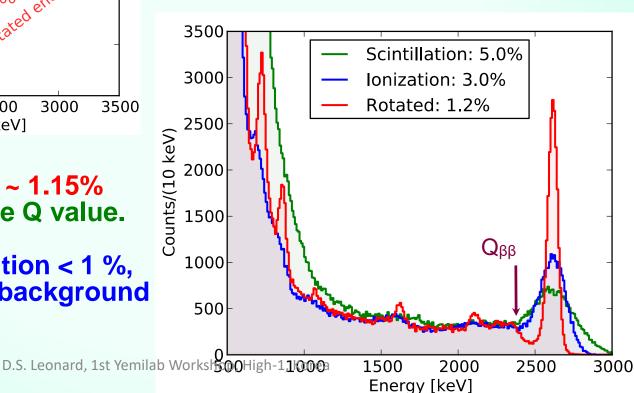

Wire Grid

- 38 U triplet wire channels (charge)
- 38 V triplet wire channels, crossed at 60° (induction)

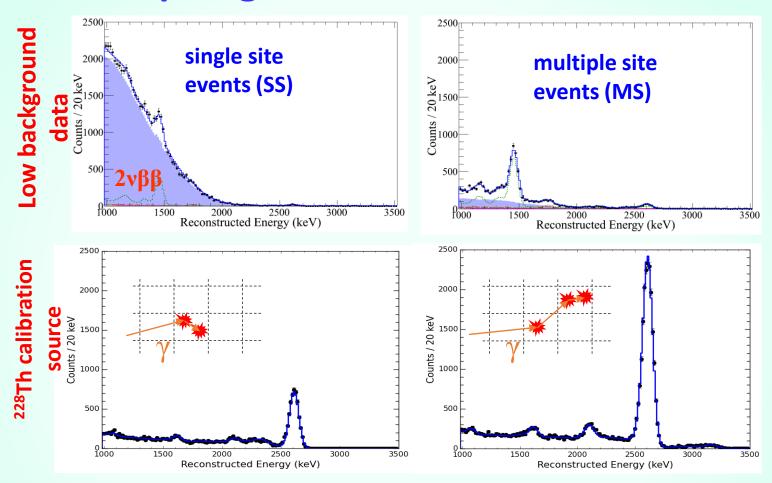
Light

- 234 large area avalanche photodiodes (LAAPDs, light in groups of 7)
- All signals digitized at 1 MHz, \pm 1024 μ s around trigger (2 ms total)
- Drift field 376 V/cm
- TPC housed in a copper vessel with 1.37 mm wall thickness

Light, Charge, and Energy Resolution


EXO-200 has achieved ~ 1.15% energy resolution at the Q value.

nEXO will reach resolution < 1 %, sufficient to suppress background from $2\nu\beta\beta$.


Combining Ionization and Scintillation energy to enhance energy resolution

Anticorrelation between scintillation and ionization in LXe known since early EXO R&D

(E.Conti et al. Phys Rev B 68 (2003) 054201)

Topological Event Information

- TPC allows the rejection of gamma backgrounds because Compton scattering results in multiple energy deposits.
- SS/MS discrimination is a powerful tool not only for background rejection, but also for signal discovery.

EXO-200 Background Control

Techniques:

Gamma Counting: U. of Alabama (UA) above ground, U. of Bern (Vue-des Alpes)

ICP-MS and GDMS: INMS Canada, included resin extraction methods

Neutron Activation Analysis (NAA): UA Assays: D.S. Leonard et al., Nucl. Ins. Meth. A 591 (2008) 490

D.S. Leonard et al., Nucl. Inst. Meth. A871 (2017) 169

M. Auger et al., J. Inst. 7 (2012) P05010.

Radon counting (Laurentian) From EXO-200 Data: J.B. Albert et al. Phys. Rev. C 92 (2015) 015503.

Cosmogenic Studies: J.B. Albert et al., JCAP 04 (2016) 029.

Materials Database:

Alpha counting (for lead samples)

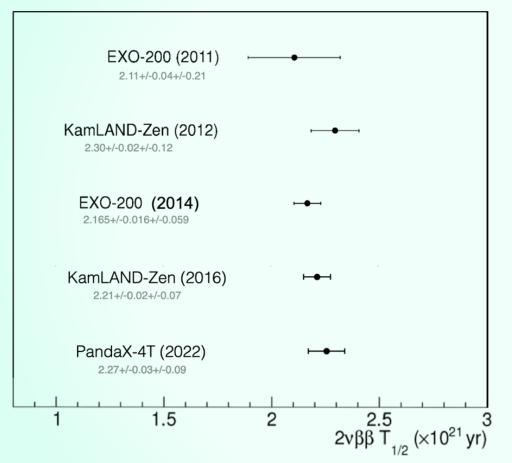
Tracked measurents, sources, conditions (cleaning etc) of all materials.

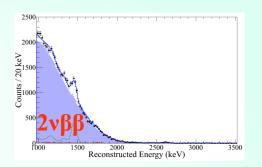
Over 300 materials entries, even more samples and measurements.

Simulations:

Initial Geant 3 simulations (UA), simplistic for background estimation only.

Derived "hit efficiencies"


Impact table

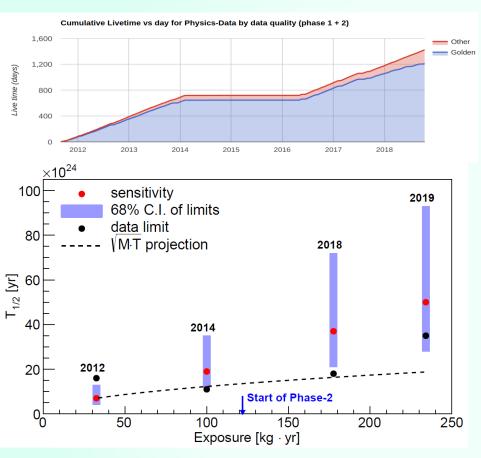

Define part; input mass; select material; select MC => output background

Predicted backgrounds before taking data!!!

Events in ±2σ around Q	Radioactive bkgd prediction using certification data and G4 Monte Carlo	¹³⁷ Xe bkgd	Background from 0v analysis fit	
90%CL Upper	56	10	63.2 ± 4.7	
90%CL Lower	8.2	18	(65 events observed)	

EXO-200 2vββ discovery

Discovery of 2vββ decay in ¹³⁶Xe *PRL 107 (2011) 212501*


Confirmation by KamLAND-ZEN PRC 85 (2012) 045504

Precision measurements (~3%)

PRC 89, 015502 (2014)
PRL 117, 082503 (2016)
arXiv.2205.12809

EXO-200 still has the best measurement, in spite of exposure disadvantage.

EXO-200 Results

Initial analysis was statistically lucky. Sensitivity improved with exposure and systematic/analysis improvements. 2012: Phys.Rev.Lett. 109 (2012) 032505 2014: Nature 510 (2014) 229-234 (Phase I) 2018: Phys. Rev. Lett. 120, 072701 (2018) 2019: Phys. Rev. Lett.123 (2019)161802 (Phase II)

Total exposure: 234.1 kg·yr Bckground index in ROI:

ckground index in Not.

 $(1.7 \pm 0.2) \times 10^{-3} / (\text{kg·yr·keV})$

 $T_{1/2}$ (0νββ):

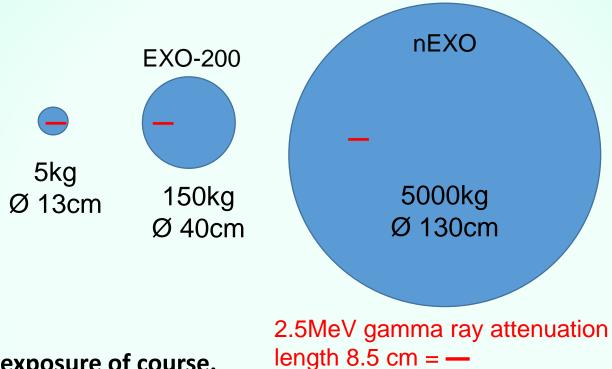
Sensitvity: $5.0 \cdot 10^{25}$ yr (90% CL) LIMIT: > $3.5 \cdot 10^{25}$ yr (90% CL)

 $\langle m_{\beta\beta} \rangle$ < 93–286 meV

Upgrades:

- -Improved electronics
- -Deep neural net multi-site analysis and "standoff" distance analysis (see later slide
- "standoff" distance analysis (see later slides)
- -Response uniformity improvements

•••


Best Xe limit to date: KamLAND-Zen 800 limit $T_{1/2}$ < 2.3 X 10²⁶

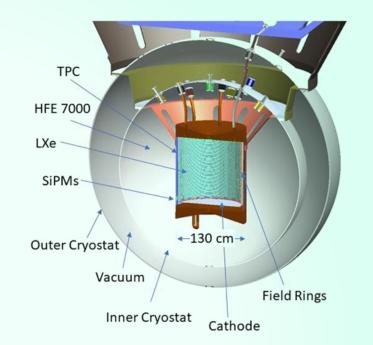
arXiv:2203.02139 (March 2022)

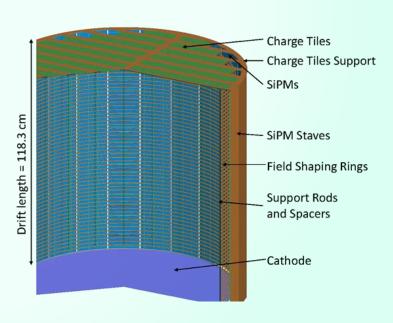
So Why Xenon

- Because it worked!! (This used to be the first slide)
- High Q-value (above 2615 ²²⁸Th peak)
- Highly enrich-able
- Easy to re-purify,
- Minimal cosmogenic activation
- Some particle identification (high alpha light yield)
- Re-usable and scalable.
- Possibility to collect and identify Ba daughter ion.
- Self-confirming: Can replace with natural xenon, same detector, mostly same backgrounds.

nEXO: Going Bigger

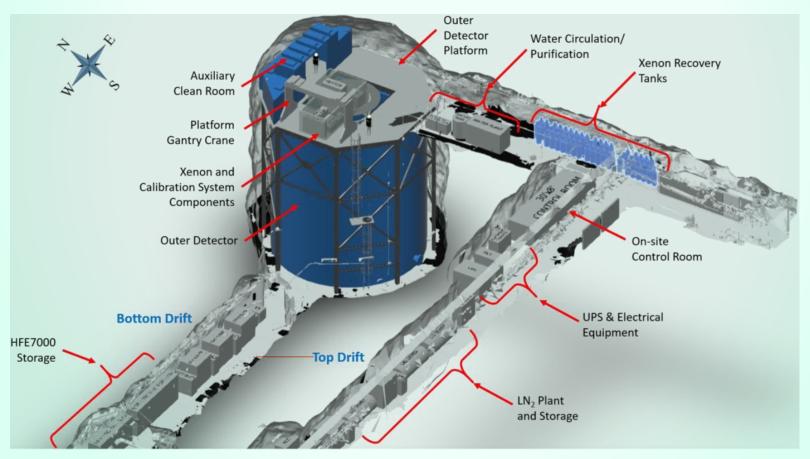
- Higher exposure of course.
- Active xenon shielding
 - Blocks backgrounds => extremely clean inner volume.
 - Rejects inner-region events with outer region Comptons (MS).
 - Measures inner backgrounds using higher outer backgrounds statististics.


nEXO Design Overview

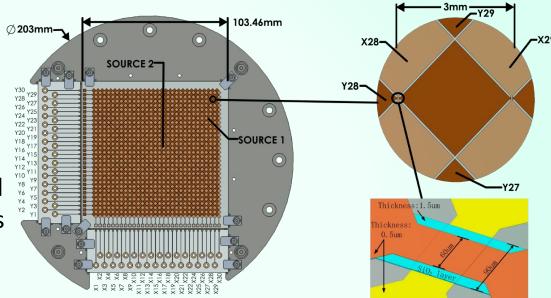

- 5000 kg LXe (90% ¹³⁶Xe)
- Sevral facilities available in western Europe and U.S., production capabilities verified.
- Cu TPC vessel in HFE (like EXO-200)
- Carbon-fiber cryostat: strong, light, low activity.
- 5 to 10 ms e- lifetime target/goal.
- Gridless segmented tile anode charge readout.
- SiPM light collection on barrel
- In-LXe ASICs with digital signal output.
- 50kV (25 for EXO-200), single-ended.
- Resolution: 0.8% (goal) to 1.2% (requirement).
- Discovery focused: multiple event signatures + natural xenon verification.
- Pre-Conceptual Design Report : https://arxiv.org/abs/1805.11142

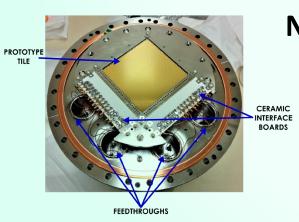
Example Carbon-Fiber Vessel

nEXO vessel to be wound on location



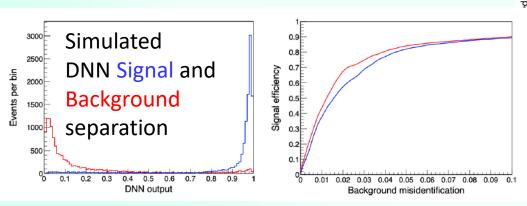
nEXO Location:


SNOLAB Cryopit is favored

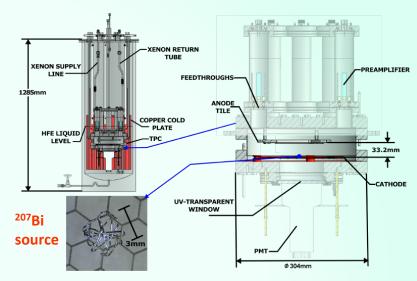

- Site engineering already provided by SNOLAB
- Includes subsystem layout and utilities.

Charge Readout Tiles

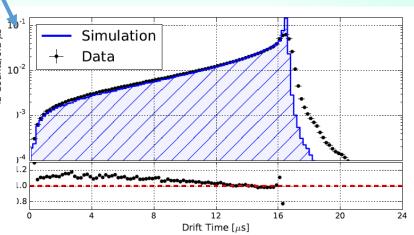
- 10cm x 10cm "tiles" segment the collection area.
- X and Y strips cross at 60um bridge, with SiO₂ separation.
- Through-quartz vias (TQV) planned for back-side in-Xe ASIC electronics (low noise).


No grid!

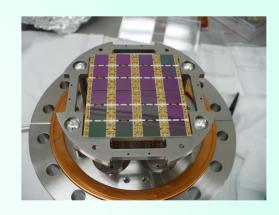
- More complex charge collection signal (no shielding).
- No tensioning structure/difficulty
- Less mass.
- Less pick-up noise.
- Segmentation reduces ambiguity in event topology

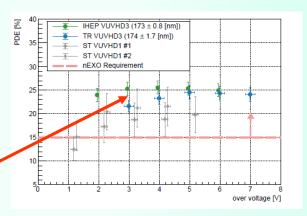

Charge Tile Characterization

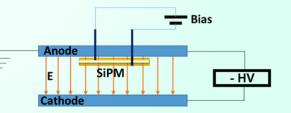
- ²⁰⁷Bi source with tile in test TPC.
- 5.5% σ/E at 570 keV, 936V/cm, near intrinsic charge resolution.
- Full GEANT4-based simulation of charge drift, diffusion, induction, electronics.
 - => good agreement with data.
- Input to full nEXO tile simulation for boosted decision tree (BDT) deep neural net (DNN) single-site (SS)/multi-site(MS) discrimination
- DNN reduces nEXO background ~60% w.r.t.
 PCDR @ 5% signal loss.
- Informs optimization of tile pitch.


Z. Li et al, JINST 14 P09020

Test TPC with ²⁰⁷Bi source



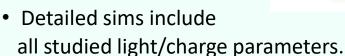

M. Jewell et al, JINST 13 P01006(2018)



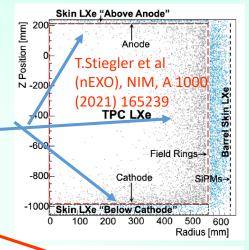
Light Readout: Silicon Photo-Multipliers (SiPMs)

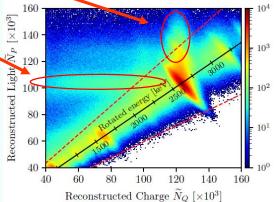
- LAAPD's, high mass, difficult to scale up.
- Cover barrel with SiPM, on electronics "interposer" layer.
- Digitize in xenon: low noise.
- Lower efficiency than LAAPD, but lower mass, higher area.
- Studied Hamamatsu and FBK VUVHD3 made for nEXO SiPMs
 - G. Gallina et al, NIM A 940 (2019) 371,
 - G. Gallina et al arXiv:2209.07765
- Over 7 nEXO LXe setups involved (just in one study).
- Extensive studies of characteristics :
 - Dark rate
 - Detailed after-pulsing and cross-talk parameters.
 - Detailed modelling and measurement of detection resolution effects.
 - Detection efficiency vs V,λ and T (15% required):
 24.3% at 175nm, 3 V overvoltage, 163K
 - Reflectivity vs. Angle. M. Wagenpfeil et all arXiv:2104.07997
 - Performance in electric fields: X.L. Sun et al 2018 JINST 13 T09006

Open Field Cage Design


Barell SiPM's require open field cage for light detection:

- "Skin" region detects light without charge
- MS events can have skin and fiducial contribution.
 - Full energy gamma plus extra light (coinc. gamma)
 - Single gamma, partial charge collection.
- C/L (Charge/Light) ratio cut removes sufficiently.
- Skin helps tag ²¹⁴Bi-²¹⁴Po coincidence

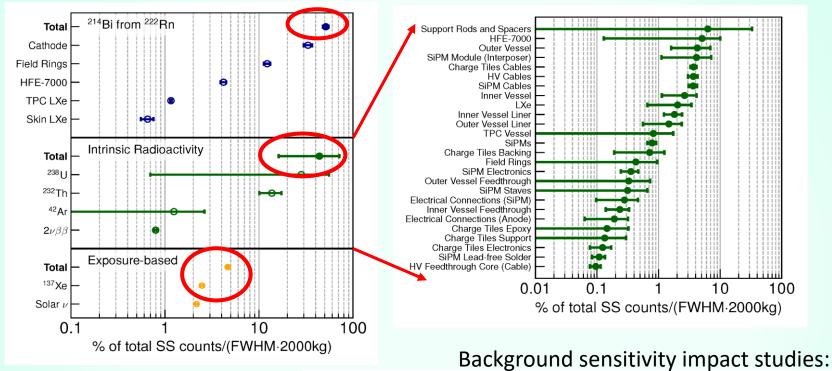

 $\alpha => high light$


G. Gallina et al arXiv:2209.07765

	Symbol	Meaning		Value	Ref.
	Q [keV]	Q-value		2458.07	[8,9]
	W [eV]	Energy for 1	quantum	11.5	[44,46]
	n = Q/W [#]	Number of quanta		213745	-
	$\gamma_p \left[\gamma / \text{eV} \right]$	Light yi	Light yield		[44]
	$n_p = Q \times \gamma_p \ [\#]$	Number of p	ohotons	90949	-
	PTE [#]	Photon Trans	port Eff.	33.3%	[7]
	σ_{lm} [#]	Res. calib. un	certainty	0.5%	[7]
	PDE [#]	Photon Detec	tion Eff.	Sec. 3.4	-
	D [#]	Reflectivity	FBK	$27.7 \pm 1.6\%$	F2.41
	R [#] R	Reflectivity	HPK	$20 \pm 1\%$	[34]
	ε_p [#]	Total Photon	Det. Eff.	Eq. 16	-
	$\langle \Lambda \rangle$ [PE]	Mean of CA		Sec. 3.3.1	-
	σ_{Λ} [PE]	RMS of CA		Sec. 3.3.1	-
n	$n_q = n - n_p \; [e^-]$	Number of e	Number of electrons		-
	$\sigma_{q,noise}$ [e ⁻]	Noise charge ch.		1132	[7]
	<i>l</i> [m]	Drift len	Drift length		[7]
	$v [mm/\mu s]$	Drift velo	Drift velocity		[7]
	τ [ms]	Electron li	fetime	10	[7]
	$\varepsilon_q = e^{-t/\tau}$ [#]	Charge co	ll. eff.	96.6%	-

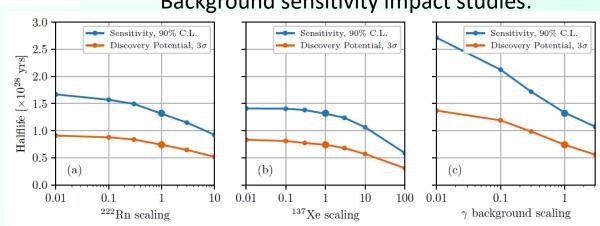
- NEST light model updated to match EXO-200 data
- nEXO resolution: ~0.8% with 6mm charge pitch

Backgruond Assay program: builds on experience of EXO-200, adds resources


- Above ground Ge counting (270 ppt, 120 ppt): 0.4 devices at UA
- Underground Ge counting (best 2.3 ppt, 1.2 ppt): 4.8 devices at SURF, SNOLAB Started working with LNGS too.
- ICP-MS (best 0.0008 ppt, 0.0026 ppt): 2.2 devices at PNNL, IHEP, CUP
- NAA (best 0.015 ppt, 0.015 ppt): 2.6 setups at UA
- α-counting (²¹⁰Po surface, 5 mBq/m² Si-det, 0.1 mBq/m² XIA): 4 Si-det, 1.5 XIA at UA, PNNL, SLAC
- Rn counting (²²²Rn steady state activity, 0.1 mBq or 8.6 atoms/d): 8.8 Si-diodes with electro-static collection at SNOLAB/Laurentian, SLAC + LS counting at UA
- AMS (Th, U and ²¹⁰Pb): under development at Carleton

The nEXO materials database:

300 new sample measurements,316 EXO-200 materials and 27radon outgassing measurements.


Material	Supplier	Method	$^{238}\mathbf{U}$	232 Th	$^{40}\mathbf{K}$	60 Co
			(ppt)	(ppt)	(ppb)	(mBq/kg)
Electroformed Copper [†]	In-house	ICP-MS	< 0.01	< 0.01	-	-
Copper	Aurubis	ICP-MS/Ge/	0.254 ± 0.008	0.13 ± 0.06	< 6.4	< 0.0033
		GDMS				
Sapphire	GTAT	NAA	< 8.9	6.0 ± 1.1	9.5 ± 2.0	-
Quartz	Heraeus	NAA	< 1.5	< 0.23	0.55 ± 0.03	-
SiPM	FBK	ICP-MS/NAA	0.86 ± 0.05	0.45 ± 0.12	-	-
Epoxy*†	MasterBond	Ge	< 360	< 540	< 930	-
AuSn solder [†]	Nippon Micrometal	ICP-MS	90 ± 20	68 ± 14	_	_
Gold wire bonding [†]	Ametek	ICP-MS	< 230	26 ± 8	-	-
Polyimide [†]	Taiflex	ICP-MS	0.71 ± 0.04	0.71 ± 0.20	-	-
			pg/cm^2	pg/cm^2		
HFE-7000*	3M	NAA	< 0.015	< 0.015	-	-
CFC (Resin) [†]	SCC	Ge	< 7.7	< 19	< 31	< 0.03
CFC (Fiber) [†]	Grafil	Ge	40 ± 15	74 ± 39	810 ± 100	< 0.11
ASICs (Silicon) [†]	Global Foundry	ICP-MS	0.35 ± 0.13	1.3 ± 0.7	-	-
Titanium [†]	LZ TIMET	Ge	< 12	57 ± 5	< 29	< 0.033
Water	SNOLAB		< 1	< 1	< 1000	-
Stainless Steel [†]	GERDA	Ge	< 48	< 200	< 58	16.8 ± 2.4
HDPE [†]	Dielectric Sci.	NAA	100 ± 19	63.6 ± 2.7	350 ± 10	-
PTFE*†	DuPont	NAA	< 0.78	< 0.26	1.8 ± 0.2	-
Cond. PE [†]	Quadrant	ICP-MS	224 ± 32	10.1 ± 1.4	-	-

nEXO Background Simulation

Background Categories:

- ²²²Rn
- Intrinsic Radioactivity
- Cosmogencis and v's.

²²²Rn

- 600 atoms in Xe based on EXO-200.
- Rn emanation program ongoing.
- Dust: Control with witness plates, tape lifts, ICP-MS
- Bi-Po tagging reduces ~ 50% of Rn events:
 - basically 100% of fiducial volume and barrel skin events.
 - Remaining background is external/non-uniform.
- Purification upgrades and Rn distillation are available backup weapons.
- 1500 atoms in HFE: OK

Cosmogenics

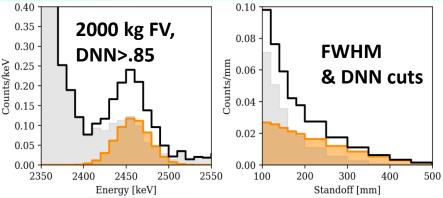
137Xe from n capture

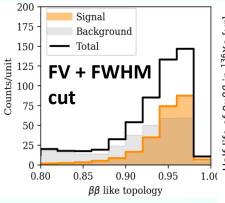
- β endpoint 4173 keV. Potentially uniform distribution in liquid => Potential background.
- Muon production + prompt γ gives tagging: OK
- Water shielding sufficient for rock neutrons: OK
- (α,n) reactions from ²¹⁰Po, etc (See Raymond Tsang's talk LRT 2022)
 - Controllable with Rn exposure/emanation control.
 - Simulations performed for ²¹⁰Po tolerance on many surfaces.
 - Rn plateout studies/measurements/modelling ongoing.

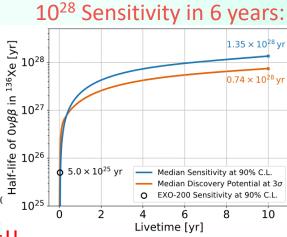
Above-ground cosmogenics in copper etc..:

Simulated: OK

Discovery Potential

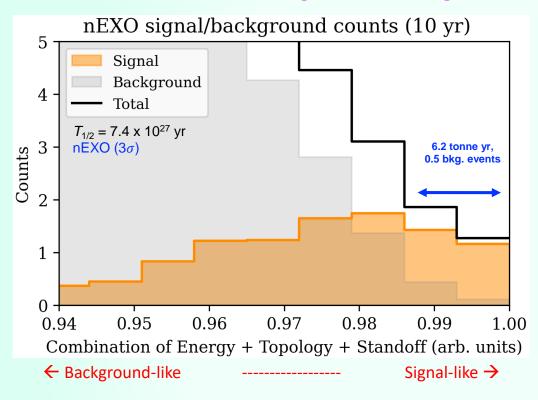

G. Adhikari et al 2022 J. Phys. G: Nucl. Part. Phys. 49 (2021) 015104

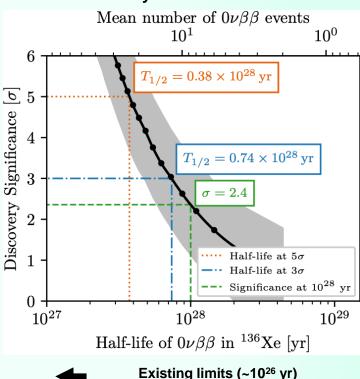

- Detailed charge, light, and digitization modelled in Geant4 sim.
 - Tuned with real data, real detectors, real reflectivity, modified NEST (light propagation), etc...
 - Assumes 6mm charge tile pitch (compromise of resolution and background/cost).
 - 380 V/cm
- 3D fit to: Energy, DNN output, standoff distance.


 Cannot be distilled to box cuts: FV-cut, ROI-cut, average background-index, DNN-cut, etc.
- 3D pdfs generated for all background components (combining some).
 - Normalizations fixed in Toy MC data production
 - Floated, along with $0\nu\beta\beta$, in fit to toy MC data.
- Median 10 yr sensitivity: T_{1/2} = 1.35 X 10²⁸ yr 90% CL
- Median 3σ discovery potential: $T_{1/2} = 0.74 \times 10^{28}$

Compare to Ideal 0-background sensitivity: 3.6 X 10²⁸ yr !!

3D projections, 2D cuts, of fit to Toy MC data with $3\sigma 0\nu\beta\beta$ signal:

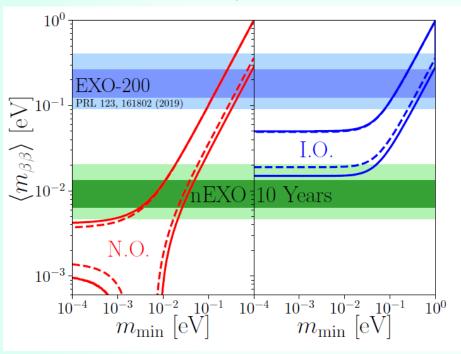



For visualization only. Full analysis does not use projections or cuts!!

Discovery Potential

3D bins ordered in 1D from background-like to signal-like:

nEXO Discovery Potential vs. Half-Life:



No cuts in this optimal projection!

 3σ discovery at 7.4 X 10^{27} yr 5σ at 3.8 X 10^{27} yr

Effective Majorana Mass Sensitivity

Allowed parameter space and nEXO exclusion sensitivity (90% CL):

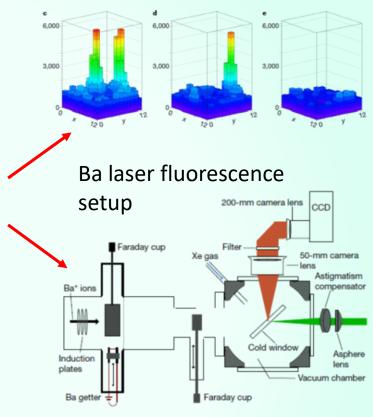
-Shaded bands: NME distribution.

-Solid vs dashed, mixing parameter errors.

	$m_{oldsymbol{eta}oldsymbol{eta}}$ [meV], (<i>median</i> NME)		
	90% excl. sens.	3σ discov. potential	
nEXO	8.2	11.1	
LEGEND	10.4	11.5	
CUPID	12.9	15.0	

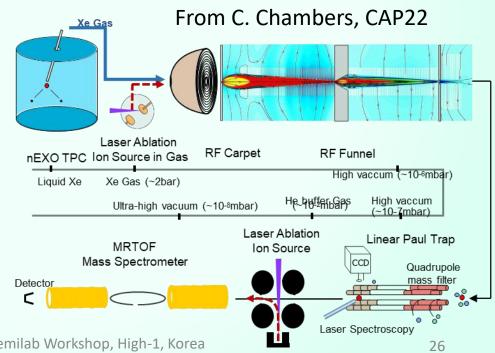

 $T_{1/2}$ values used [x10²⁸ yr]:

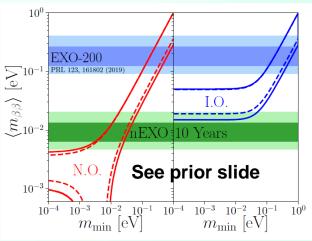
nEXO: 1.35 (90% sens.), 0.74 (3 σ discov.) LEGEND: 1.6 (90% sens.), 1.3 (3 σ discov.) CUPID: 0.15 (90% sens.), 0.11 (3 σ discov.)


Median nEXO 3σ discovery sensitivity: 11.1 meV

Ba tagging

- Identification of ¹³⁶Ba would be smoking gun, enable zero-background, larger experiments, push further into NO region.
- Single-atom Ba detection demonstrated: Chris Chambers et al Nature 569, (2019) pages 203–207
- Trapping and transport demonstrated:
 - T. Brunner et al IJMS 379 (2015) 110–120
 - B. Flatt et all (EXO-200) NIM A 578 (2007) 399-408


Two, one, zero, atoms:


Ba tagging future

- Ice probe + flouresence development continues at CSU
- Full session, at CAP22 on Canadian tagging efforts for nEXO
 - Uses capillary tube extraction from nEXO, plus laser ablation calibration source.
 - RF Carpet -> RF Funnel -> linear trap w/spectroscopy -> Mass spec.
 - Six talks presented on development of all aspects.
- Ambitions, long term program, but pieces are being proven now.
- Could be future upgrade to nEXO (and/or larger experiment?)

Conclusions

- nEXO builds on proven EXO-200 success.
- New elements extensively validated.
- Robust sensitivity estimate: Sims matched to LXe measurements for all systematic parameters.
- nEXO 3σ discovery potential reaches deep into normal ordering region.
- Extends $T_{1/2}$ observable-physics reach two-orders of magnitude.
- Best Majorana mass reach, barely, with NME uncertainty.
- Ba tagging leaves room to grow beyond baseline nEXO.
- Jan 2022: First Project Funding

The nEXO Collaboration: 35 institutions

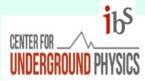
The END

Backup Slides

Nuclear Matrix elements:

References for the NMEs used

Method	Year	Citation
IBM	2015	PRC 91 034304 (2015)
NSM	2008	PRL 100, 052503 (2008)
IBM	2020	PRD 102, 095016 (2020)
QRPA	2014	PRC 89, 064308 (2014)
NSM	2016	PRC 93, 024308 (2016)
QRPA	2015	PRC 91, 024613 (2015)
QRPA	2018	PRC 98, 024608 (2018)
NSM	2018	JPS Conf. Proc. 23, 012036 (2018)
QRPA	2013	J. High Energ. Phys. 2013, 25 (2013)
QRPA	2013	PRC 87, 064302 (2013)
QRPA	2013	PRC 87, 045501 (2013)
QRPA	2018	PRC 97, 034315 (2018)
QRPA	2010	Nucl.Phys.A 847 (2010) 207
EDF	2013	PRL 111, 142501 (2013)
EDF	2015	PRC 91, 024316 (2015)
QRPA	2018	PRC 97, 045503 (2018)
EDF	2017	PRC 96, 054310 (2017)
QRPA	2015	PRC 91, 024613 (2015)
EDF	2010	Prog.Part.Nucl.Phys. 66 (2011) 436


Copper (790 kg)

Initially nEXO planned using Aurubis copper for the TPC body and internals, as EXO-200.

ICP-MS showed a distinct advantage of using electroformed copper. The copper background contribution went from $0.074 \ \frac{cnt}{FWHM \cdot ton}$ (46% of total background, largest component) to now $0.0044 \ \frac{cnt}{FWHM \cdot ton}$ (1.7% of total background).

Material	Analysis	ID	²³² Th [ppt]	²³⁸ U [ppt]
Aurubis cathode	Ge (Bern)	R-002.8.1	<2.3	<1.2
Aurubis cathode	ICP-MS (PNNL)	R-002.11.1	0.127±0.06	0.254±0.008
PNNL electroformed	ICP-MS (PNNL)	R-168.1.1	0.006±0.001	<0.0094
PNNL electroformed	ICP-MS (IHEP)	R-168.1.2	0.13±0.04	<0.11

Electroformed copper is now the baseline material.

HFE heat transfer fluid (31800 kg)

The HFE-7000 or HFE-7200 heat transfer fluid also serves as innermost radiation shield. Because of the large amount it needs to be very clean.

Material	Analysis	ID	²³² Th [ppt]	²³⁸ U [ppt]
HFE-7000	NAA (UA)	P-139	<0.015	<0.015
HFE-7000	ICP-MS (PNNL)	R-181.1.1	<0.0013	0.0034±0.000 5
HFE-7200	ICP-MS (PNNL)	R-182.1.1	<0.0013	<0.0043

Extreme purity found by NAA was confirmed and improved by ICP-MS. A ²¹⁰Po analysis is under way.

Fractional background contribution went from 9.3% to 6.3%.

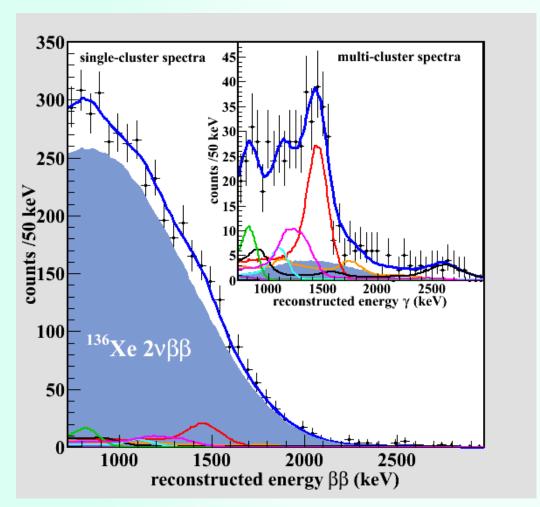
SiPM light readout (2.9 kg)

Products by FBK and Hamamatsu were found to meet the nEXO technical specs. Both were assayed for radioactivity.

Material	Analysis	ID	²³² Th [ppt]	²³⁸ U [ppt]
FBK early	NAA (UA)	R-003.2.4	<0.37	<11
FBK VUV SF	ICP-MS (PNNL)	R-076.2.1	0.44±0.05	0.99±0.02
FBK VUV SF	ICP-MS (IHEP)	R-076.2.2	0.11±0.03	0.07±0.02
FBK VUV LF	ICP-MS (PNNL)	R-076.1.1	0.45±0.12	0.86±0.05
Hamamatsu VUV3 (no trenches)	ICP-MS (PNNL)	R-096.1.1	<0.63	0.72±0.19
Hamamatsu VUV3 (no trenches)	ICP-MS (IHEP)	R-096.1.2	0.31±0.03	0.21±0.03

Radioactivity wise both FBK and Hamamatsu products were found suitable for nEXO. SiPM background contribution is small, about 0.8%.

Dielectric TPC internals


Baseline for TPC field cage: sapphire holding rods and spacers. Sapphire (Al₂O₃) is difficult to assay: (a) doesn't dissolve in mineral acids (ICP-MS), (b) when n-activated forms large side activities via 27 Al(n, α) 24 Na, limiting NAA sensitivity to 238 U.

- 1. Assayed structural polymers by NAA to explore design alternatives
- 2. Developed a γ - γ -coincidence counting approach: boosts sensitivity for ²³⁸U 8-fold

Material	Analysis	ID	²³² Th [ppt]	²³⁸ U [ppt]
GTAT (Ligo)	NAA (UA)	R-046.1.1	6±1	<8.9
Saint Gobain	NAA (UA)	R-048.6.1	<0.49	<10.5
Precision Sapphire	NAA (UA)	R-084.1.1	410±41	985±99
PEI Sabic 1000 Advanced Polymer	NAA (UA)	R-146.1.1	84±10	21±13
PEI Sabic 1000 Ensinger	NAA (UA)	R-147.1.1	9.5±2.3	<15
PAI Mitsubishi Duratron	NAA (UA)	R-145.1.1	<28	<579
PEI Mitsubishi Ultem 1000	NAA (UA)			

6.3%

First 2-nu Observation in Xe

May 21, 2011 through July 9, 2011

```
T_{1/2} (\beta \beta 2 \nu) =
2.11 +- 0.04 (stat.)
+- 0.21 (sys.)
x 10^21 yr
```

From first month of data.

Ackerman, et al. (EXO Collaboration), PRL 107 (2011) 212501