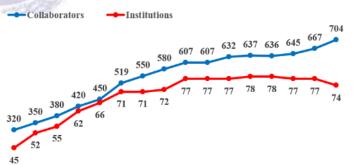


The JUNO Experiment



◆ Jiangmen Underground Neutrino Observatory (JUNO), a multiple- purpose neutrino experiment. Approved in Feb. 2013. ~ 300 M\$. Ground-breaking in 2015. Construction to be completed in 2023.

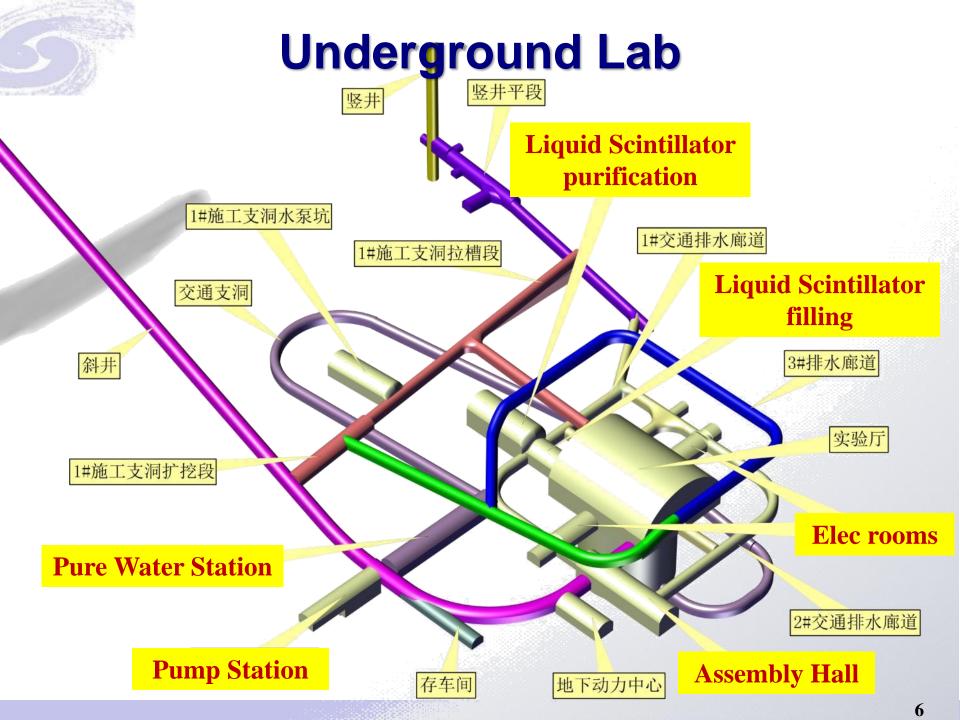
- 20 kton LS detector
- ♦ 3% energy resolution
- ♦ 700 m underground
- Rich physics possibilities
 - ⇒ Reactor neutrino
 for Mass Ordering and
 precision measurement of
 oscillation parameters
 - **⇒** Supernovae neutrino
 - **⇒** Geoneutrino
 - **⇒** Solar neutrino
 - **⇒** Atmospheric neutrino
 - **⇒** Proton decay
 - **Exotic searches**

Location, Collaboration

74 institutions, 700 collaborators

Asia: China (31), Taiwan, China (3) Thailand (3), Pakistan, Armenia

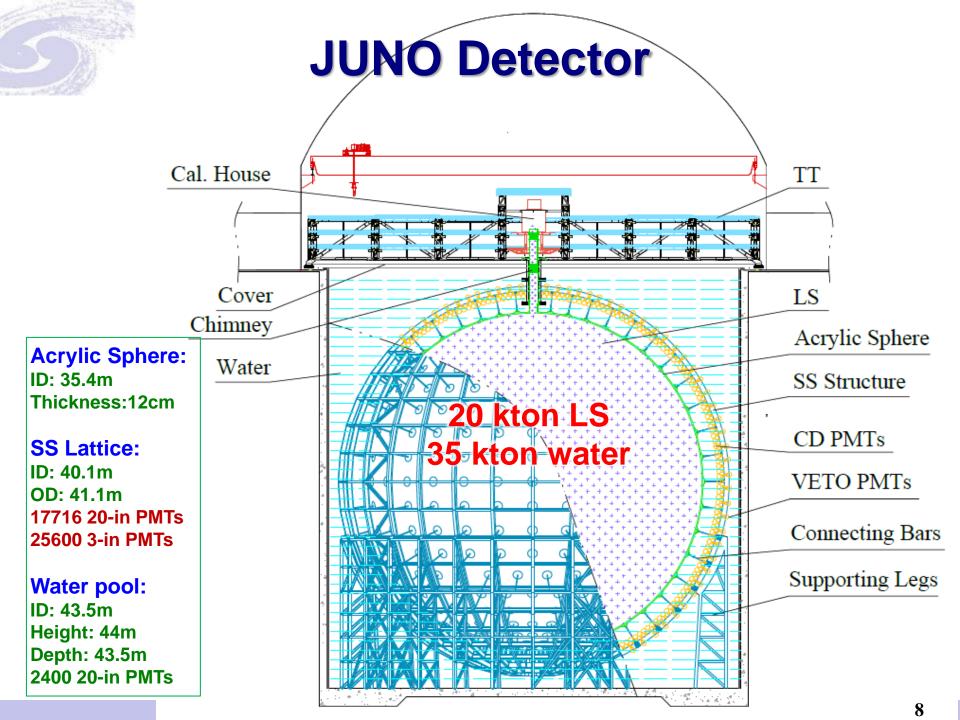
Europe: Italy (8), Germany (7), France (5), Russia (3), Belgium, Czech, Finland, Latvia, Slovakia, Croatia



JUNO Site

Transportation

Underground Facility Ready



Assembly Hall

LS Hall

VAC System

State-of-Art LS Detector

Mass Ordering measurement drives the detector specification:

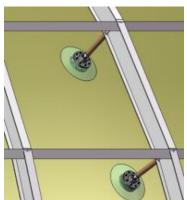
- Unprecedented energy resolution (3%)
 - ⇒ PMT Coverage 78%
 - \Rightarrow PMT Detection Eff. > 27%
 - \Rightarrow LS attenuation length > 20 m
- ♦ Low background (e.g. 1 ppt for acrylic, 10⁻¹⁵ g/g/ for LS)
- ♦ 20 times larger than any existing LS det., mechanical challenges

	Daya Bay	BOREXINO	KamLAND	JUNO
Target Mass	~20 t	~300 t	~1 kt	~20 kt
Photoelectron Yield (PE/MeV)	~160	~500	~250	~1200
Photocathode Coverage	~12%	~34%	~34%	~78%
Energy Resolution	~8%/√E	~5%/√E	~6%/\sqrt{E}	3%/√E

Multi-purpose detector requirements:

- ♦ Solar neutrino (and future $0\nu\beta\beta$) → low bkg 10^{-17} g/g for LS
- ♦ Supernova neutrino → Electronics, Trigger, DAQ, Onsite computing
 - → Refresh many studies by an order

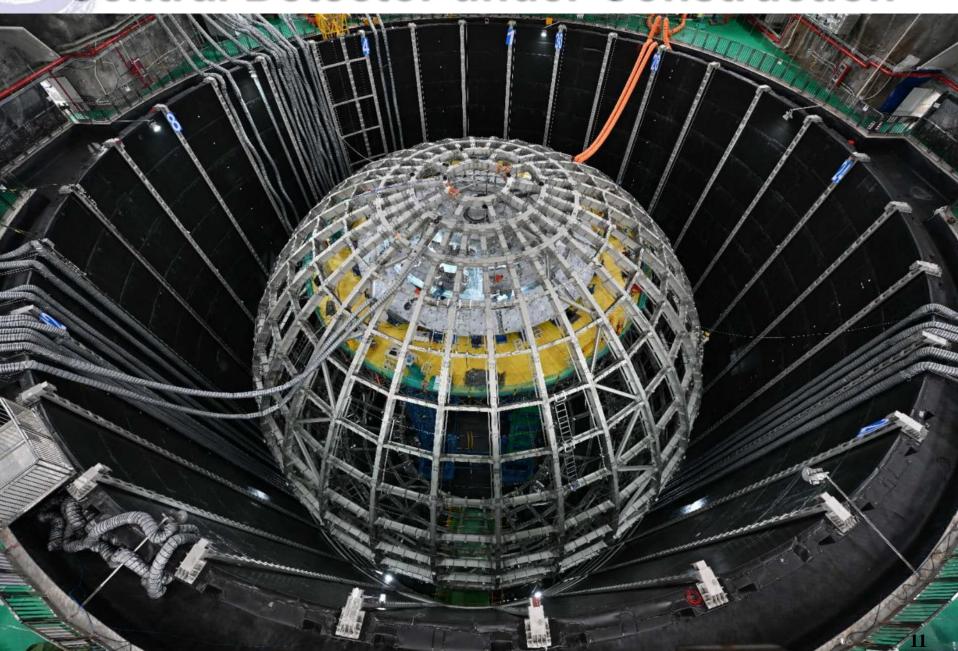
Central Detector


♦ Acrylic Vessel + Stainless Steel Truss support

- ⇒ Acrylic Sphere ID 35.4 m, thickness 120 mm
- ⇒ SS truss ID 40.1 m, OD 41.1 m
- ⇒ Buoyancy ~ 3000 ton. 590 supporting bars to hold the acrylic. Stress of acrylic <3.5 MPa

Main difficulties

- ⇒ Acrylic transparency >96%, U/Th/K <1 ppt
- ⇒ Fast bonding of 265 acrylic panels
- ⇒ Mechanical precision for 3 mm PMT clearance
- \Rightarrow Thermal expansion matching: 21°C \pm 1°C
- ⇒ Earth quake and liquid-solid coupling



Central Detector under Construction

Veto

Tasks

- ⇒ Shield rock-related backgrounds
- ⇒ Tag & reconstruct cosmic-rays tracks w/ **Top Tracker** and **Water Č det.**
- **♦ Top tracker: OPERA scintillators**
 - ⇒ 3 layers, ~50% coverage on the top
 - $\Rightarrow \theta \rightarrow 0.2^{\circ}, \Delta D \rightarrow 20 \text{ cm}$

Water Cerenkov detector

- ⇒ 35 kton water, 2400 20-inch PMTs, detection efficiency >99.5%
- ⇒ Keep uniform temp 21°C±1°C
- ⇒ ²²²Rn < 10 mBq/m³ (w/ micro-bubble system)
- Pool lining: HDPE
- Earth magnetic field compensation coil

Liquid scintillator

Four purification plants to achieve target radio-purity 10⁻¹⁷ g/g U/Th and 20 m attenuation length at 430 nm. 7 ton/hour.

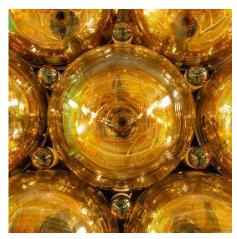
5000 m³ LAB tank

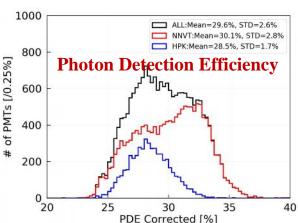
1) Al₂O₃ for optical

2) Distillation for radiopurity Mixing PPO and bis-

SS pipes to underground

OSIRIS to monitor the LS quality


4) Gas stripping to remove Rn and O₂


3) Water extraction to remove radioactive impurities

U/Th in PPO (production) ~ 0.1 ppt, in water $\sim 10^{-16}$ g/g

Photomultiplier Tubes

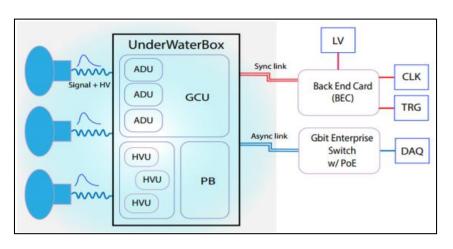
- 20,012 20-inch PMTs: 15,012 MCP (2,400 for veto) and 5,000 dynode
- **♦** 25,600 3-inch PMTs (all for CD)
- ◆ All has been produced, tested, and potted.
 PDE 30.1% (higher than designed 27%)

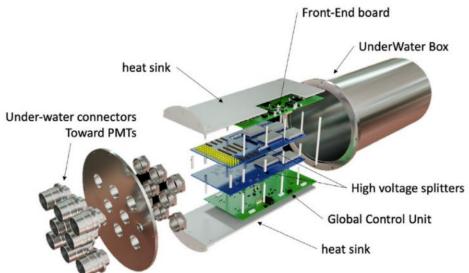
arXiv:2205.08629

		LPMT (20-inch)		0-inch)	SPMT (3-inch)	
		F	lamamatsu	NNVT	HZC	
Quantity		5000		15012	25600	
Charge Collect	Charge Collection		Dynode	MCP	Dynode	
Photon Detection Ef	ficiency		28.5%	30.1%	25%	
Mean Dark Count Rate [kHz]	Bare		15.3	49.3	0.5	
	Potted		17.0	31.2	0.5	
Transit Time Spread (σ) [ns]			1.3	7.0	1.6	
Dynamic range for [0-10] MeV		[0, 100] PEs		[0, 2] PEs		
Coverage		75%		%	3%	
Reference		arXiv: 2205.08629		5.08629	NIM.A 1005 (2021) 165347	

Electronics

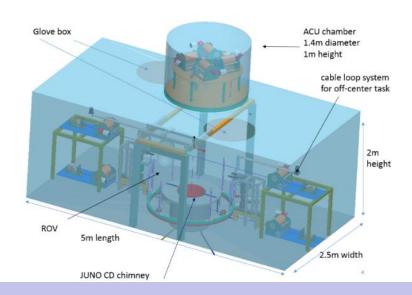
Underwater electronics for good signal-to-noise ratio.

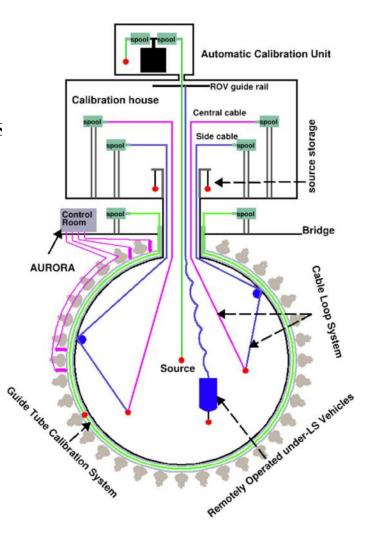

Electronics for 20-inch:


- ⇒ 3 PMTs connect to one underwater box
- ⇒ Noise: < 10% @ 1 PE
- ⇒ Resolution: 10%@1PE
- ⇒ 1 GHz sampling
- \Rightarrow Failure rate: < 0.5%/6 years

Electronics for 3-inch:

- ⇒ 128 PMTs connect to one underwater box
- ⇒ CATIROC ASICs
- ⇒ Timing 200 ps
- ⇒ Dynamic range 1-hundreds p.e.


NIMA 1043 (2022) 167499



Calibration

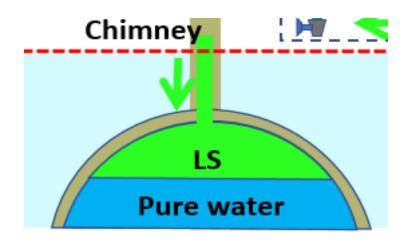
- 4 calibration facilities
 - ⇒ Routinely Source into LS by
 - Automatic Calibration Unit: at central axis
 - Rope Loop System: a plane
 - ⇒ Source into Guided Tube adhere to acrylic outer wall
 - ⇒ ROV: "sub-marine" anywhere in the LS
- Ready for installation

JHEP 03 (2021) 004

Radiopurity control

- Required <10 Hz singles in fiducial volume
- Radiopurity control on raw material:
 - ⇒ Material screening
 - □ Detector production handling

Singles (R < 17.2 m, E > 0.7 MeV)	Design [Hz]	Change [Hz]	Comment
LS	2.20	?	To be produced
Acrylic	3.61	-3.2	10 ppt → 1 ppt
Metal in node	0.087	+1.0	Copper → SS
PMT glass	0.33	+2.47	Schott→NNVT/Ham
Rock	0.98	-0.85	3.2 → 4 m
Radon in water	1.31	-1.25	$200 \rightarrow 10 \text{ mBq/m}^3$
Other	0	+0.52	Missing parts
Total	8.5	-1.3	

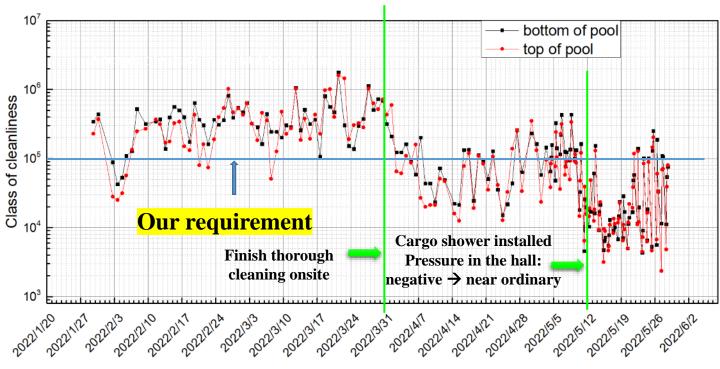

Compared to the design (JHEP 11 (2021) 102)

Liquid Scintillator Filling

 ⇒ Recirculation is difficult at JUNO. Radiopurity need to be obtained from the beginning

Strategies:

- ⇒ Leakage (single component < 10⁻⁶ mbar·L/s)
- ⇒ Cleaning vessel before filling
- ⇒ Clean environment
- ⇒ Water/LS filling



Radiopurity control: environment cleanliness

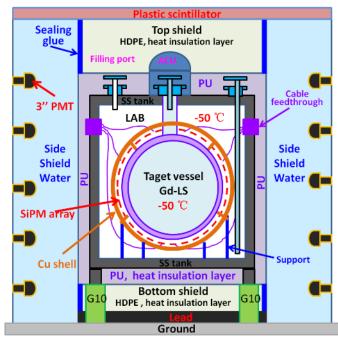
◆ Daily monitor the dust and Radon level, and improve the cleanliness of the experimental hall

Region	Level
1	Class 100,000
2	Class 10,000
3	Class 1000

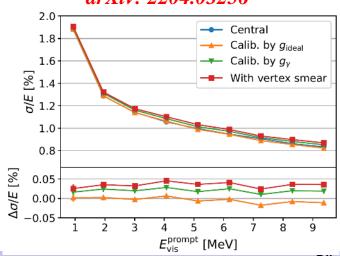
With great efforts on onsite cleanliness control, the cleanliness in the hall reaches better than Class 100,000, and the radon is 50~100 Bq/m³

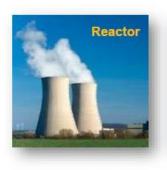
JUNO-TAO

- ◆ Taishan Antineutrino Observatory (TAO), a ton-level, high energy resolution LS detector at 30 m from the core, a satellite detector of JUNO.
- ♦ Measure reactor neutrino spectrum w/ sub-percent E resolution.
 - ⇒ model-independent reference spectrum for JUNO
 - ⇒ a benchmark for investigation of the nuclear database
- ◆ Taishan Nuclear Power Plant, 30 m from a 4.6 GW core, in a hall at -10 m underground.

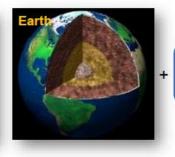

JUNO-TAO

- ◆ 2.8 ton Gd-LS (1 ton fiducial mass), produced
- ◆ 94% coverage of SiPM w/ PDE > 50%, 1st batch received, under testing
- ♦ 1.8-m ID acrylic vessel, ready
- SS tank, ready
- Electronics, in production
- Operate at -50 °C (SiPM dark noise)
- ◆ To be tested at IHEP, w/ SiPM samples.
- ♦ $4500 \text{ p.e./MeV} \rightarrow < 2\% \text{ resolution}$
- Neutron back-to-signal ratio ~2% (JINST 17 (2022) 09, P09024)





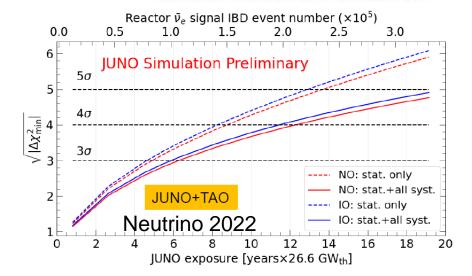
arXiv: 2204.03256


JUNO Physics (reactor)

New physics

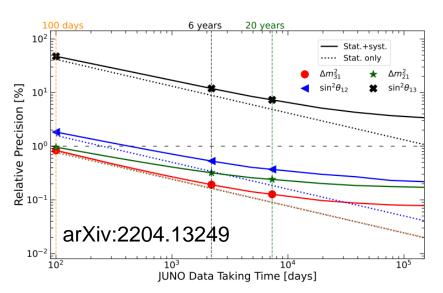
~60 IBDs per day

Several per day


Hundreds per day

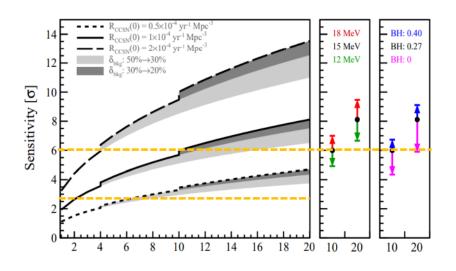
~5000 IBDs for CCSN @10 kpc

Several IBDs per day

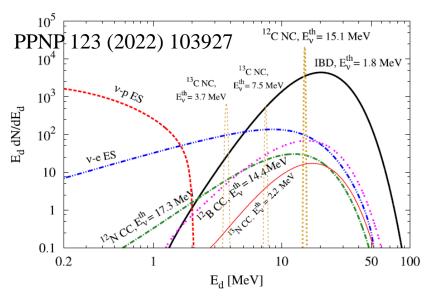

Prog. Part. Nucl. Phys. 123, 103927 (2022)

Neutrino oscillation & properties

Energy resolution 2.9% w/ full simulation MO: 3σ (reactors only) @ ~6 yrs


Neutrinos as a probe

Precision of $\sin^2 2\theta_{12}$, Δm_{21}^2 , $|\Delta m_{32}^2| < 0.5\%$ in 6 yrs


JUNO Physics (e.g.)

Physics	Sensitivity
Supernova Burst (10 kpc)	\sim 5000 IBD, \sim 300 eES and \sim 2000 pES of all-flavor
DSNB	3σ in 3 yrs
Solar neutrino	Measure Be7, pep, CNO simultaneously, B8 flux
Atmospheric neutrino	$0.7\text{-}1.4\sigma$ for NMO in 6 yrs. Boost the reactor result
Nucleon decays ($p \rightarrow \bar{\nu}K^+$) 8.3×10 ³³ years (90% C.L.) in 10 yrs
Geo-neutrino	~400 per year, 5% measurement in 10 yrs

DSNB discovery potential: 3σ in 3 yrs with nominal model

JCAP 10 (2022) 033

10kpc Supernova: ~5000 IBD, ~300 eES, ~2000 pES, ~200 ¹²C CC, ~300 ¹²C NC

Summary

- ♦ JUNO is motivated to measure the Neutrino Mass Ordering
 - ⇒ 20 kton liquid scintillator
 - ⇒ 3%/sqrt(E) energy resolution
 - ⇒ Advance detector technology
- Rich physics program. World-leading studies on
 - ⇒ Precision measurement of oscillation parameters, Supernova v, DSNB, Geo-v, solar v, proton decay, ...
 - \Rightarrow Future JUNO-0νββ
- Construction going on well since the detector installation, to be completed in 2023.
- Short-baseline experiment TAO, High energy solution measurement of reactor neutrino spectrum
 - ⇒ JUNO reference spectrum and benchmark for nuclear database