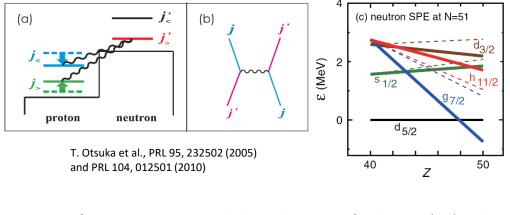
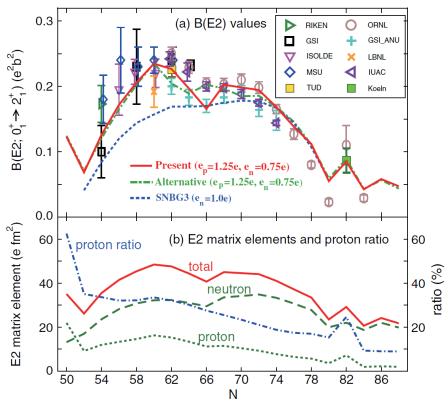


Investigating single-particle states in ¹¹¹Sn through d(¹¹⁰Sn,p) with ISS

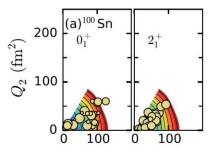
Joochun (Jason) Park
Focused workshop on rare isotope physics
Nov. 26, 2022

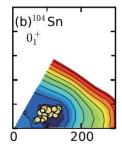


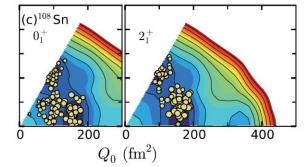


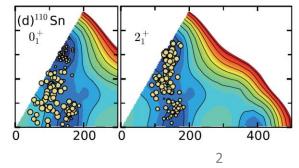
Uncovering structural evolution towards ¹⁰⁰Sn

One of few double shell closures without direct spectroscopy results yet, must characterize single-particle vs collective phenomena along the isotopic chain

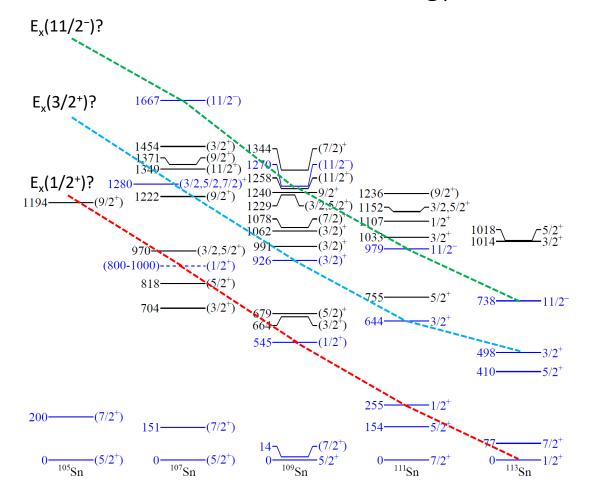

Proton-neutron tensor monopole interaction as an explanation for decreasing $E(5/2^+)-E(7/2^+)$ gap observed in N = 51 isotones



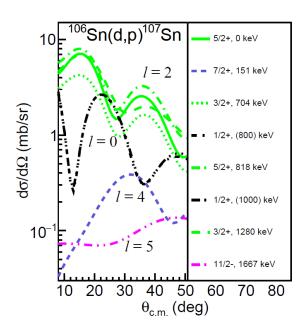



Deformation as a possible explanation for large B(E2) values in light Sn isotopes, reaching maximum at 110 Sn (N = 60)

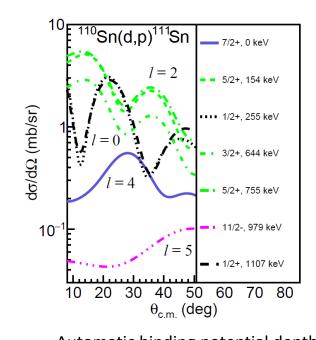
T. Togashi et al., PRL 121, 062501 (2018)



Single-particle state candidates and energy trends in ¹⁰⁵⁻¹¹³Sn


Tentative spin assignments based on beta-decay studies with γγ coincidences

Previously suggested single-particle states in blue, to be clearly determined through (d,p)


Energy of the unknown $1/2^+$ state in 107 Sn and identification of $11/2^-$ states (intruder orbit) particularly interesting, in addition to the S-factors

(d,p) cross section calculations with DWBA

Relevant neutron orbitals above N = 50: $1g_{7/2}$, $2d_{5/2}$, $2d_{3/2}$, $3s_{1/2}$, $1h_{11/2}$

10 l=2 l=2 l=2 l=2 l=2 l=2 l=2 l=3 l=4 l=4 l=4 l=5 l=4 l=5 l=4 l=5 l=5 l=6 l

Entrance channel parameters: H. An and C. Cai, PRC 73, 054605 (2006)

Exit channel parameters:
A.J. Koning and J.P. Delaroche, NPA 713, 231 (2003)

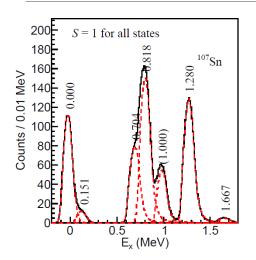
Automatic binding potential depth adjustment in FRESCO

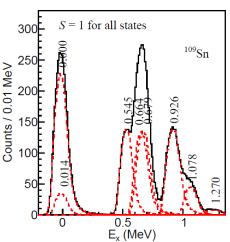
I. Thompson, Compt. Phys. Rep. 7, 167 (1988)

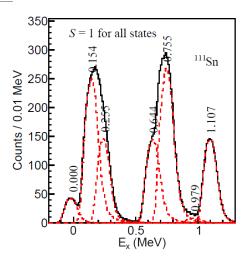
Priority on measuring l = 5 transfers to $11/2^-$ states with sufficient statistics

Angular distribution trends well separated as a function of l for spin assignments

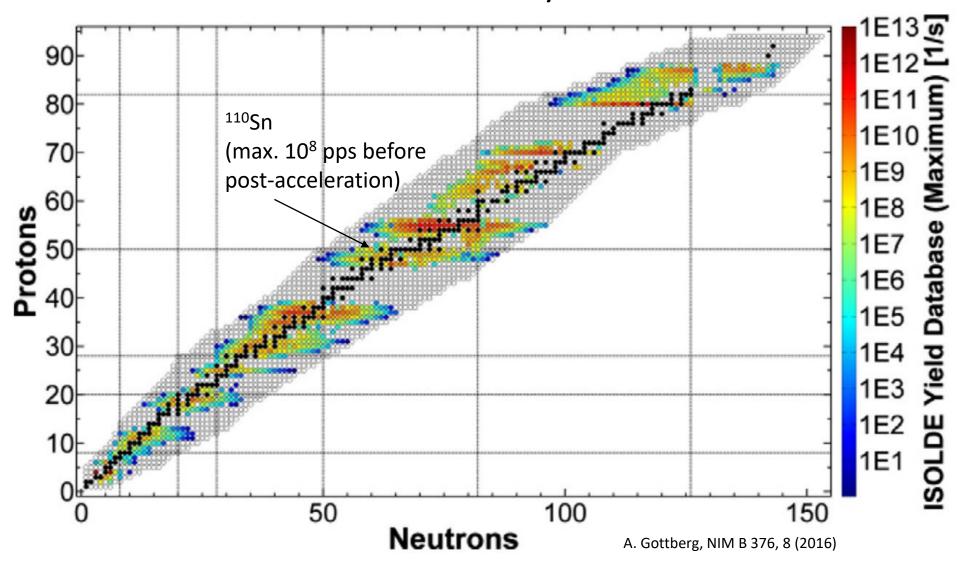
Beam time requests and expected statistics/spectra


Reaction/	Intensity and	$E_x \text{ (keV)}$	J^{π}	ΔL	σ (mb)	Proton counts
target	beam time					
		0	$5/2^{+}$	2	4.436	1378
		151	$(7/2^+)$	4	0.461	143
106 Sn $(d, p)^{107}$ Sn	$1 \times 10^{5} / s$	704	$(3/2^+)$	2	3.444	1070
at 8 MeV/u on	for 24 shifts	818	$(5/2^+)$	2	6.576	2043
$165\text{-}\mu\mathrm{g}/\mathrm{cm}^2~\mathrm{CD}_2$		(800-1000)	$(1/2^+)$	0	2.031-2.072	631-644
		1280	$(3/2^+)$	2	5.641	1753
		1667	$(11/2^{-})$	5	0.220	68
		0	$5/2^{+}$	2	3.893	3018
		14	$(7/2^+)$	4	0.547	424
		545	$(1/2^+)$	0	2.220	1722
108 Sn $(d, p)^{109}$ Sn	$5 \times 10^{5} / s$	664	$(3/2^+)$	2	2.357	1828
at 8 MeV/u on	for 12 shifts	679	$(5/2^+)$	2	2.411	1869
165 - $\mu \mathrm{g/cm^2~CD_2}$		926	$(3/2^+)$	2	2.463	1910
		1078	$(7/2^+)$	4	0.750	581
		1270	$(11/2^{-})$	5	0.141	109
		0	$7/2^{+}$	4	0.685	532
		154	$5/2^{+}$	2	4.378	3401
110 Sn $(d, p)^{111}$ Sn	$5 \times 10^{5} / s$	255	$1/2^{+}$	0	2.346	1822
at 8 MeV/u on	for 12 shifts	644	$3/2^{+}$	2	2.553	1983
$165\text{-}\mu\mathrm{g}/\mathrm{cm}^2~\mathrm{CD}_2$		755	$5/2^{+}$	2	4.813	3738
		979	$11/2^{-}$	5	0.147	114
		1107	$1/2^{+}$	0	2.458	1909

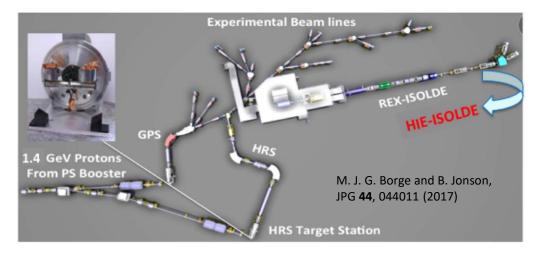

Transfer reaction quenching by 0.55 applied [B. P. Kay, J. P. Shiffer, S. J. Freeman, PRL 111, 042502 (2013)]


Statistics comparable to d(206Hg,p)207Hg results

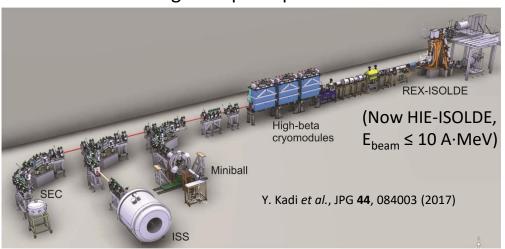
Beam time set to measure transfers to $11/2^-$ states with $^{\sim}10^2$ counts at nominal RIB intensities, updated cross sections and lower E_{beam} can improve these numbers by 70-100%


Search for $1/2^+$ single-particle state in 107 Sn in $\rm E_x$ range 800-1000 keV with little dependence on cross section

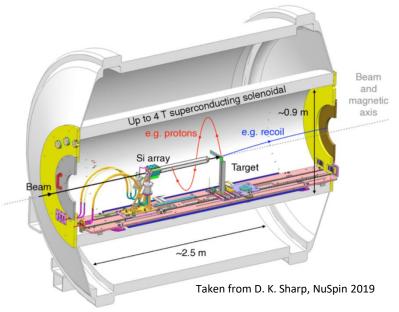
CERN-ISOLDE yields

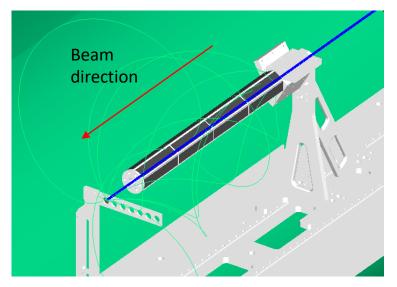

1.4-GeV proton synchrotron booster (PSB) for RIB production through spallation Various primary targets with elements' atomic number from 6 (C) to 92 (U)

Radioactive ¹¹⁰Sn beam production at CERN HIE-ISOLDE

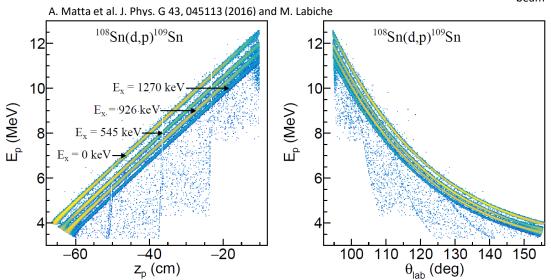

Proton from PS booster on LaC_x target

¹¹⁰In isobaric contamination suppressed with extraction scheme and Resonance Ionization Laser Ion


Source (RILIS)


Post-accelerated beam through GPS to HIE-ISOLDE, towards ISS among multiple experiment stations

ISS spectrometer for (d,p) in inverse kinematics

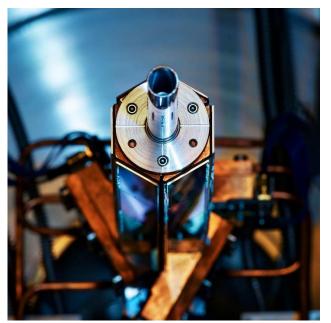


Proposed B-field strength: 2.5 T

1-mm thick DSSDs arranged in hexagonal tube 94% Si strip/70% φ coverage z-coverage: (-61 cm, -11 cm) from the target At E_{beam} = 8 A·MeV, ISS array covers 10° < $\theta_{c.m.}$ < 45°

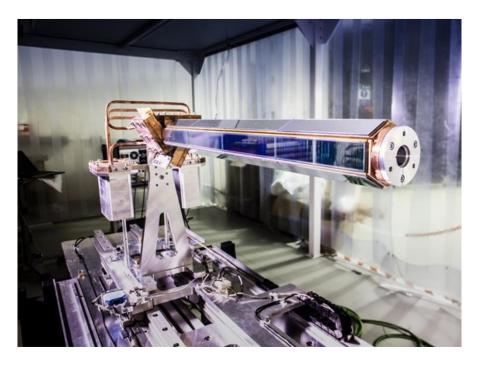
NPTool simulation of ISS

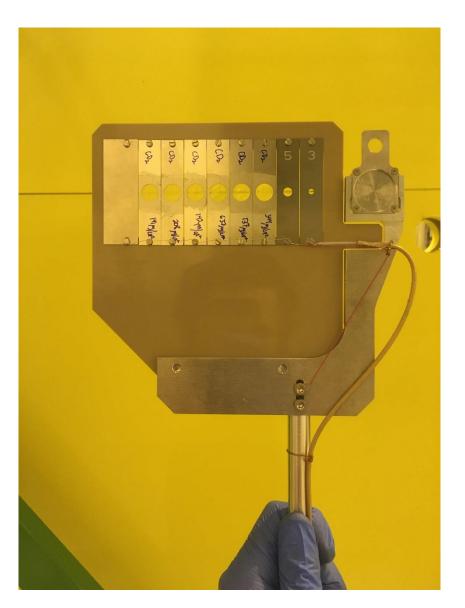
Particle kinematics in solenoidal magnetic field


$$E_{lab} = E_{cm} - \frac{1}{2} m V_{cm}^2 + \left(\frac{m V_{cm}}{T_{cyc}}\right) z$$
$$T_{cyc} = (2\pi/\mathcal{B})(m/qe)$$

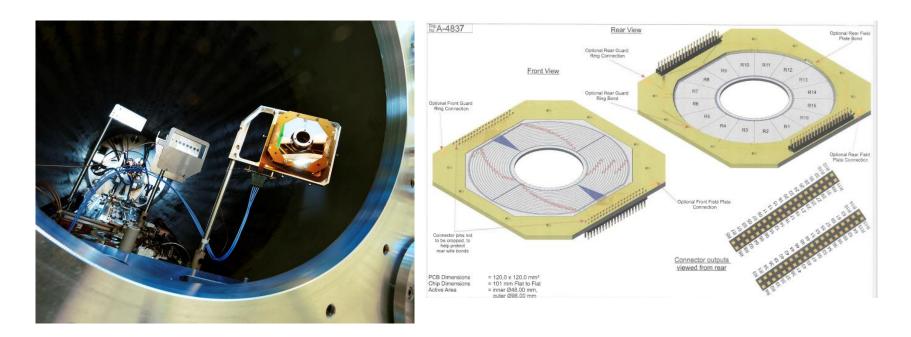
$$z = (v_0 \cos(\theta_{cm}) + V_{cm}) \frac{r \left[2\pi - 2\arcsin\left(\frac{r_0}{2r}\right) \right]}{v_0 \sin(\theta_{cm})}$$

ISS spectrometer photos

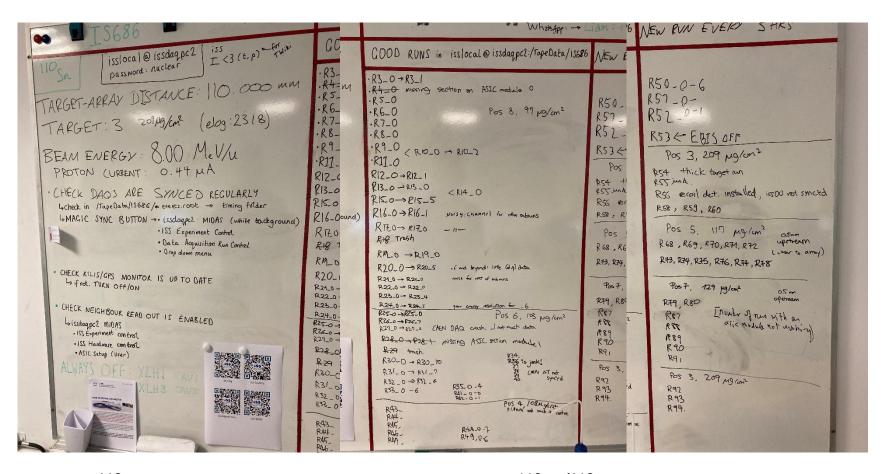



Si barrel array for ISS

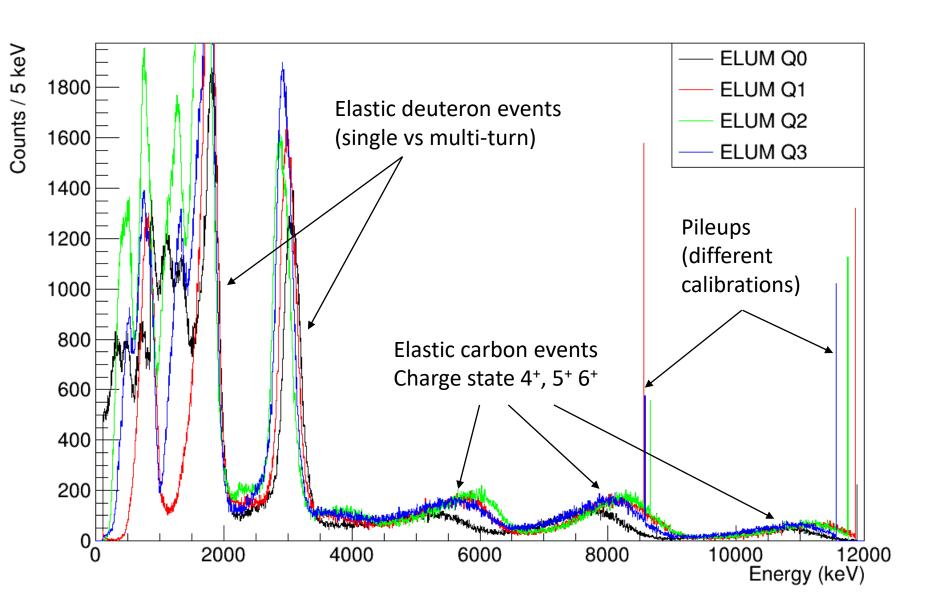
- Micron BB21: DSSSD of 128 p-side strips, 11 n-side strips
- DSSSD dimensions: 125 x 27 x 1 mm²
- 3 modules, ~70% coverage in φ accounting for gaps
- 4 sections (z coverage), 0.5-mm gaps in between for 94% coverage
- ASIC on-chip ADC serial readout (no PSA)
- Distance to target adjustable depending on kinematics


Target ladder + alpha source holder

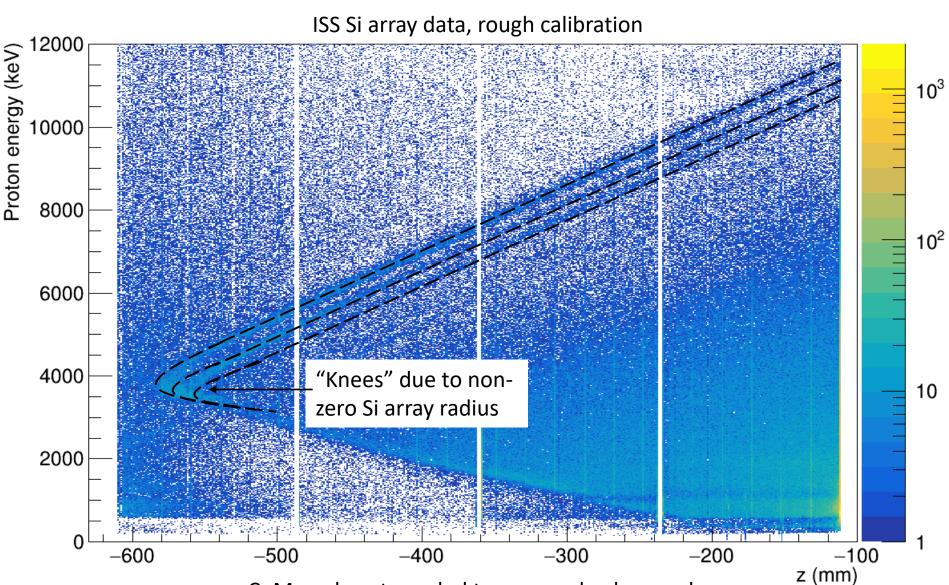
- 6 targets + 2 apertures for beam tuning
- Reversible alpha source holder
- Connected to drive motor that is turned on only when switching targets (eliminate noise)
- CD₂ targets used (not same as photo):
 - 97 μg/cm²
 - 103 μg/cm²
 - 108 μg/cm²
 - 117 μg/cm²
 - 129 μm²
 - 209 μg/cm²


5/6 targets thinner than the proposed thickness of 165 μ g/cm² for better Δ E/E

Elastic Luminosity (ELUM) detector


- Detect elastically scattered particles for beam intensity normalization
- Micron S1 DSSSD
- Signals summed together for each quadrant, data from 4 quadrants
- Blocker to control event rate (only a fraction of θ_{lab} accepted)

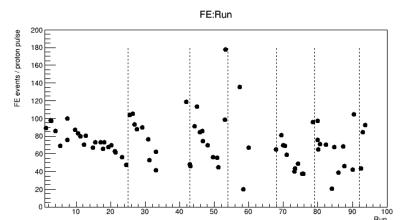
Run summary

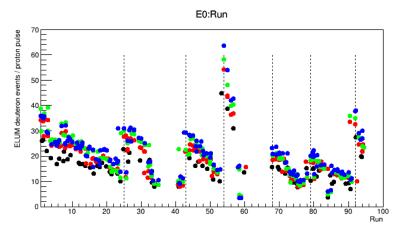


- $E(^{110}Sn) = 8.00 \text{ A·MeV ($\pm 0.3\%)}$, very pure $R(^{110}In/^{110}Sn) \sim 0.1\%$
- Beam start/end: Sep. 29, 13:00 Oct. 5 07:30
 ~6 days > 4 days assigned!
- Beam intensities: 0.30-0.5 μA protons, $^{\sim}10^{7}$ 110 Sn pps [0.03 μA protons during recoil detector test, down to $^{\sim}5 \times 10^{5}$ pps]

Preliminary spectra

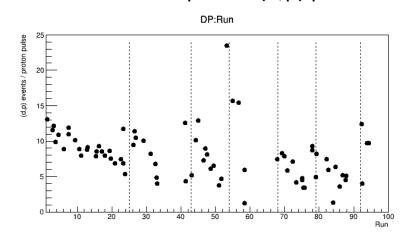
Preliminary spectra

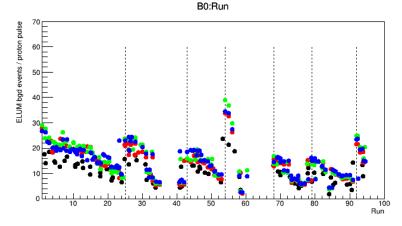



CoM angle cut needed to remove background

Decreasing event rates

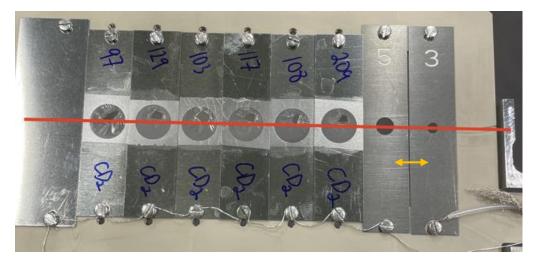
Counts divided by proton pulse → normalized event rate (intensity not considered)


Gated on high-excitation energy bump



ELUM deuteron signal

Counts under expected (d,p) peaks



ELUM carbon signal

Postmortem analysis

All 6 CD₂ targets with holes!

- Hole shapes are irregular
- Hole positions rather consistent; little beam drift
- Small gap between 3-mm/5-mm apertures
 - → To be considered in beam offset calculations
- Pure carbon target unavailable then

Cross section should be analyzed carefully with ELUM data

Summary

- d(¹¹¹0Sn,p)¹¹¹Sn experiment with ISS successful, more beam time than asked
- Beam intensity too high for recoil detector and CD₂ secondary target
 - → much more statistics, but dependence on reliable beam composition
- Refined calibrations, channel diagnostics to be carried out

<u>Name</u>	<u>Institution</u>
-------------	--------------------

Sean Freeman CERN

Daniel Clarke University of Manchester
Sam Bennett University of Manchester
Sam Reeve University of Manchester

Joakim Cederkall

Majid Chishti

Claes Fahlander

Jedrek Iwanicki

Chris Page

Lund university

Lund university

Lund university

University of Warsaw

University of York

Maria Vittoria Managlia Chalmers University of Technology
Anna Kawecka Chalmers University of Technology

Ben Kim Sungkyunkwan University
Andy Chae Sungkyunkwan University
Minju Kim Sungkyunkwan University

Suso Pereira Lopez CENS, IBS
Sunji Kim CENS, IBS
Jason Park CENS, IBS

Ismael Martel University of Huelva
Annie Dolan University of Liverpool
Liam Gaffney University of Liverpool
Joonas Ojala University of Liverpool

Andreas Ceulemans KU Leuven
Oleksii Poleshchuk KU Leuven

Experiment participants

Many thanks!