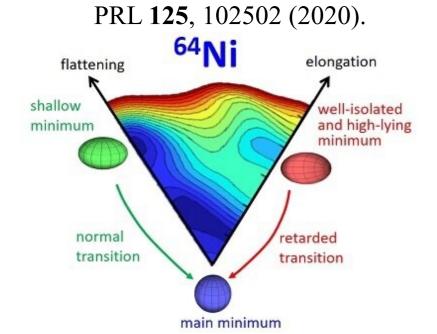
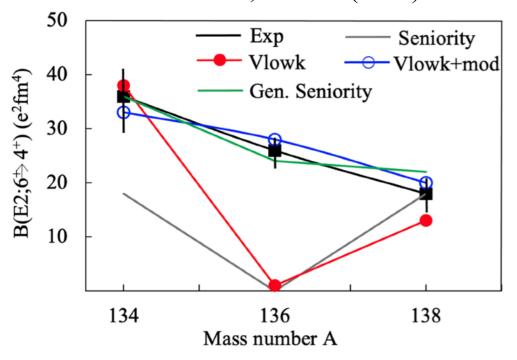
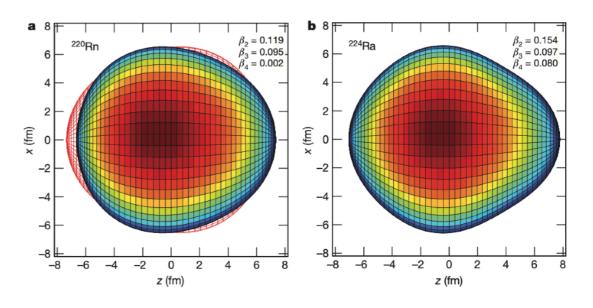

November 24-26, 2022 Focused Workshop on Rare Isotope Physics

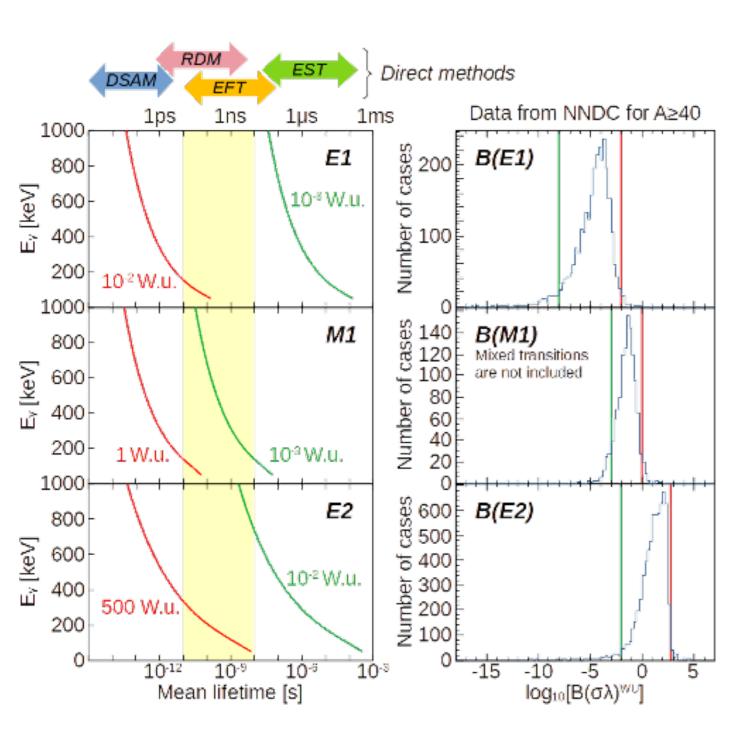

The IDATEN project: New approach to nuclear structure of exotic nuclei

Byul Moon Center for Exotic Nuclear Studies, Institute for Basic Science




Why fast-timing measurement?

Nature **497**, 199 (2013).


PRL 113, 132502 (2014).

- Energy information is not sufficient to investigate nuclear structure.
- Transition rate information is necessary and it can be derived by lifetime measurements.
- Discriminate the nuclear shape: prolate, oblate, triaxial
- Seniority studies near magic numbers
- Nuclear shape coexistence
- Asymmetric reflection like octupole deformation

Then why LaBr₃(Ce) detector?

DSAM: Doppler-Shift Attenuation Method

RDM: Recoil Distance Method EFT: Electronic Fast Timing EST: Electronic Slow Timing

- Different lifetime sensitivity with different methodology.
- LaBr₃(Ce) based EFT is sensitive to the range of a few tens of picoseconds to a few tens of nanoseconds.

Credit by H. Watanabe

Then why LaBr₃(Ce) detector?

Transition type	Transition rate (W.u.)	Transition energy	Physics case			
Strongly enhanced E2	~100 W.u.	< 300 keV	2+1 to 0+1 in even-even well- deformed nuclei in medium mass region			
Moderately enhanced E2	~30 W.u.	300 - 700 keV	2+1 to 0+1 in even-even vibrational nuclei in medium- heavy mass region			
Hindered E2	0.1 - 1 W.u.	400 - 1000 keV	Same seniority multiplet in single closed shell nuclei			
Highly hindered M1	10-3 - 10-2 W.u.	A few tens to hundreds of keV	Single-particle states of different l in closed-shell region			
Hindered E1	10 ⁻⁶ - 10 ⁻⁵ W.u.	Several hundreds of keV	$\Delta K = 1$ or 2 in well-deformed nuclei			
Enhanced E1	10-4 - 10-2 W.u.	Several hundreds of keV	Yrast positive- and negative- parity states in reflection asymmetric nuclei			

IDATEN project at RIBF

NP2112-RIBF212

Title: Fast-timing γ -ray spectroscopy of exotic nuclei at RIBF

Spokesperson(s): Hiroshi Watanabe

Approved — Grade A

1.5 days

1.5 days(including 0.5days for BigRIPS tuning)

A construction proposal of the fast-timing measurement at RIBF was approved.

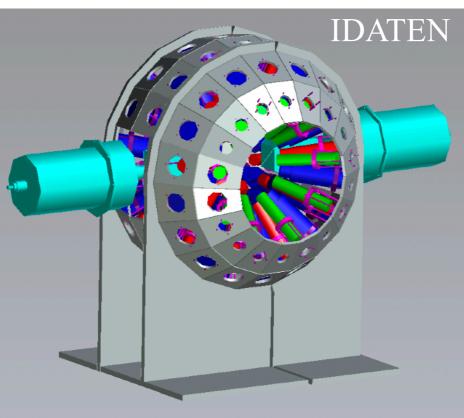
Spokespersons: H. Watanabe (Beihang U.), P. H. Regan (U. Surrey), and B. Moon (IBS CENS) In-house contact person: S. Nishimura (RNC)

The world largest fast-timing array is coming...


What is IDATEN?

International Detector Assembly for fast-Timing measurements of Exotic Nuclei

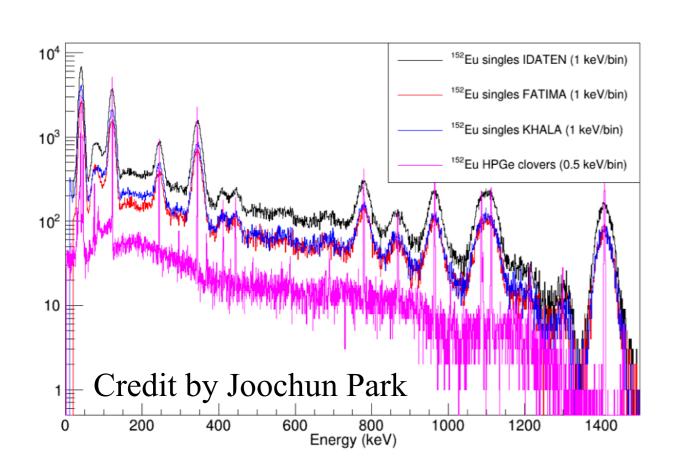
IDATEN is a Japanese word for the god of speed from Buddhism and Hinduism. 章默天 / 위타천 / रकन्द् / Iskandar / Alexander the Great In Japanese baseball pro games, a speedy player is called as Idaten.

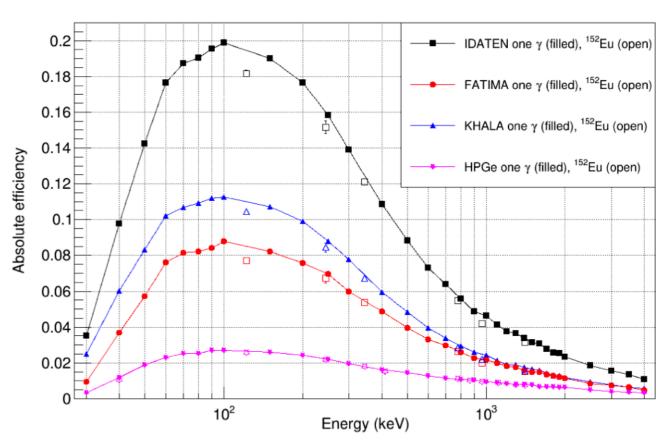


A large array of 82 LaBr₃(Ce) detectors 36 FATIMA (FAst-TIMing Array) 36+10 KHALA (Korea High-resolution Array of LAbr₃) ... and two clover detectors

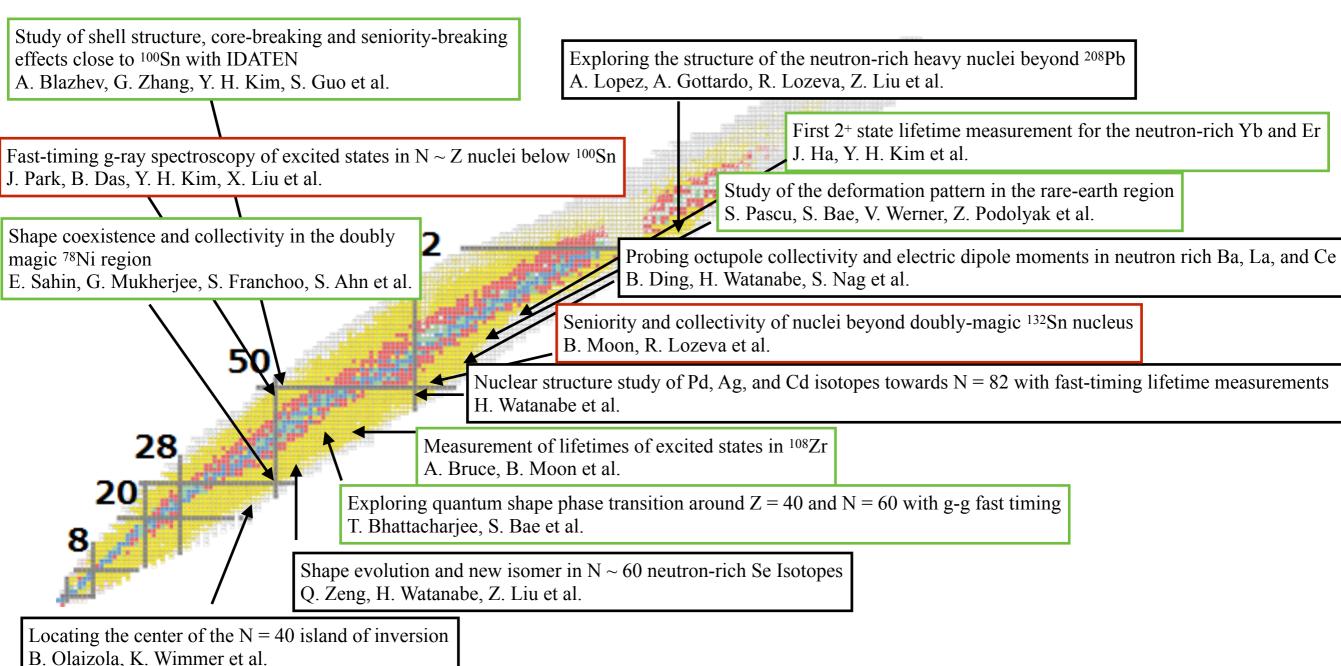
Summary of IDATEN specification

	FATIMA	KHALA
Number of detectors	36	36+10
LaBr ₃ (Ce) crystal size	ϕ 1.5"X2"-length	ϕ 1.5"X1.5"-length
Energy resolution	3.4% @ 779 keV	3.3% @ 662 keV
Time resolution	334.3(4) ps @ 1332-1173 keV	335(1) ps @ 511-511 keV
Passive Pb shield	Optional	No
Owners	U. of Surry, U. of Brighton	KU, SNU


New DAQ electronics system

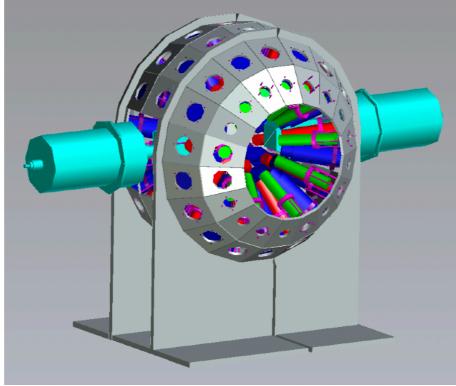


- Twinpeaks FEE + TAMEX TDC modules developed by GSI
- Capability of applying a long gate width (able to measure long-lived isomers)
- Advantage of the compact system, cheap price, and small dead time
- 16 input channels per a card with two amp types
- The system is arrived in Korea University and being tested.


IDATEN simulation

- Simulation based on NPTool
- Source data simulated with IDATEN-82 array
- Atomic and self-radioactive backgrounds are implemented.
- Helpful to prepare the RIBF PAC proposal.

Submitted IDATEN proposals


13 proposals with various physics cases were submitted.

Stay tuned! (2 proposals as spokesperson, 6 proposals as co-spokesperson)

Summary

- Essential to measure the lifetimes of the excited state in nuclei to understand nuclear structure
- Fast-timing array composed of the LaBr₃(Ce) detectors is one of the optimal measurements.
- The IDATEN project will be carried out at RIBF, RIKEN by combining FATIMA and KHALA.

Collaborators

- Spokespersons
 Hiroshi Watanabe (Beihang U., RIKEN Nishina Center)
 Patrick H. Regan (U. of Surrey)
 Byul Moon (CENS/IBS)
- Core members
 Byungsik Hong, Youngseub Jang, Jaehwan Lee (KU, CENuM)
 Sunghoon Ahn, Sunghan Bae, Yung Hee Kim, Joochun Park (CENS/IBS)

Sorin G. Pascu, Zsolt Podolyak (U. of Surrey)

Alison Bruce (U. of Brighton)

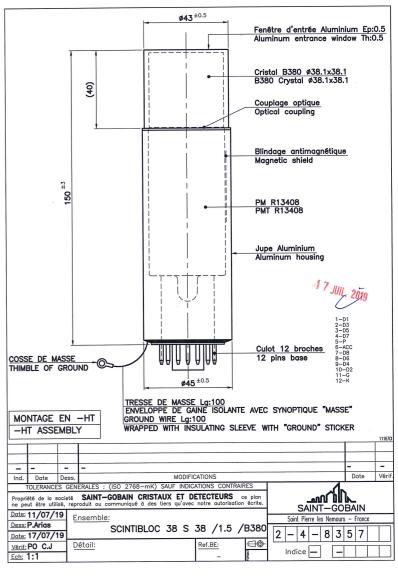
Shunji Nishimura, Vi H. Phong (RIKEN Nishina Center)


Thank you for your attention!

Backup slides

Detector module

FATIMA



M. Rudigier et al., NIMA 969, 163967 (2020)

KHALA

- Both crystals are procured from Saint-Gobain. (B380)
- PMTs are from Hamamatsu, but different models and diameters.
- FATIMA is composed of individual crystal and PMT while they are combined in KHALA.

Specification of LaBr₃(Ce) crystal

Scintillator	Light Yield (photons/keV)			Wavelength of maximum emission λm (nm)	Refractive index at λm	Density (g/cm³)	Thickness (cm) for 50% attenuation (662keV)
NaI(T1)	38	250	2.6	415	1.85	3.67	2.5
BrilLanCe™ 350	49	28	0.8	350	~1.9	3.85	2.3
BrilLanCe™ 380	63	16	0.5	380	~1.9	5.08	1.8
BaF2	1.8	0.7	0.6	~210	1.54	4.88	1.9
PreLude™ 420	32	41	1.1	420	1.81	7.1	1.1
BGO	9	300	5.8	480	2.15	7.13	1.0

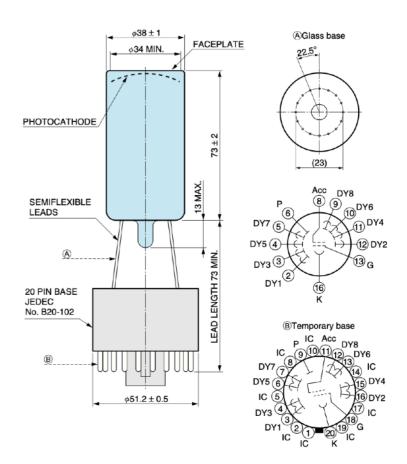
- The LaBr₃(Ce) scintillator crystal is BrilLanCe380 from Saint-Gobain.
- Excellent light yield, decay time, and density.
- Diameter: 1.5 inch / Height: 1.5 inch for KHALA
- Problem of self radioactivity

Specification of R13408 PMT

	Spectral	response	A	B	©	Maximum ratings			Cathode characteristics			
Type No.	Range	Peak wavelength	Photo- cathode	Window	structure / Stages	Supply voltage between	Average anode current	supply voltage			Blue sensitivity index	© Radiant
турс не.	(nm)		material			and cathode			Min. (μΑ/lm)	Typ. (μΑ/lm)	(CS 5-58) Typ.	Typ.
D40470	_ ` _	(nm)	- DA	1/	1./0	(V)	(mA)	(V)	· /	.,	400	, ,
R13478	300 to 650	420	BA	K	L/8	1750	0.1	1500	70	95	10.0	80
R13449	300 to 650	420	BA	K	L/8	1750	0.1	1500	70	95	10.0	80
R13408	300 to 650	420	BA	K	L/8	1750	0.1	1500	70	95	10.0	80
R13089	300 to 650	420	BA	K	L/8	1750	0.1	1500	70	95	10.0	80

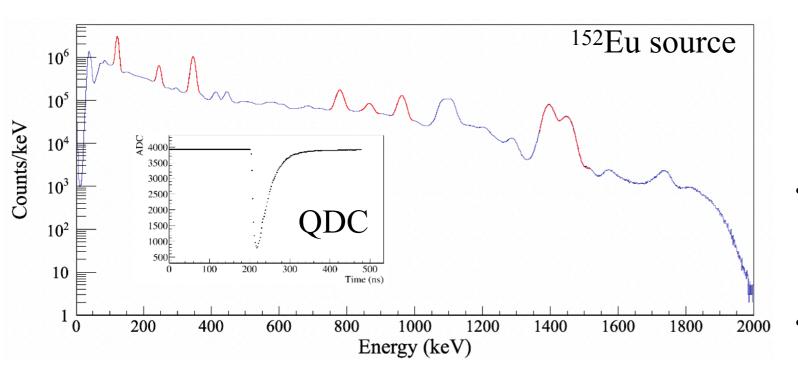
NOTE: A BA: Bialkali B K: Borosilicate glass C L: Linear-focused D Measured at the peak sensitivity wavelength.

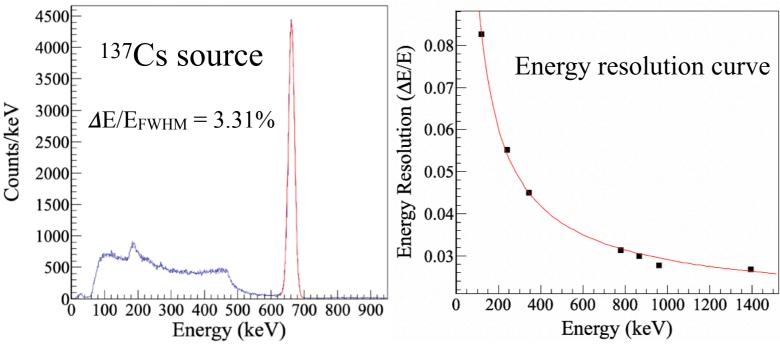
	Anode characteristics													
			Dork ourront		Time response			ruise ii	inearity		Operating			
Luminous	Radiant	Gain	Dark current (After 30 min) Typ. Max.				Rise time	Transit time	T.T.S. (Transit Time		±5 %	Storage temperature	ambient	Type No.
Тур.	Тур.	Тур.			Тур.	Typ. Spread) (FWHM)		deviation	deviation		temperature			
(A/lm)	(A/W)		(nA)	(nA)	(ns)	(ns)	(ps)	(mA)	(mA)	(°C)	(°C)			
50	4.2×10^{4}	5.3×10^{5}	3	30	0.9	9.1	130	10	25	-80 to +50	-30 to +50	R13478		
50	4.2×10^{4}	5.3×10^{5}	3	30	0.9	10	170	10	30	-80 to +50	-30 to +50	R13449		
50	4.2×10^{4}	5.3 × 10 ⁵	3	30	1.2	13	190	20	50	-80 to +50	-30 to +50	R13408		
30	2.5×10^{4}	3.2×10^{5}	10	50	2.0	20	230	30	60	-80 to +50	-30 to +50	R13089		


VOLTAGE DISTRIBUTION RATIO AND SUPPLY VOLTAGE

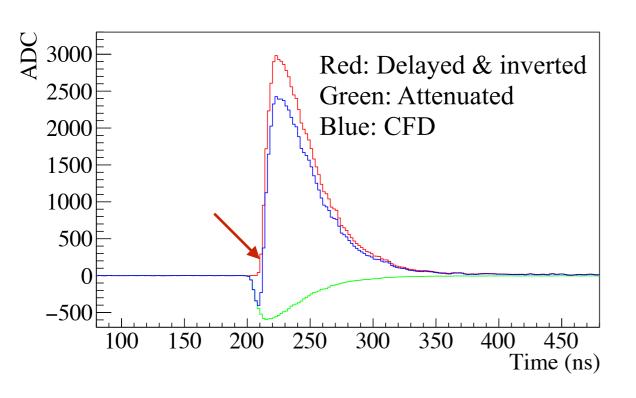
Electrodes	K		a Dy	y1 D	y2 D	y3 D	y4 D	y5 Dy	/6 D	y7 Dy8((Acc) F)
Ratio		1.3	4.8	1.5	1.5	1	1	1	1	1	1	

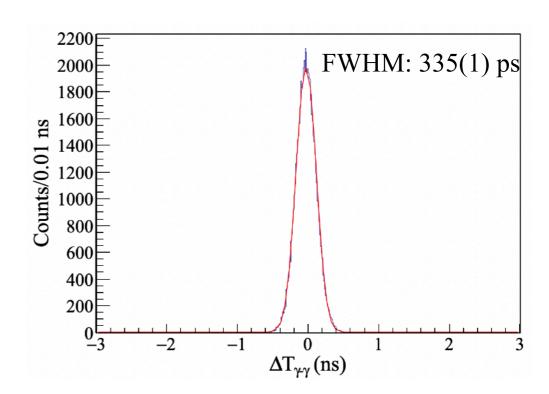
Supply voltage: 1500 V, K: Cathode, Dy: Dynode, P: Anode, G: Grid, Acc: Accelerating electrode Acc to be connected to Dy8 with a protection resistor in series. (recommended resistance: $10 \text{ M}\Omega$)


- Manufactured by Hamamatsu
- Specialized in fast-timing performance
- Diameter: 1.5 inch

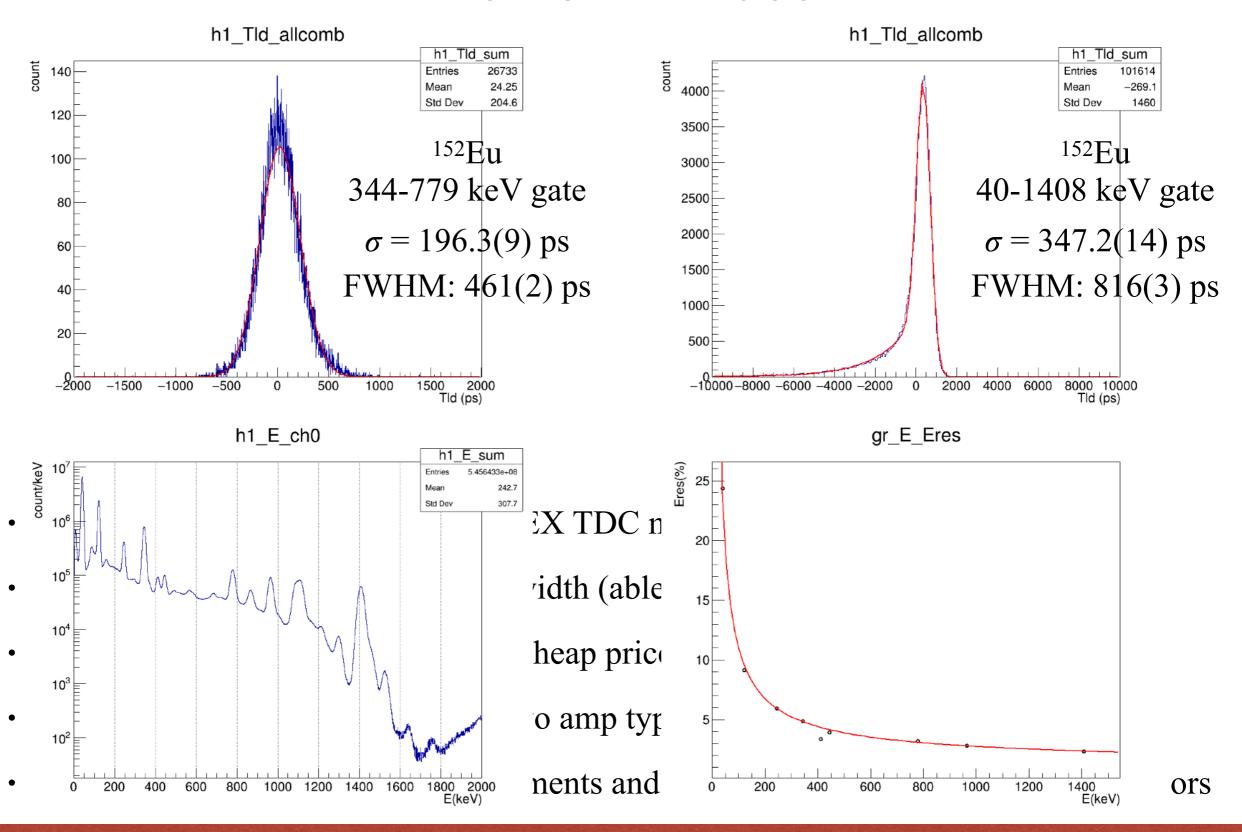

R13408

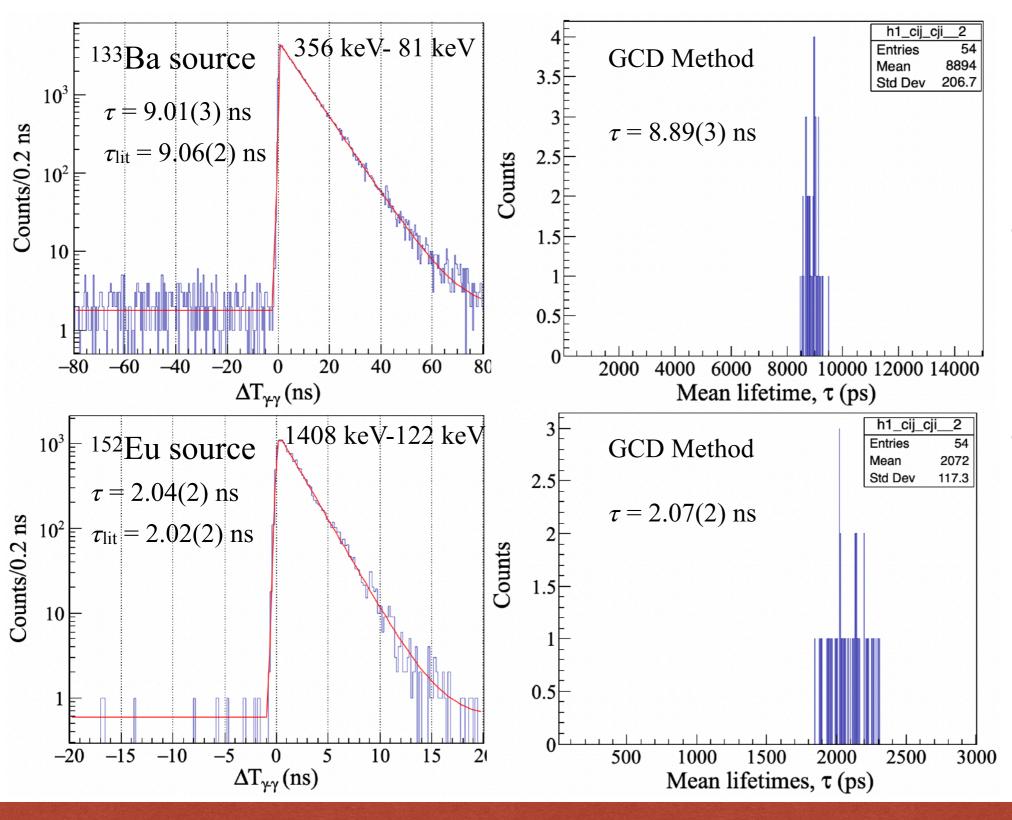
TPMHA0621E


Energy resolution



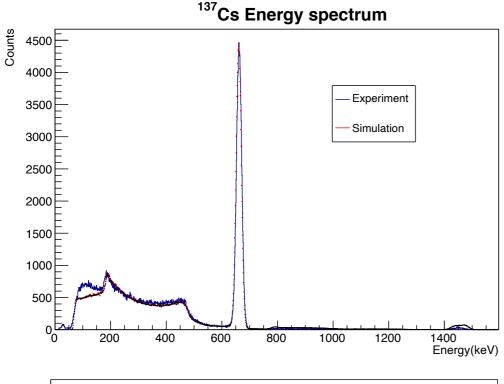
- Obtain energy information by integrating the pulse a.k.a QDC method.
- Data taken by using 12 KHALA detectors.
- Energy resolution at 662 keV: 3.31% in FWHM
- Energy resolution curve obtained from the ¹⁵²Eu source.

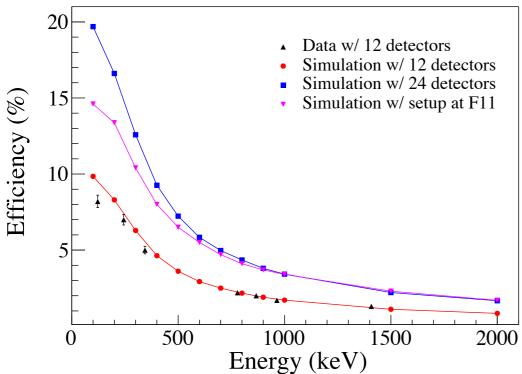

Timing resolution



- Digital constant fraction discrimination method to obtain TDC information
- Use the offline pulse analysis.
- Data taken by using 12 KHALA detectors.
- 22 Na γ -ray source: 511-keV two photons
- Timing resolution of 335(1) ps in FWHM

Performances




Lifetime measurement

- Sufficient to deduce few nanosecond lifetime by using the convolution fit method
- Consistent results obtained by the generalized centroid difference (GCD) method

Geant4 simulation

- Geant4 simulation has been performed with the bench test setting.
- Distance from the center: 10 cm
- Verified the reliability by reproducing the ¹³⁷Cs source spectrum.
- Checked the expected results and verified with the experimental result with the 12-unit setup.
- Plan to examine the detection efficiency for the full system (36 units) with new electronics system.