Dark Matter Induced Power in Quantum Devices

Anirban Das

Seoul National University

arXiv:2210.09313, Under review in PRL

PPC 2023 Daejeon

June 12, 2023

Outline:

- Dark matter power deposition & sensing
- Low power measurements
- Results

Conventional Direct Detection Experiments

All looking for single scattering events from DM

Instead of individual events, use power/heat deposited by DM

arXiv:2210.09313

Instead of individual events, use power/heat deposited by DM

arXiv:2210.09313

Instead of individual events, use power/heat deposited by DM

 $P_{
m DM} = \int d\omega \, \omega rac{d\Gamma}{d\omega}$

Scattering rate

arXiv:2210.09313

Power Deposition Mechanism

DM scattering creates phonons in the SC which break Cooper pairs & release quasiparticles that can be detected

Instead of individual events, use power/heat deposited by DM

We already have data from devices that can measure very small power deposition

Quantum Devices Based on Superconductor

Low bkg quasiparticle device

Nature Physics 18, 145-148 (2022)

Quantum Devices Based on Superconductor

Low noise bolometer, Cryogenic infrared sensor

 $P = 1.7 \times 10^{-20} \text{ W}\mu\text{m}^{-3}$

Nature Astronomy 2, 90-97 (2018)

Quantum Devices Based on Superconductor

SuperCDMS Si detector covered with SC AI fins coupled to W TES

Athermal phonon sensor

 $P = 3 \times 10^{-21} \text{ W}\mu\text{m}^{-3}$

PRD 104, 032010 (2021) Matt Pyle, 2022

New Experiments Needed for Light DM Search

US cosmic visions 2017

New Limits on DM-nuclear cross section

Unprecedented power sensitivity helps us put new limits on DM-nucleon cross section for both thermalized and halo population

New Limits on DM-nuclear cross section

Unprecedented power sensitivity helps us put new limits on DM-nucleon cross section for both thermalized and halo population

Optimizing the absorber material

New materials with more phonon states at low energy

Challenges for detection:

- Power calibration of the calorimeter
- Neutron scattering
- □ Radioactivity & cosmic rays
- Unknown systematics

Similarity w/ superconductor-based Qubit

Technological similarity between Quantum sensors & Qubit chips

Cross-community collaboration will be critical

Final takeaways

- As DM searches dig deeper into the parameter space, it becomes more challenging
- New technique of measuring the power deposited by DM could be more useful in future
- Mesoscopic quantum devices are set to improve further in measuring small energy deposit
- Close technical connection with qubit development research
- Collaborative strategy with quantum computer research could be beneficial

Differential Scattering Rate in AI & Si

Phonon structure factors $S(q,\omega)$ in Al & Si are favorable for scattering with O(10 meV) energy DM

Captured Dark Matter on Earth

arXiv:2012.03957, 2209.09834, 2303.01516

FIG. 1. Schematic of floating DM on the outer region of the celestial object as found in this work (dark shaded shell).

Over time, halo DM may get captured in the Earth and can get thermalized

Floating Dark Matter on Earth

For DM mass 1-10 GeV and xsec > 10⁻³⁵ cm², the thermalized population can get very dense near Earth's surface

However, these DM particles have very low energy, $E_{DM} \sim O(10 \text{ meV})$