Halo-independent bounds of WIMP-nucleon couplings from direct detection and neutrino observations in non-relativistic effective theory

Sunghyun Kang

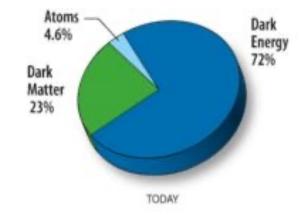
Based on JCAP03(2023)011(arXiv: 2212.05774)

in collaboration with Stefano Scopel and Arpan Kar

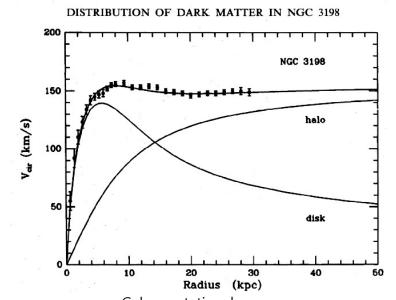
PPC 2023

Dark Matter

- Many evidences of Dark Matter
 - Galaxy rotational curve
 - CMB
 - Lensing effect
- Many candidates
 - Neutrino
 - Cold Dark Matter (CDM)
 - Weakly Interacting Massive Particle (WIMP)



"Content of the Universe - Pie Chart" Wilkinson Microwave Anisotropy Probe. National Aeronautics and Space Administration. Retrieved 9 January 2018.



Galaxy rotational curve K.G. Begeman et al. Extended rotation curves of spiral galaxies: dark haloes and modified dynamics, *Monthly Notices of the Royal* Astronomical Society, Volume 249, Issue 3, April 1991, Pages 523–537 2

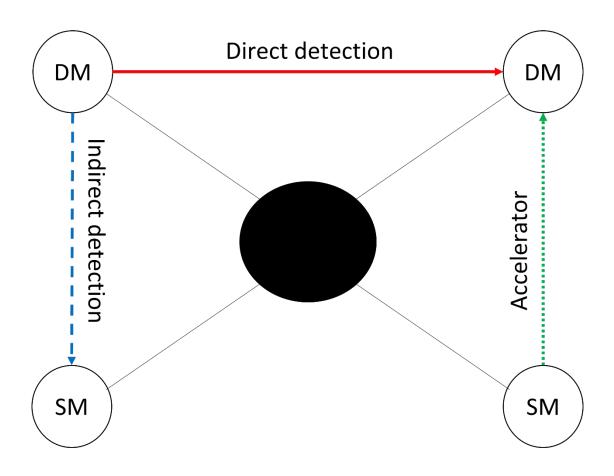
WIMPs

Weakly Interacting Massive Particle (WIMP)

- Weak-type interaction
 - no electric charge, no color

- Mass range in GeV-TeV range
- WIMP miracle
 - correct relic abundance is obtained at WIMP $< \sigma v > = weak \ scale$
 - most extensions of SM are proposed independently at that scale.

Introduction: detection strategies

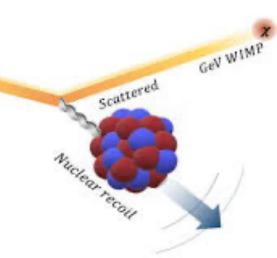


- Direct detection: DM interacts with SM particles (left to right)
- Indirect detection: DM annihilation (top to bottom)
- Accelerator: DM creation (bottom to top)

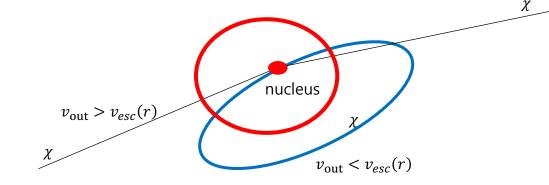
Direct Detection (DD)

The signals are WIMP-nucleus recoil events

- Low probability requires high exposure
- Underground to avoid background
- Different nuclear targets and background subtraction:
 - COSINE-100, ANAIS, DAMA, LZ, PandaX-4T, XENON-1T, PICO-60 and ect.



Indirect Detection



- WIMP scatters off nucleus at distance r inside celestial body
 - same interaction probed by DD
- If its outgoing speed v_{out} is below the escape velocity $v_{esc}(r)$, it gets locked into gravitationally bound orbit and keeps scattering again and again
- Capture in the Sun is favored for low (even vanishing) WIMP speeds

- WIMP is slow, so that the recoil events are non-relativistic
- NREFT provides a general and efficient way to characterize results with mass of WIMP and coupling constants
- Hamiltonian: $\sum_{i=1}^{N} (c_i^n \mathcal{O}_i^n + c_i^p \mathcal{O}_i^p)$
- Non-relativistic process
 - all operators must be invariant by Galilean transformations $(v \sim 10^{-3}c)$ in galactic halo)
- Building operators using: $i\frac{\vec{q}}{m_N}$, \vec{v}^{\perp} , \vec{S}_{χ} , \vec{S}_N

Operators spin up to 1/2

$$\mathcal{O}_{1} = 1_{\chi} 1_{N}; \quad \mathcal{O}_{2} = (v^{\perp})^{2}; \quad \mathcal{O}_{3} = i \vec{S}_{N} \cdot (\frac{\vec{q}}{m_{N}} \times \vec{v}^{\perp})$$

$$\mathcal{O}_{4} = \vec{S}_{\chi} \cdot \vec{S}_{N}; \quad \mathcal{O}_{5} = i \vec{S}_{\chi} \cdot (\frac{\vec{q}}{m_{N}} \times \vec{v}^{\perp}); \quad \mathcal{O}_{6} = (\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}})(\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}})$$

$$\mathcal{O}_{7} = \vec{S}_{N} \cdot \vec{v}^{\perp}; \quad \mathcal{O}_{8} = \vec{S}_{\chi} \cdot \vec{v}^{\perp}; \quad \mathcal{O}_{9} = i \vec{S}_{\chi} \cdot (\vec{S}_{N} \times \frac{\vec{q}}{m_{N}})$$

$$\mathcal{O}_{10} = i \vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}}; \quad \mathcal{O}_{11} = i \vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}}; \quad \mathcal{O}_{12} = \vec{S}_{\chi} \cdot (\vec{S}_{N} \times \vec{v}^{\perp})$$

$$\mathcal{O}_{13} = i (\vec{S}_{\chi} \cdot \vec{v}^{\perp})(\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}}); \quad \mathcal{O}_{14} = i (\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}})(\vec{S}_{N} \cdot \vec{v}^{\perp})$$

$$\mathcal{O}_{15} = -(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}})((\vec{S}_{N} \times \vec{v}^{\perp}) \cdot \frac{\vec{q}}{m_{N}}),$$

Each operators have distinct couplings to proton and neutron:

$$\Sigma_{\alpha=p,n} \Sigma_{i=1}^{15} c_i^{\alpha} \mathcal{O}_i^{\alpha}, \qquad c_2^{\alpha} \equiv 0$$

Equivalent form using isospin:

$$\begin{split} & \Sigma_{i=1}^{15} \left(c_i^0 \, 1 + c_i^1 \tau_3 \right) \mathcal{O}_i = \Sigma_{\tau=0,1} \Sigma_{i=1}^{15} c_i^\tau \mathcal{O}_i t^\tau, \qquad c_2^0 = c_2^1 \equiv 0 \\ & |p\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad |n\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad 1 \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \tau_3 \equiv \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ & c_i^0 = \frac{1}{2} \left(c_i^p + c_i^n \right) \quad c_i^1 = \frac{1}{2} \left(c_i^p - c_i^n \right) \\ & t^0 \equiv 1 \quad t^1 \equiv \tau_3 \end{split}$$

Scattering amplitude:

$$\frac{1}{2j_{\chi}+1}\frac{1}{2j_{N}+1}\Sigma_{spins}|M|^{2} \equiv \Sigma_{k}\Sigma_{\tau=0,1}\Sigma_{\tau'=0,1}R_{k}^{\tau\tau'}\left(\vec{v}_{T}^{\perp^{2}},\frac{\vec{q}^{2}}{m_{N}^{2}},\left\{c_{i}^{\tau},c_{j}^{\tau'}\right\}\right)W_{k}^{\tau\tau'}(y)$$

- Differential cross section : $\frac{d\sigma}{dE_R} = \frac{1}{10^6} \frac{2m_N}{4\pi} \frac{c^2}{v^2} \left| \frac{1}{2j_\chi + 1} \frac{1}{2j_N + 1} \sum_{spin} |\mathcal{M}|^2 \right|$
- Differential rate : $\frac{dR}{dE_R} = N_T \int_{v_{min}}^{v_{esc}} \frac{\rho_{\chi}}{m_{\chi}} v \frac{d\sigma}{dE_R} f(v) dv$
- With $E_R = \frac{\mu_{\chi N}^2 v^2}{m_N}$ $v_{min} = \frac{1}{\sqrt{2m_N E_R}} \left| \frac{m_N E_R}{\mu_{\chi N}} + \delta \right|$

• Scattering amplitude:
$$\frac{1}{2j_{\chi}+1}\frac{1}{2j_{N}+1}\Sigma_{spins}|M|^{2} \equiv \Sigma_{k}\Sigma_{\tau=0,1}\Sigma_{\tau'=0,1}R_{k}^{\tau\tau'}\left(\vec{v}_{T}^{\perp 2},\frac{\vec{q}^{2}}{m_{N}^{2}},\left\{c_{i}^{\tau},c_{j}^{\tau'}\right\}\right)W_{k}^{\tau\tau'}(y)$$

- $R_k^{\tau\tau'}$: WIMP response function
 - Velocity dependence: $\mathcal{R}_{k}^{\tau\tau'} = \mathcal{R}_{k,0}^{\tau\tau'} + \mathcal{R}_{k,1}^{\tau\tau'}(v^2 v_{min}^2)$
- $W_k^{\tau\tau'}$: nuclear response function
 - $y = (qb/2)^2$
 - b: harmonic oscillator size parameter
 - k = M, Δ , Σ' , Σ'' , $\widetilde{\Phi}'$ and Φ''
 - allowed responses assuming nuclear ground state is a good approximation of P and T

DD event rate

DD event rate

$$R_{DD} = M\tau_{exp} \frac{\rho_{\chi}}{m_{\chi}} \int du f(u) u \Sigma_{T} N_{T} \int_{E_{R,th}}^{2\mu_{\chi T}^{2} u^{2}/m_{T}} dE_{R} \zeta_{exp} \frac{d\sigma_{T}}{dE_{R}}$$

- $M\tau_{exp}$: exposure
- $E_{R,th}$: experimental energy threshold
- ζ_{exp} : experimental features such as quenching, resolution, efficiency, etc.

•
$$R_{DD} = \int_0^{u_{esc}} f(u) H_{DD}(u)$$

$$H_{DD}(u) = u M \tau_{exp} \frac{\rho_{\chi}}{m_{\chi}} \sum_{T} N_{T} \int_{E_{R,th}}^{2\mu_{\chi T}^{2} u^{2}/m_{T}} dE_{R} \zeta_{exp} \frac{d\sigma_{T}}{dE_{R}}$$

Capture rate

Capture rate

$$C_{\odot} = \frac{\rho_{\chi}}{m_{\chi}} \int du \, f(u) \frac{1}{u} \int_{0}^{R_{\odot}} dr \, 4\pi r^{2} \, w^{2} \, \Sigma_{T} \, \rho_{T}(r) \, \Theta \left(u_{T}^{C-max} - u \right) \int_{m_{\chi}}^{2\mu_{\chi T}^{2}} \frac{w^{2}}{m_{T}} \, dE_{R} \, \frac{d\sigma_{T}}{dE_{R}}$$

- ρ_T : the number of density of target
- r: distance from the center of the Sun for Standard Solar Model AGSS09ph
- u: DM velocity asymptotically far away from the Sun
- $v_{esc}(r)$: escape velocity at distance r
- $w^2(r) = u^2 + v_{esc}^2(r)$
- Neutrino Telescope (NT):
 - the neutrino flux from the annihilation of WIMPs captured in the Sun
 - DM annihilations into $b\bar{b}$

Capture rate

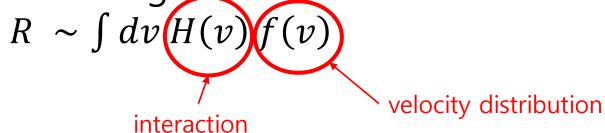
• with assumption of equilibrium between capture and annihilation: $\Gamma_{\odot} = C_{\odot}/2$

•
$$C_{\odot} = \int_{0}^{u^{c-max}} du f(u) H_{C}(u)$$

 $H_{C} = \frac{\rho_{\chi}}{m_{\chi}} \frac{1}{u} \int_{0}^{R_{\odot}} dr \, 4\pi r^{2} \, w^{2} \, \Sigma_{T} \, \rho_{T}(r) \, \Theta(u_{T}^{C-max} - u) \int_{m_{\chi}}^{2\mu_{\chi T}^{2}} w^{2} / m_{T} \, dE_{R} \, \frac{d\sigma_{T}}{dE_{R}}$

•
$$u_T^{C-max} = v_{esc}(r) \sqrt{\frac{4m_\chi m_T}{(m_\chi - m_T)^2}}$$
: maximum WIMP speed for capture possible

Scattering count rate:



- Two parts of interaction and velocity distribution
 - needs to avoid uncertainty
 - interaction: include all possible interaction types
 - velocity distribution: halo independent approaches
- Model independent method: the most general scenarios

- The only constraint: $\int_{u=0}^{u_{max}} f(u) du = 1$
 - f(u): arbitrary speed distribution
- Direct detection experiments have a threshold $u > u_{th}^{DD}$
 - Due to the energy threshold of experimental detectors
- Capture in the Sun is favored for low WIMP speeds
 - $u < u_T^{C-max}$
- In order to cover full speed range: combine DD and capture

- Considering one effective coupling (c_i) at a time:
 - $R_{exp}(c_i^2) = \int du f(u) H_{exp}(c_i^2, u) \leq R_{max}$
 - R_{max} : corresponding experimental bound
- Using relation : $H(c_i^2, u) = c_i^2 H(c_i = 1, u)$
 - $H(c_{i,max}^2(u), u) = R_{max}$
 - $c_{i,max}^2(u) = \frac{R_{max}}{H(c_i=1,u)}$
 - $c_{i,max}(u)$: upper limit on c_i at single speed stream u

•
$$R_{exp}(c_i^2) = \int du f(u) H_{exp}(c_i^2, u) \le R_{max}$$

$$R(c_{i}^{2}) = \int_{0}^{u_{\max}} du \, f(u) \, H(c_{i}^{2}, u)$$

$$= \int_{0}^{u_{\max}} du \, f(u) \, \frac{c_{i}^{2}}{c_{i \max}^{2}(u)} H(c_{i \max}^{2}(u), u)$$

$$= \int_{0}^{u_{\max}} du \, f(u) \, \frac{c_{i}^{2}}{c_{i \max}^{2}(u)} R_{\max} \leq R_{\max}$$

• upper limit on i-th coupling c_i :

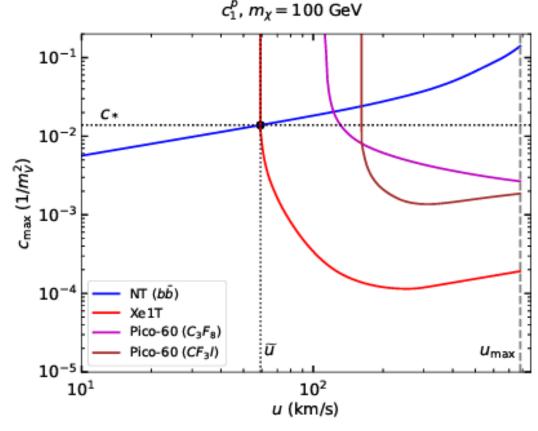
$$c_i^2 \le \left[\int_0^{u_{max}} du \, \frac{f(u)}{c_{i,max}^2(u)} \right]^{-1}$$

- $c_* = c_{max}^{NT}(\tilde{u}) = c_{max}^{DD}(\tilde{u})$: halo independent limit
- \tilde{u} : intersection speed of NT and DD

 To cover whole speed range, one may combine DD and NT

•
$$u_T^{C-max} = v_{esc}(r) \sqrt{\frac{4m_{\chi}m_T}{(m_{\chi}-m_T)^2}}$$

$$\bullet \left(u_{th}^{DD}\right)^2 = \frac{m_T}{2\mu_{\chi T}^2} E_{R,th}$$



S. Kang, A. Kar, S. Scopel, JCAP03(2023)011

Intersection:

$$(c^{\text{NT}})^2_{\text{max}}(u) \leq c_*^2 \qquad \text{for } 0 \leq u \leq \tilde{u}$$

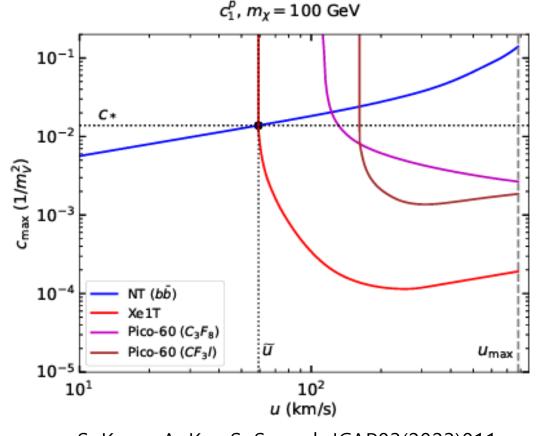
$$(c^{\text{DD}})^2_{\text{max}}(u) \leq c_*^2 \qquad \text{for } \tilde{u} \leq u \leq u_{\text{max}}$$

$$c^2 \leq c_*^2 \left[\int_0^{\tilde{u}} du f(u) \right]^{-1} = \frac{c_*^2}{\delta},$$

$$c^2 \leq c_*^2 \left[\int_{\tilde{u}}^{u_{\text{max}}} du f(u) \right]^{-1} = \frac{c_*^2}{1 - \delta}.$$

$$\delta = \int_0^{\tilde{u}} du f(u)$$

$$c^2 \leq 2 c_*^2.$$



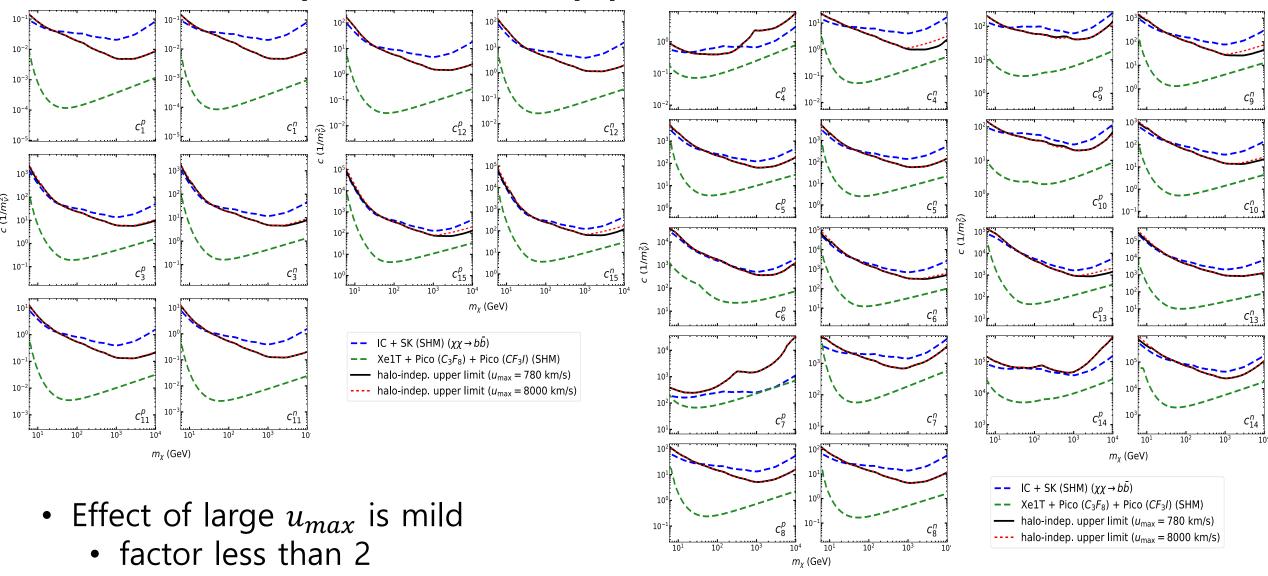
S. Kang, A. Kar, S. Scopel, JCAP03(2023)011

• If
$$(c^{DD})_{max}^2(u) > c_*^2$$
 at $u = u_{max}$

$$\begin{split} c^2 &\leq c_*^2 \left[\int_0^{\tilde{u}} du f(u) \right]^{-1} = \frac{c_*^2}{\delta}, \\ c^2 &\leq \left(c^{\text{DD}} \right)^2_{\text{max}} (u_{\text{max}}) \left[\int_{\tilde{u}}^{u_{\text{max}}} du f(u) \right]^{-1} = \frac{\left(c^{\text{DD}} \right)^2_{\text{max}} (u_{\text{max}})}{1 - \delta}. \\ c^2 &\leq \left(c^{\text{DD}} \right)^2_{\text{max}} (u_{\text{max}}) + c_*^2. \end{split}$$

• If $u_{th}^{DD} > u_{max}$

$$c^2 \le (c^{\rm NT})^2 (u_{\rm max})$$
.

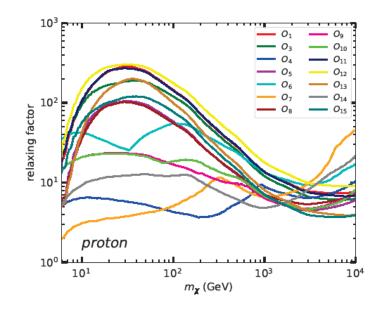


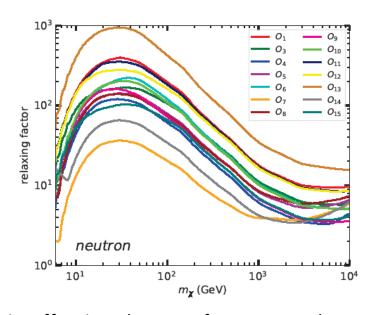
S. Kang, A. Kar, S. Scopel, Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering from direct detection and neutrino observations, JCAP03(2023)011 (arXiv:2212.05774)

Relaxing factor

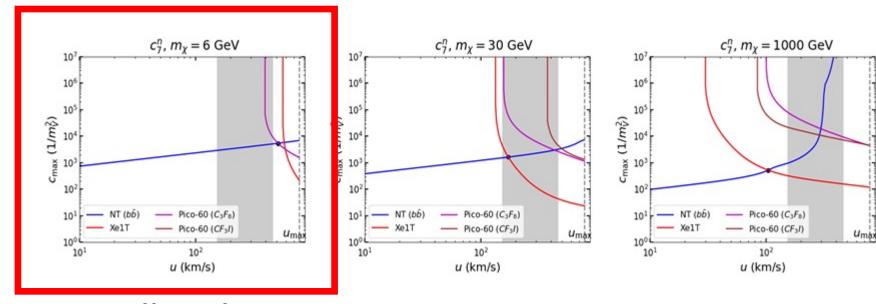
$$r_f^2 = \frac{2c_*^2}{(c_{\rm SHM}^{\rm exp})^2} = 2c_*^2 \int_0^{u_{\rm max}} du \frac{f_M(u)}{(c^{\rm exp})_{\rm max}^2(u)} = 2c_*^2 \left\langle \frac{1}{(c^{\rm exp})_{\rm max}^2} \right\rangle \simeq 2c_*^2 \left\langle \frac{1}{(c^{\rm exp})_{\rm max}^2} \right\rangle_{\rm bulk},$$

• $\int_{bulk} du \, f_M(u) \approx 0.8$

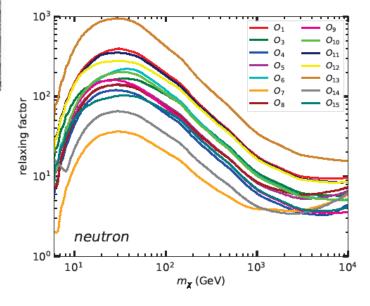




S. Kang, A. Kar, S. Scopel, Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering from direct detection and neutrino observations, JCAP03(2023)011 (arXiv:2212.05774)

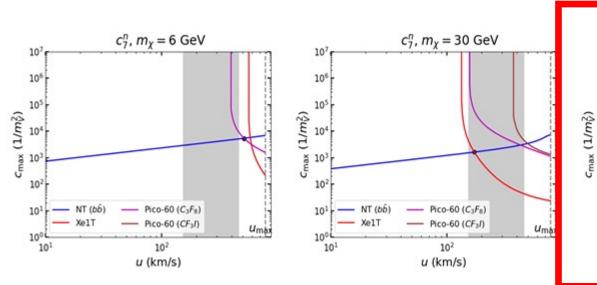


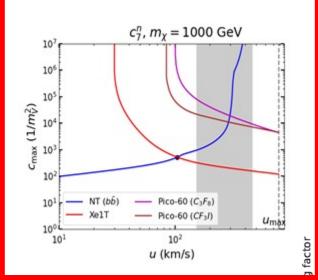
- small or large mass range
 - outside the bulk of Maxwellian
 - smooth dependence on u
- intermediate range (10 ~ 200 GeV)
 - inside the bulk of Maxwellian
 - steep dependence on u

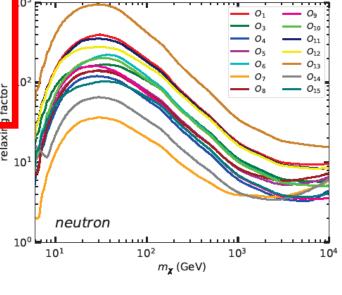


$$r_f^2 \simeq 2c_*^2 \left\langle \frac{1}{(c^{\mathrm{exp}})_{\mathrm{max}}^2} \right\rangle_{\mathrm{bulk}},$$

S. Kang, A. Kar, S. Scopel, Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering from direct detection and neutrino observations, JCAP03(2023)011 (arXiv:2212.05774)

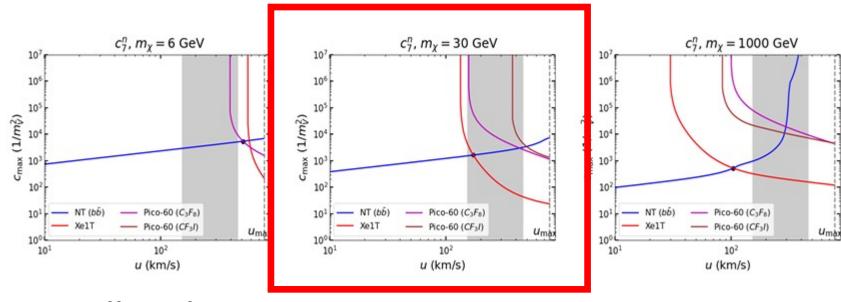




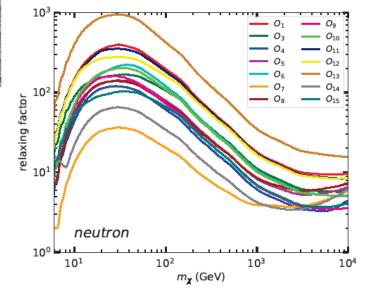


 $r_f^2 \simeq 2c_*^2 \left\langle \frac{1}{(c^{\mathrm{exp}})_{\mathrm{max}}^2} \right\rangle_{\mathrm{bulk}}$

- small or large mass range
 - outside the bulk of Maxwellian
 - smooth dependence on u
- intermediate range (10 ~ 200 GeV)
 - inside the bulk of Maxwellian
 - steep dependence on u



- small or large mass range
 - outside the bulk of Maxwellian
 - smooth dependence on u
- intermediate range (10 ~ 200 GeV)
 - inside the bulk of Maxwellian
 - steep dependence on u

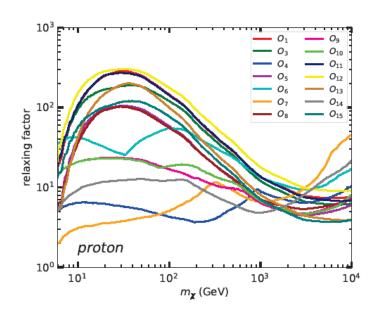


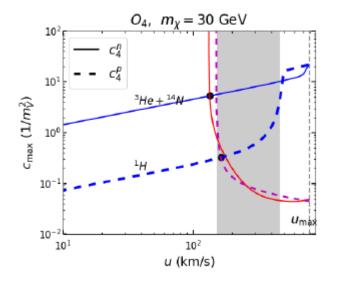
$$r_f^2 \simeq 2c_*^2 \left\langle \frac{1}{(c^{\mathrm{exp}})_{\mathrm{max}}^2} \right\rangle_{\mathrm{bulk}},$$

S. Kang, A. Kar, S. Scopel, Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering from direct detection and neutrino observations, JCAP03(2023)011 (arXiv:2212.05774)

- small relaxing factors
 - $O_{4,7}$: SD with no q suppression
 - $O_{9,10,14}$: SD with q^2 suppression
 - O_6 : SD with q^4 suppression

operator	$R_{0k}^{ au au'}$	$R_{1k}^{ au au'}$	operator	$R_{0k}^{ au au'}$	$R_{1k}^{ au au'}$
1	$M(q^0)$	-	3	$\Phi''(q^4)$	$\Sigma'(q^2)$
4	$\Sigma''(q^0), \Sigma'(q^0)$	-	5	$\Delta(q^4)$	$M(q^2)$
6	$\Sigma''(q^4)$	-	7	_	$\Sigma'(q^0)$
8	$\Delta(q^2)$	$M(q^0)$	9	$\Sigma'(q^2)$	-
10	$\Sigma''(q^2)$	-	11	$M(q^2)$	-
12	$\Phi''(q^2), \tilde{\Phi}'(q^2)$	$\Sigma''(q^0), \Sigma'(q^0)$	13	$\tilde{\Phi}'(q^4)$	$\Sigma''(q^2)$
14	_	$\Sigma'(q^2)$	15	$\Phi''(q^6)$	$\Sigma'(q^4)$

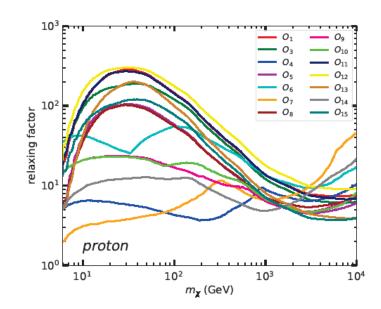


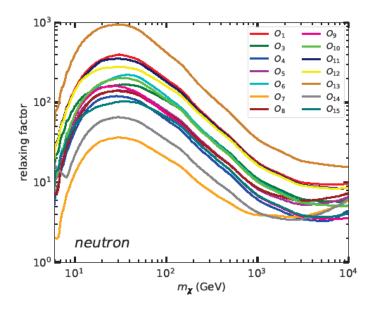


S. Kang, A. Kar, S. Scopel, Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering from direct detection and neutrino observations, JCAP03(2023)011 (arXiv:2212.05774)

High relaxing factor:
 the halo-independent method can weaken the bound

$$r_f^2 = \frac{2c_*^2}{(c_{\rm SHM}^{\rm exp})^2} = 2c_*^2 \int_0^{u_{\rm max}} du \frac{f_M(u)}{(c^{\rm exp})_{\rm max}^2(u)} = 2c_*^2 \left\langle \frac{1}{(c^{\rm exp})_{\rm max}^2} \right\rangle \simeq 2c_*^2 \left\langle \frac{1}{(c^{\rm exp})_{\rm max}^2} \right\rangle_{\rm bulk},$$





S. Kang, A. Kar, S. Scopel, Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering from direct detection and neutrino observations, JCAP03(2023)011 (arXiv:2212.05774)

Summary

- Halo-independent method can be applied to any speed distribution
- Combining results of direct detection experiments and capture in the Sun may provide halo-independent bounds on each couplings
- In most cases the relaxation of halo-independent bounds is moderate in low and high m_χ
- More moderate values of the relaxation is obtained with $c_{SD}^{\,p}$
- With the high relaxing factor, halo-independent method weaken the bounds; sensitive on speed distribution