Utilizing kinematics and QCD with Machine learning @ collider

Myeonghun Park

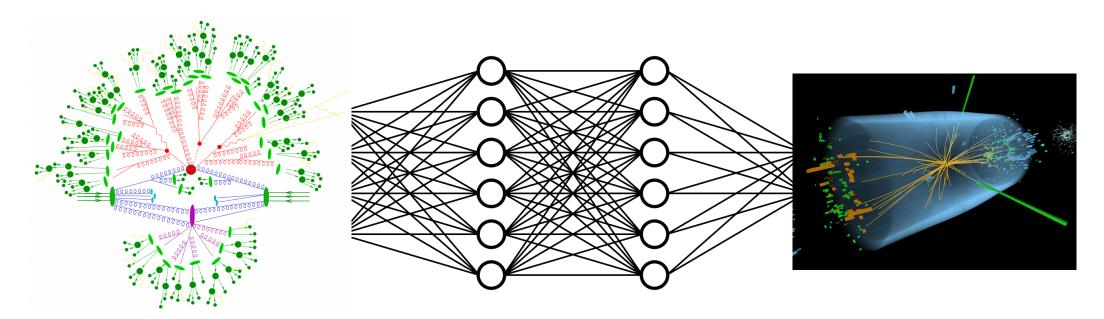
(Seoultech)

Based on

- Overview part: Roberto F, Doojin K, KC K, Konstantin M, Prasanth S, MP (arXiv:2206.13431, accepted in RMP)
- Kinematics (Global) part: Doojin K, KC Kong, Konstantin M, Prasanth S MP (arXiv:2105.10126, PRD)
- QCD (Local) part: Ahmed H, MP (arXiv:2209.03898)

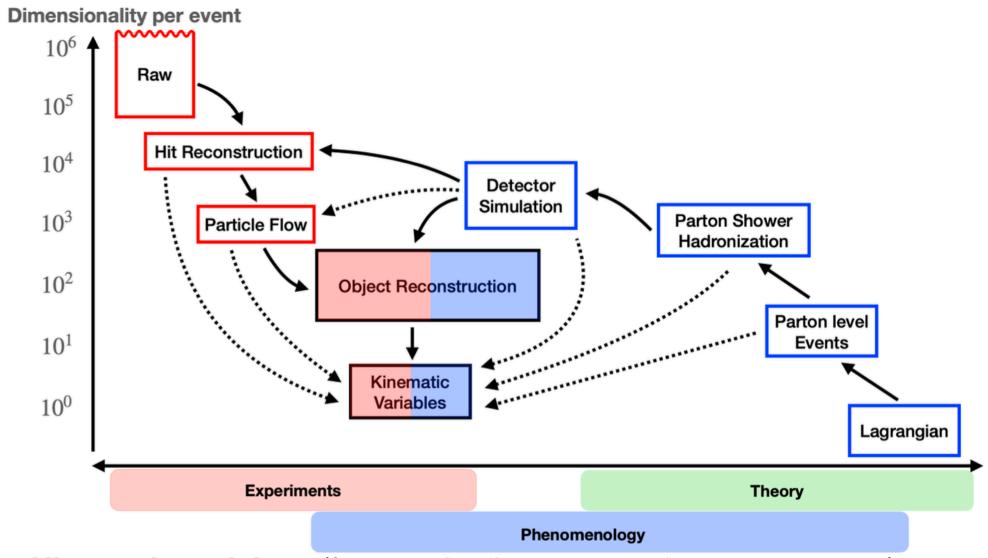
PPC workshop 2023

Enhancing signatures over BKG



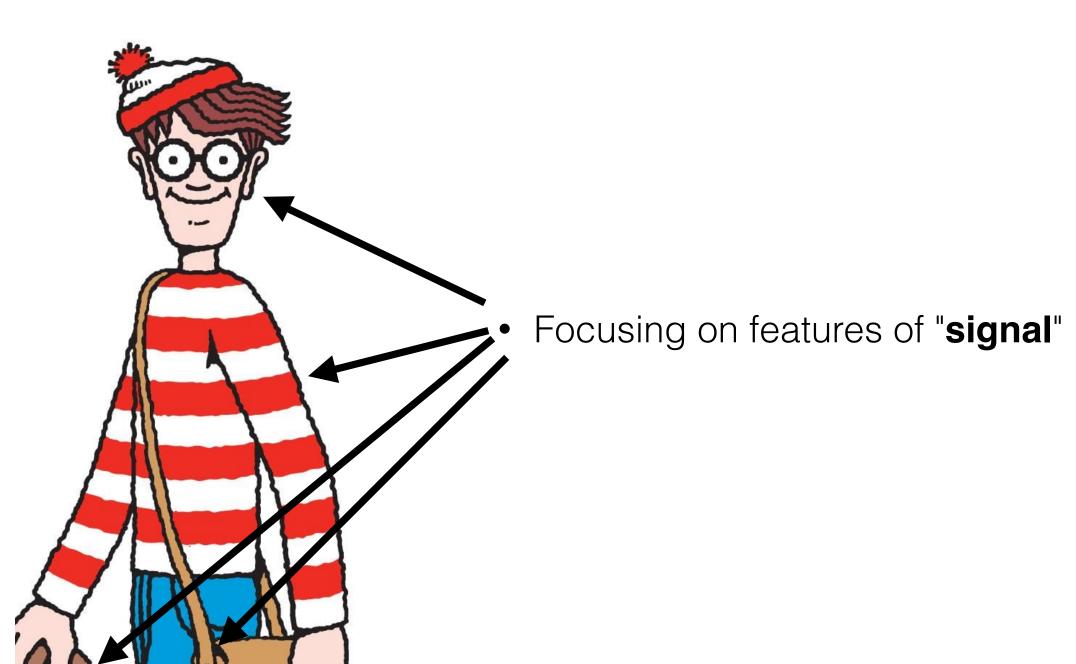
- With our elaborated theoretical model,
 - 1) Get expectations from MC simulations
 - 2) Get data from experiments (e.g. the LHC)
 - 3) Compare our expectation to data with sophisticated computer algorithms (ML: machine learning)

All about the dimensional reduction

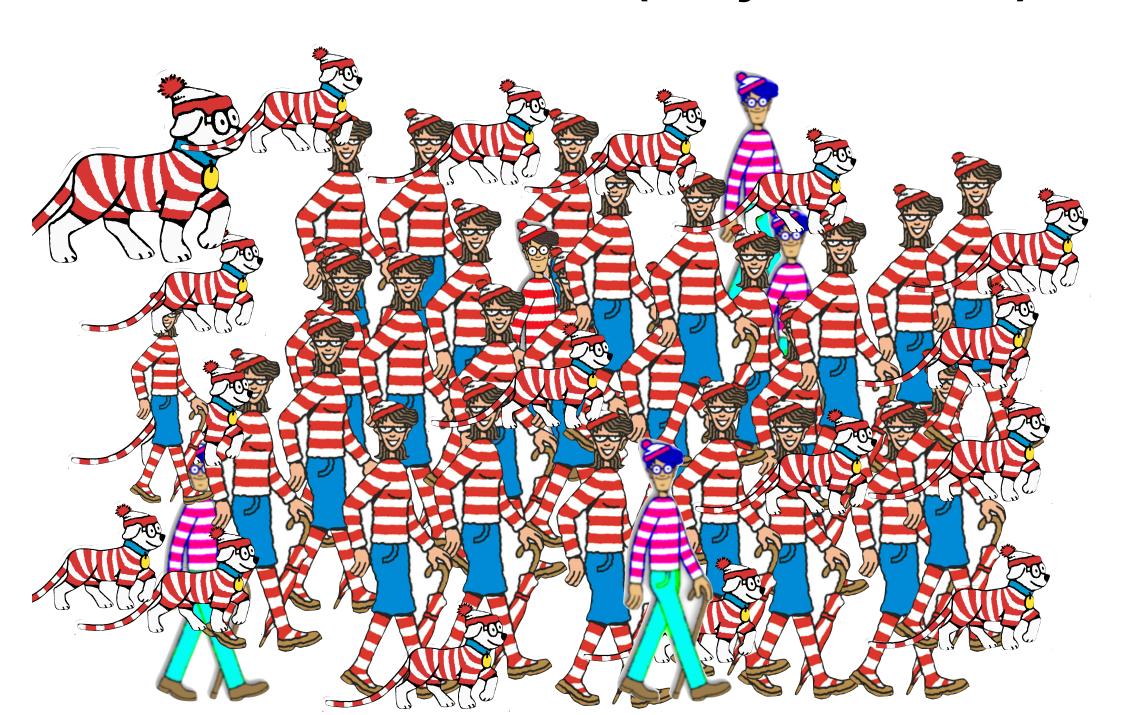


- Kinematic variables (features in phase-space & event-topology)
- Activities depending on a specific Gauge (parton shower, hadronization)

Features selection



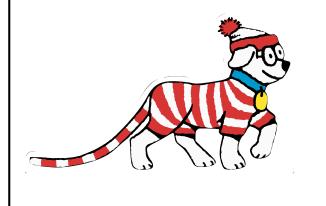
Situation@Collider (maybe LHC?)



Reducible backgrounds 1

Reducible backgrounds?

Irreducible backgrounds



 $H \rightarrow b\bar{b}$

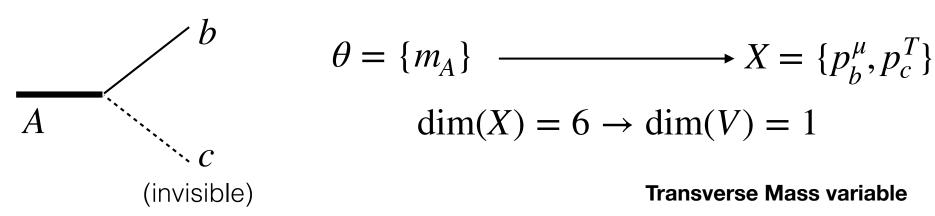
- $W^-W^+ \to \mu \bar{\nu} \bar{\mu} \nu$
- Different reconstructed particles
- Different phase-space

$$Z \rightarrow b\bar{b}$$

- Same final sates, but different weight on the phase-space Well-localized
- $G \rightarrow b\bar{b}$
- Same final sates, but different intermediate. Huge

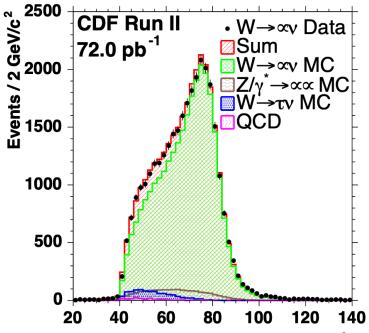
Extracting High-level features of a new physics

 Kinematic variables to utilize a different phase-space structures (signal, v.s. backgrounds)



• A human-engineered feature variable, M_T which estimates M_A with an endpoint of its distribution

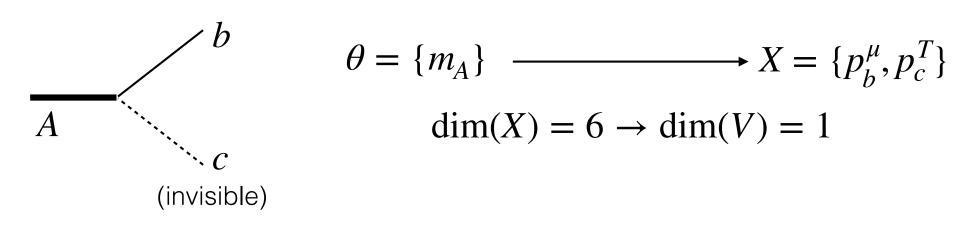
(highly singular behavior due to its Jacobian peak)



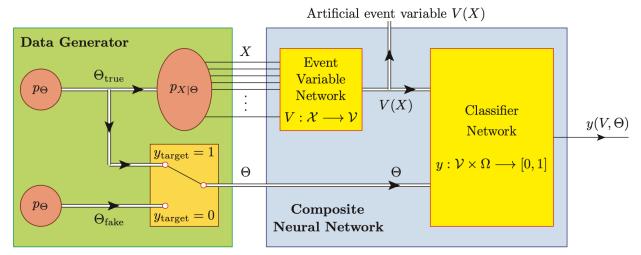
M₊ (GeV/c²)

Extracting High-level features of a new physics

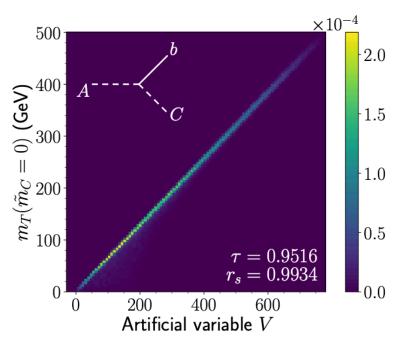
 Kinematic variables to utilize a different phase-space structures (signal, v.s. backgrounds)



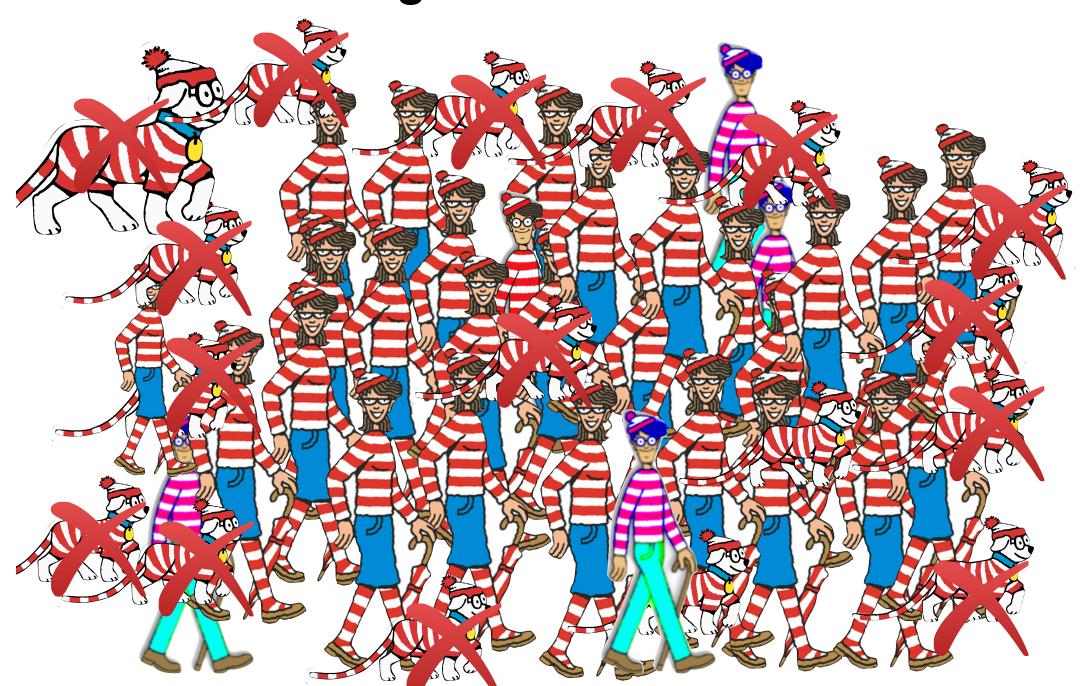
A Neural-Network can design an event-variable (by enforcing information-bottleneck to NN)



Doojin Kim, KC Kong, Konstantin Matchev, Prasanth, MP. (2023)



 "High-level" kinematic variables to remove easy reducible backgrounds



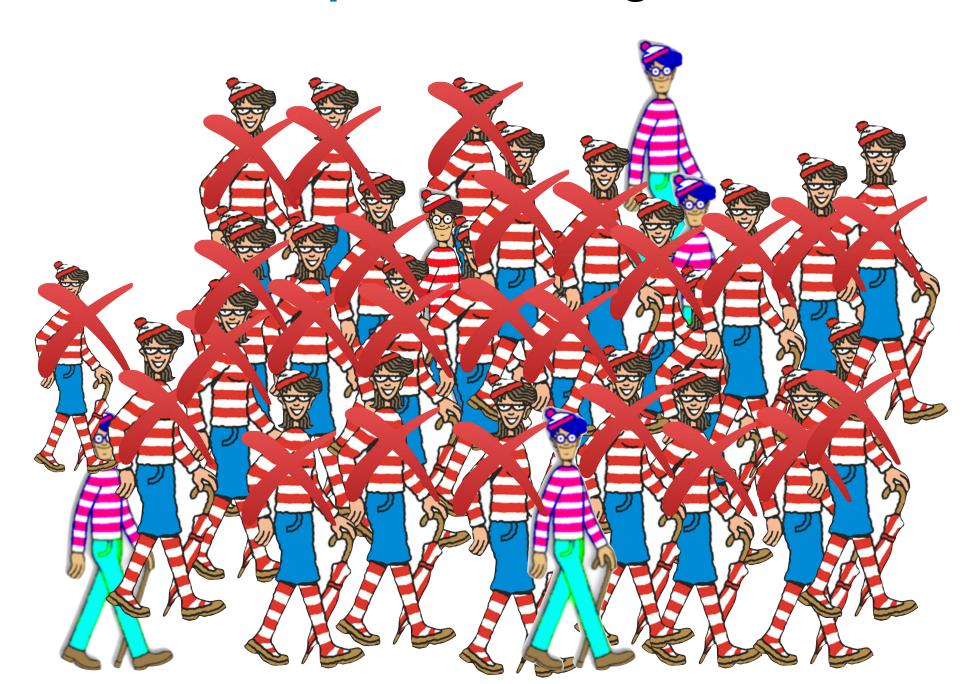
 "High-level" kinematic variables to remove easy reducible backgrounds



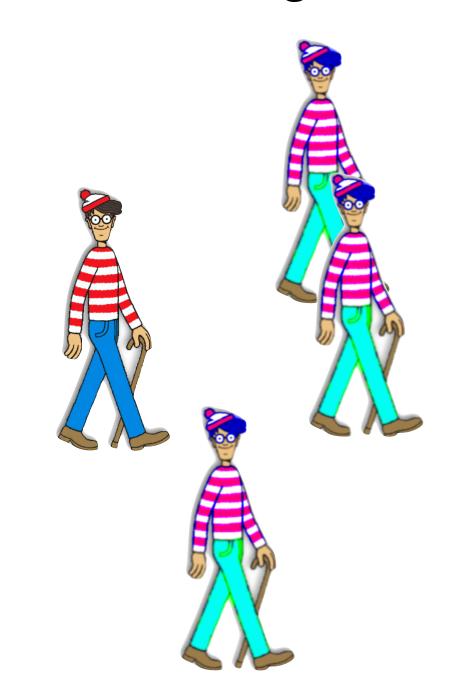
With low-level information

- Low-level information:
 - simple variables like p_T , η , $\Delta\phi$, $\cos\theta_{jj}$, and any basic kinematic variables including m_{ii} , ...
 - Four-vector of reconstructed particles.
- Provide a "freedom" to a Neural Nets (expensive GPU machine)
 so that it can design some decision criteria to suppress backgrounds.
 - Freedom: More data and more complicated and deep design of NN
- We can borrow any fancy Neural Networks, including Recurrent Neural net, Graph Neural net, Teacher-Student net, and so on...
 (So we need to give eyes on the recent ML developments, and enjoy shopping...)

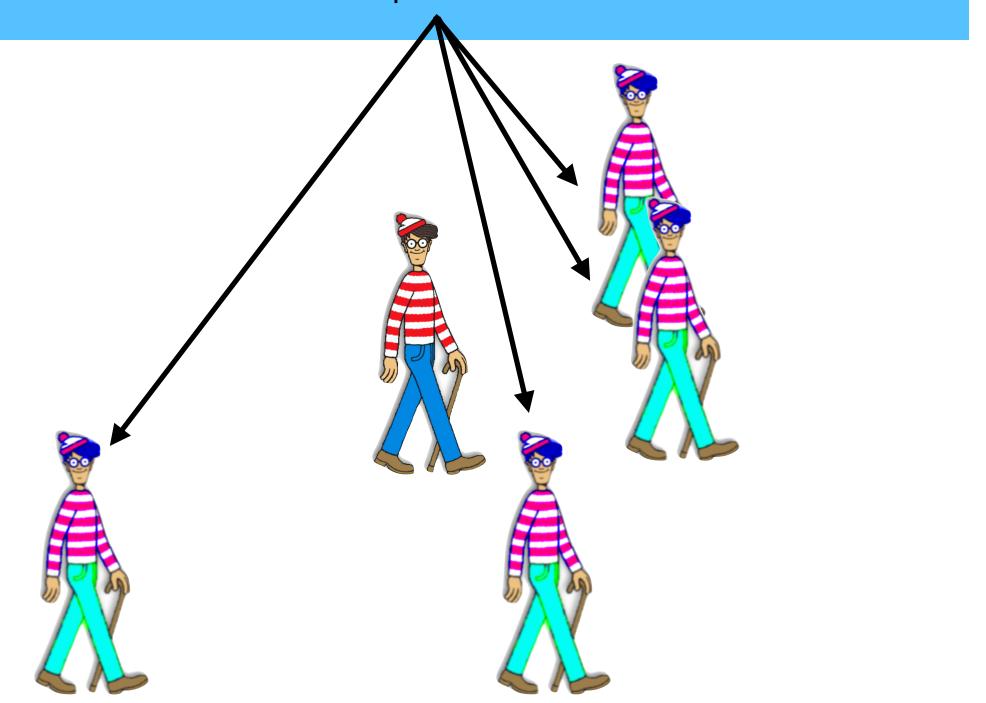
 Deep NN with "low-level" kinematics to remove somewhat complicated backgrounds



 Deep NN with "low-level" kinematics to remove somewhat complicated backgrounds



So leftovers are the imposters with different color



Orthogonal information to the Kinematics

- Differences in kinematics are from "high P_T " region, i.e. reconstructed (reco) level
 - Telling us about the structure of "Feynman-diagram" (Event-topology, Mass spectrum)
- We can further utilize $|\mathcal{M}|^2$ differences (Density bounded by phase-space) e.g.) Decaying angle of the Higgs
- Differences in radiation patterns of a Gauge charge are coming from "soft P_T " region
 - eg) Telling us about the state under a gauge group, $SU(3)_C$

More than Kinematics difference

 In many cases, the soft QCD radiation patterns from signals are different from Backgrounds. (e.g.: rapidity gap)

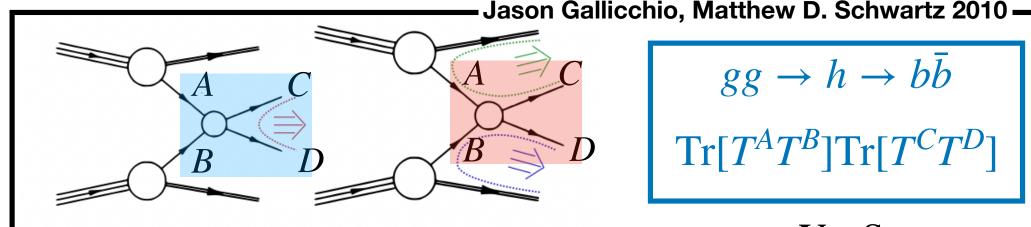
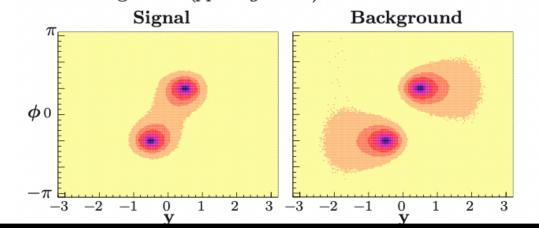


FIG. 1: Possible color connections for signal $(pp \to H \to b\bar{b})$ and for background $(pp \to g \to b\bar{b})$.



$$gg \rightarrow h \rightarrow b\bar{b}$$

$$Tr[T^AT^B]Tr[T^CT^D]$$

$$gg \to b\bar{b}$$

$$Tr[T^{A}T^{C}]Tr[T^{B}T^{D}]$$

$$Tr[T^{A}T^{D}]Tr[T^{B}T^{C}]$$

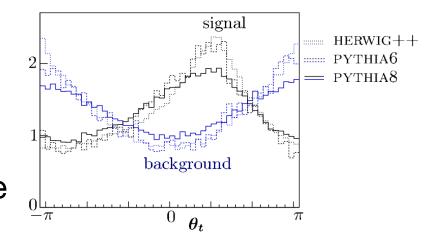
Utilizing QCD information

One can design a QCD variable, for example a pull-vector

$$\vec{t} \equiv \sum \frac{p_T^i |r_i|}{p_T^{\text{jet}}} \vec{r}_i$$

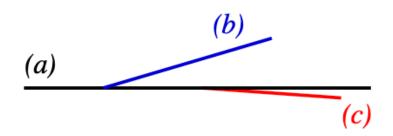
(Jason Gallicchio, Matthew D. Schwartz 2010)

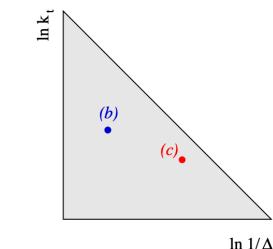
provides an one-dimensional feature



Or one can get two-dimensional features,

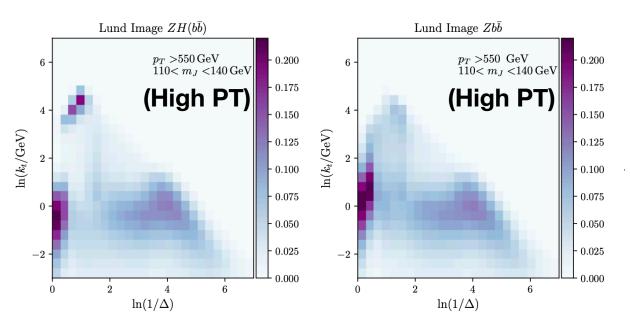
(Frederic A. Dreyer, Gavin P. Salam, Gregory Soyez 2018)



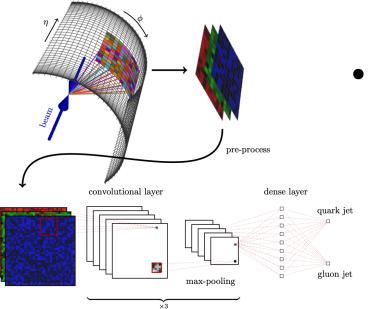


Fully utilizing QCD information?

 One needs to understand differences in "image"



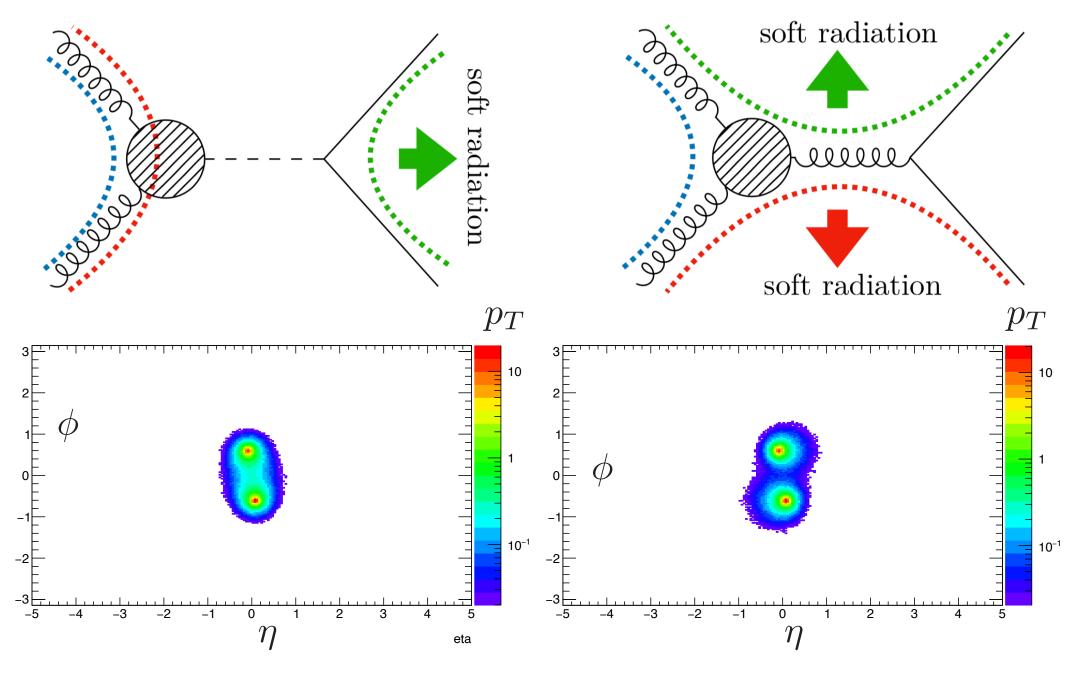
(Charanjit K. Khosa, Simone Marzani, 2021)



- A neural network (designed to understand a picture) can tell differences in QCD
 - Pixels are energy deposits from various sub-detectors (e.g.: tracks, e-cal, h-cal)

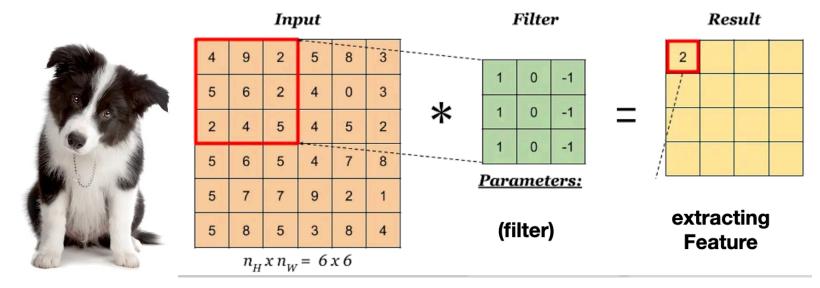
M. Schwartz et.al. arXiv:1612.01551

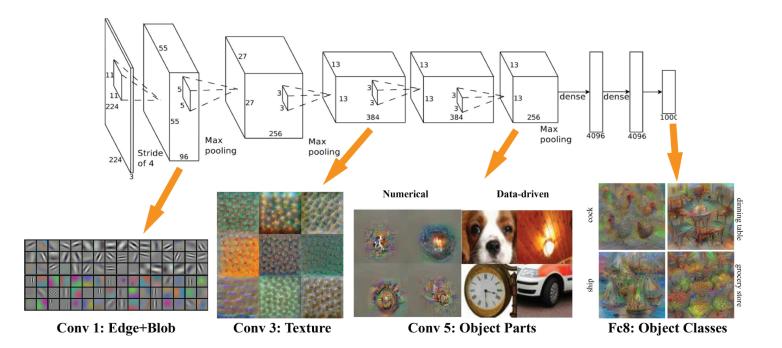
Consider "orthogonal" method to kinematics; QCD Color-flow



Energy deposits

Conventional Image recognition (applying series of filters)

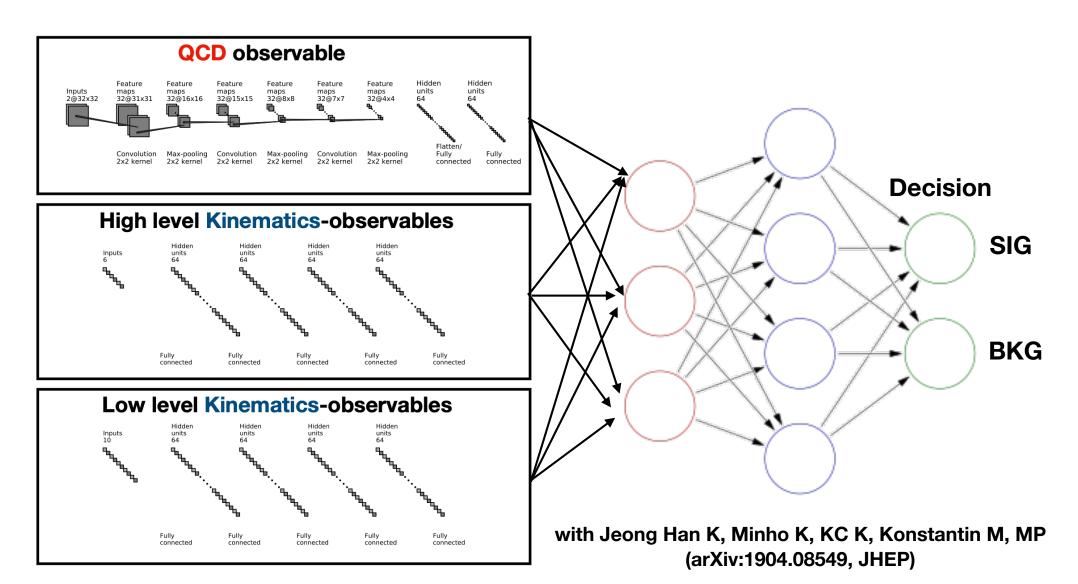




Basic structure of Image recognition using CNN

Combining pieces together

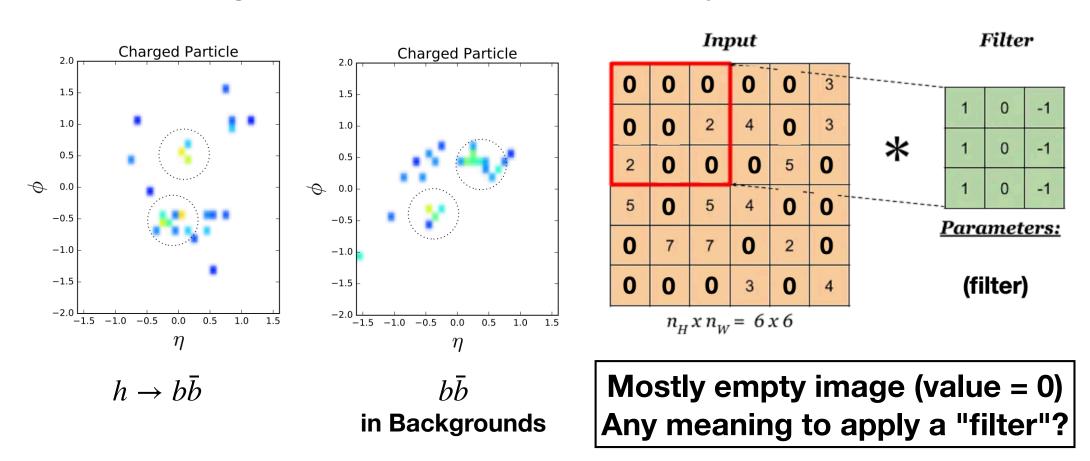
A multi-modal learning can be done.



So, are we OK?

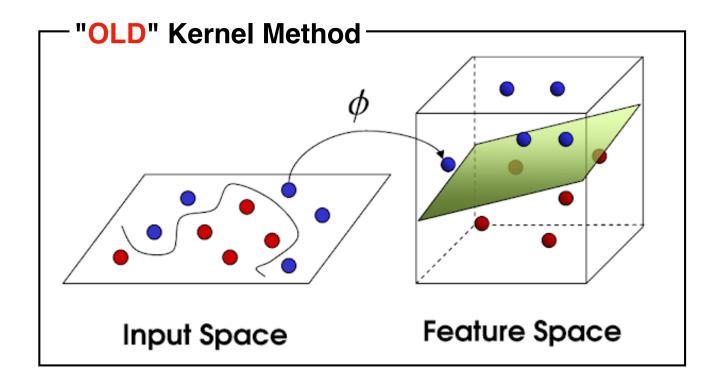
The problem of conventional ML (1)

- The direct use of a neural network (designed for commercial image) is not suitable (= not efficient) to our physics cases.
- The "image" from our LHC data is very sparse



One solution: Kernel Method

 We can provide a good kernel to separate data efficiently, namely with a few and sparse "image" data by making "linearly" separable

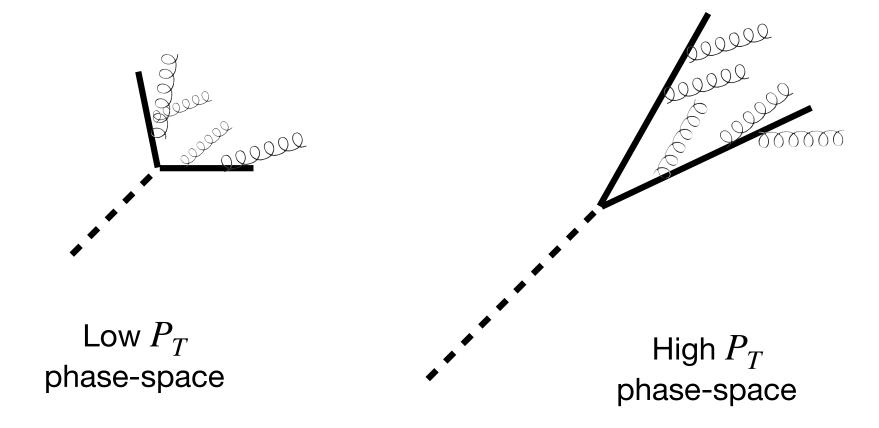


- Designing a kernel requires a domain knowledge (based on our expertise)
 - This means "old"
 - : Conventional ML : end to end (Blackbox): No human intervention

The problem in data (2)

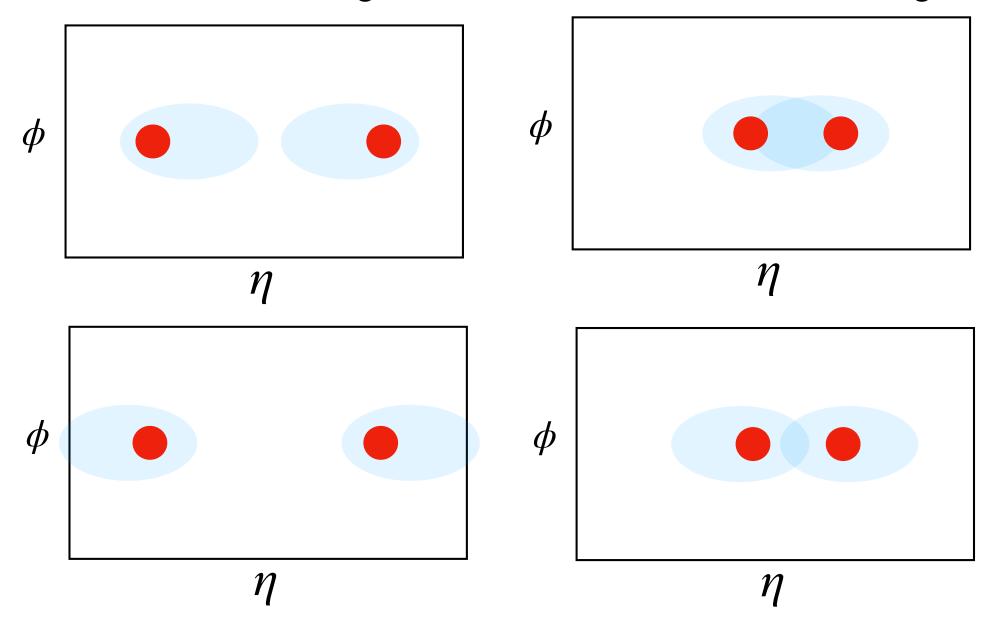
The soft patterns are not fully detangled with kinematics.

$$m_{jj} \propto p_{T_1} p_{T_2} \Delta R$$

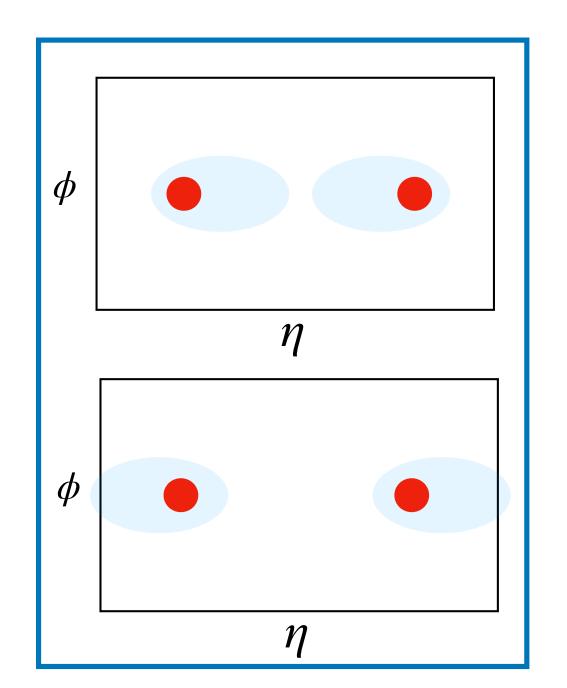


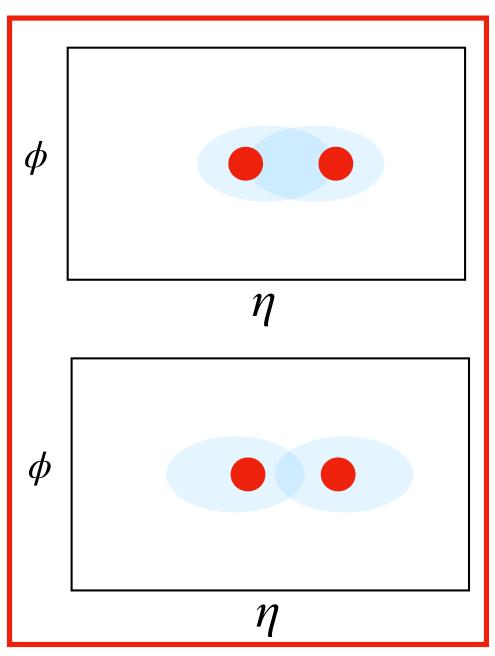
The problem in data (2)

Let's make two categories : Divide below into two categories

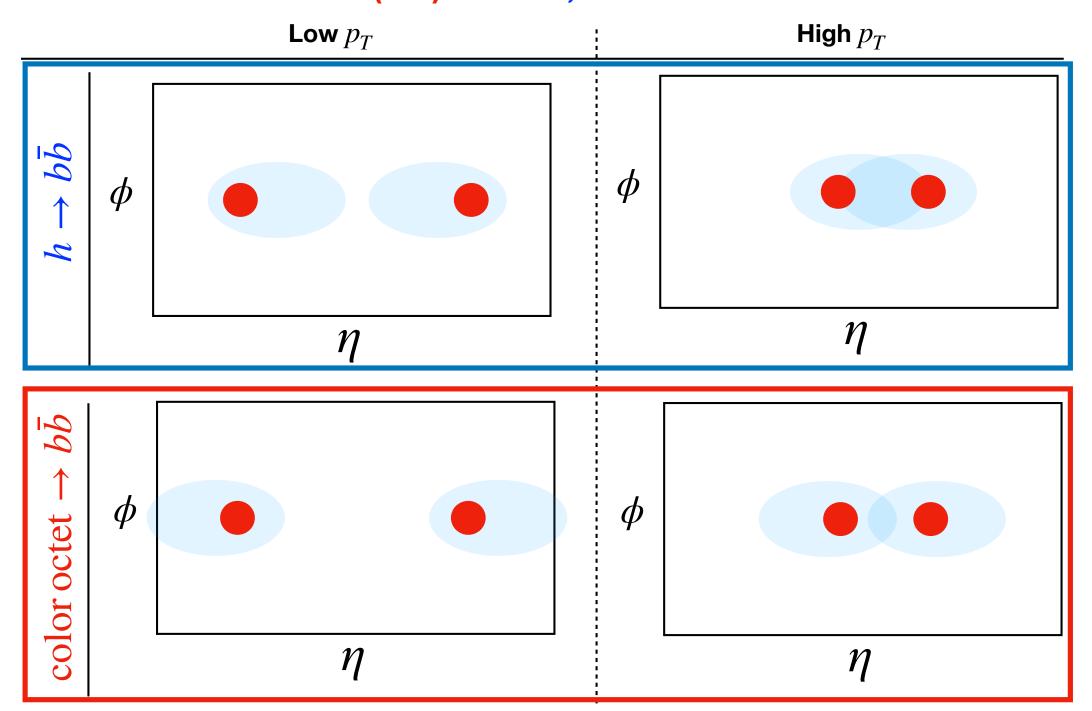


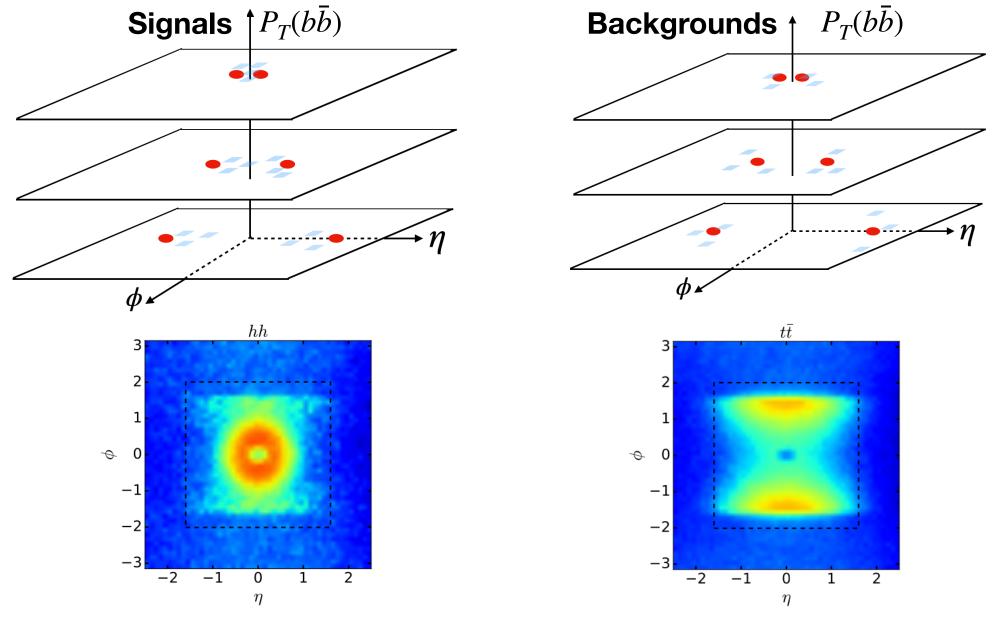
A quick trial: Attentions are on hot cores





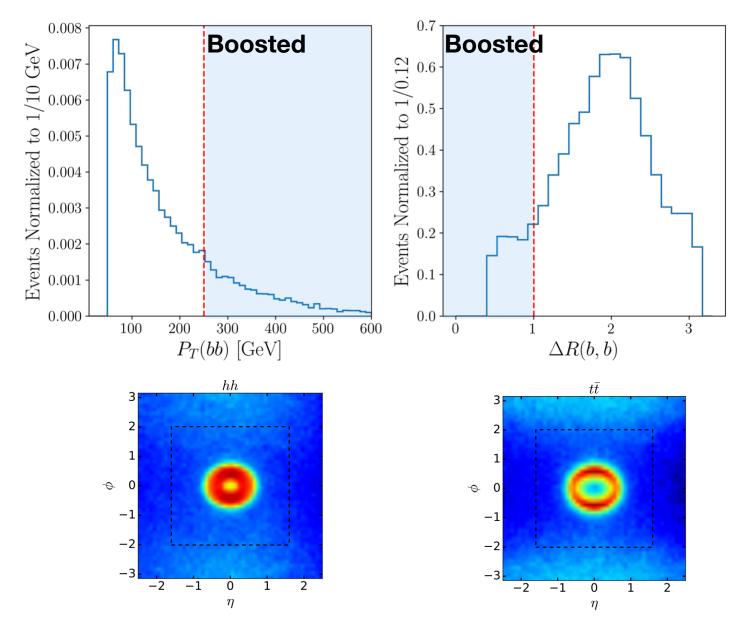
• Due to the softness of radiations, everyone (even ML) can easily gets focused on hot cores (b/\bar{b}) . To train, we need more more data





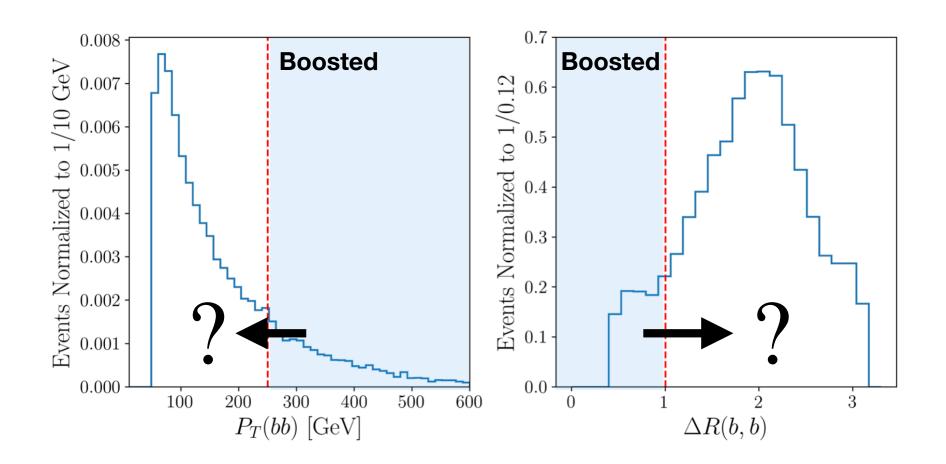
- Conventional Machine Learning can not focus on soft-patterns, rather on different kinematics.
- It requires "BIG" data to pay attention to soft patterns.

One solution: focusing on small region



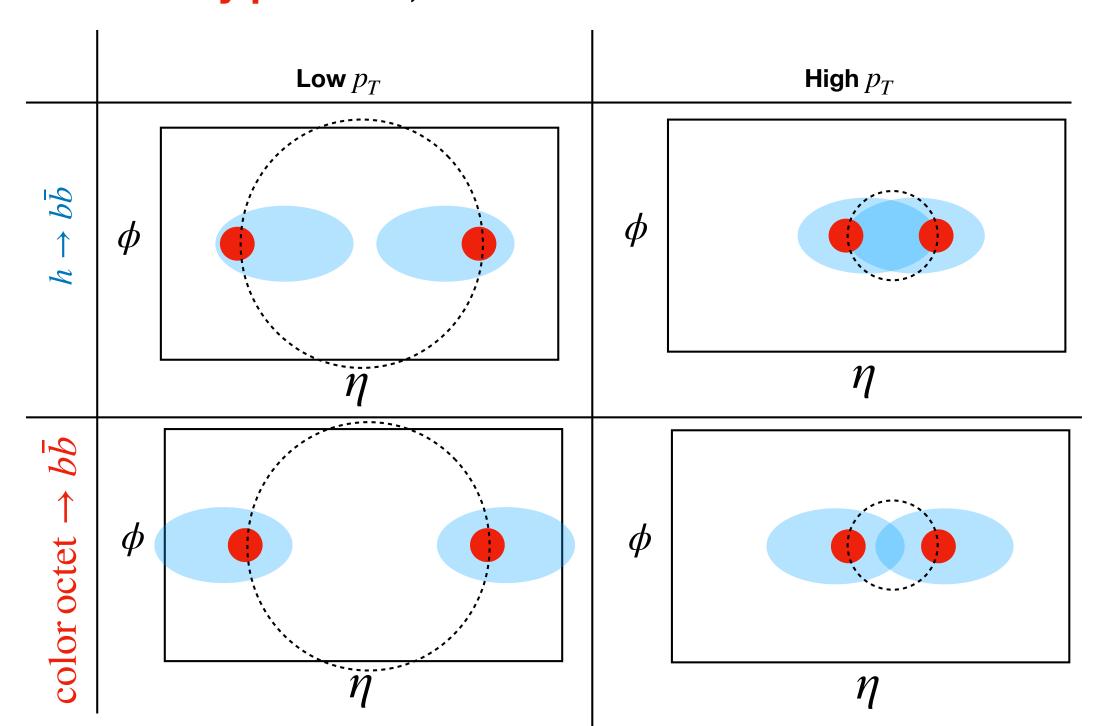
In a boosted region, the dependency on "kinematics" becomes mild

Want to use "Full p_T range"



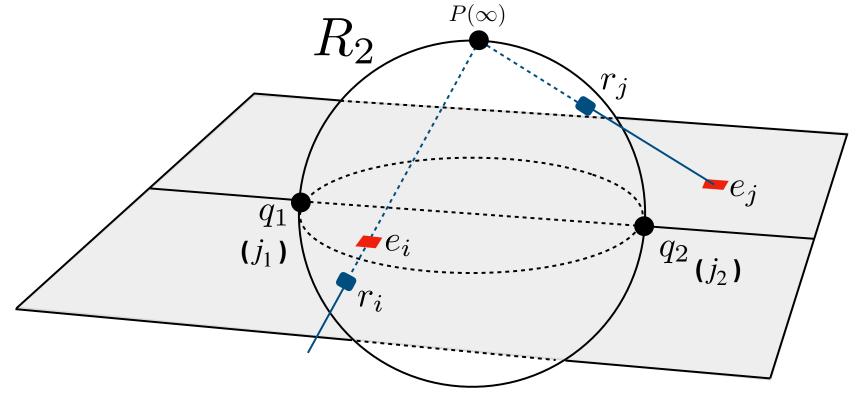
"Easy" solution demands a huge price: the statistics.
 We want to collect as many as events, statistics!!!

• A binary problem, either "inside" or "outside" a circle.



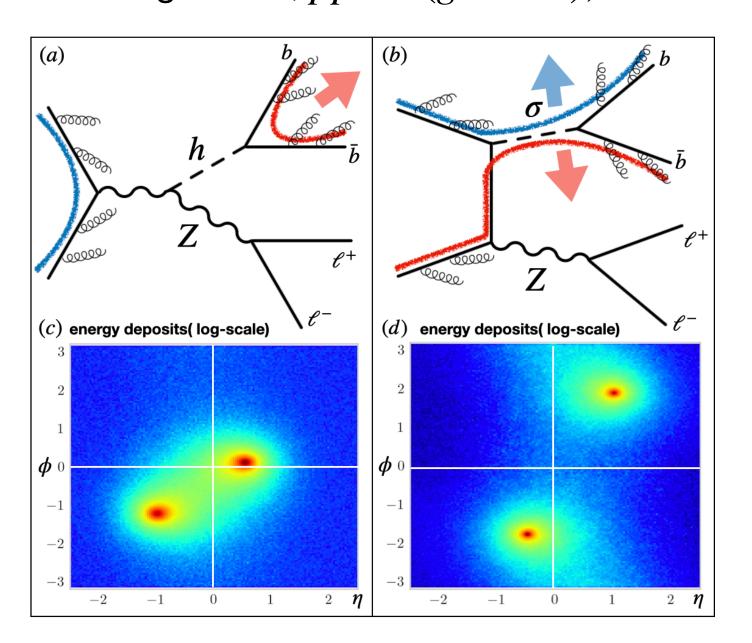
Inverse stereographic projection

(a.k.a. "Riemannian" Kernel)

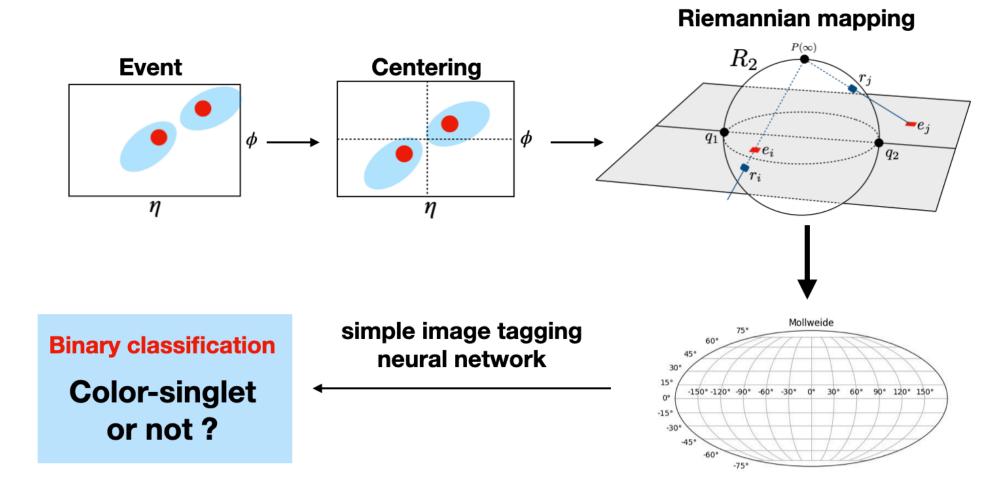


- Soft radiations which are inside of a circle \rightarrow Southern hemisphere (H) outside of a circle \rightarrow North hemisphere (Color octet status)
- Consider only angular positions, totally independent from a radius which is proportional to $P_T(jj)$.

• A toy model of color octet "scalar" particle with $m_{\sigma}=m_h$ to focus on checking the performance on "QCD". (Also QCD backgrounds, $pp \to (g \to b\bar{b}), Z$ is in this case)

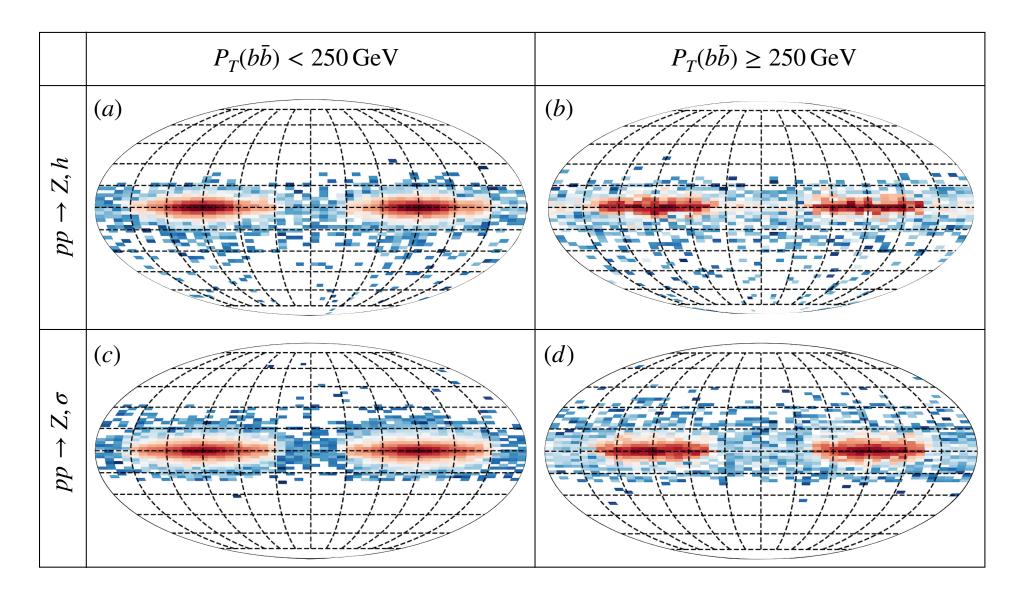


Riemannian preprocessing



Mollweide projection

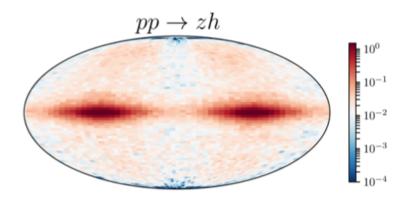
Mollweide projection of Riemannian preprocessing

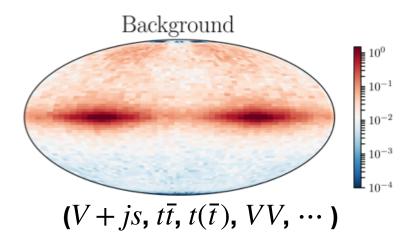


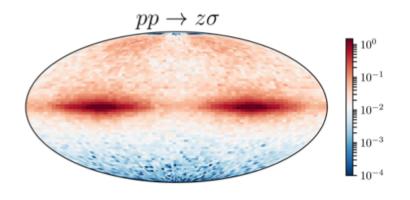
- The distribution of soft patterns does not show a dependency on $P_T(bar{b})$

Landscape of Color activity

Accumulated 5000 events shot

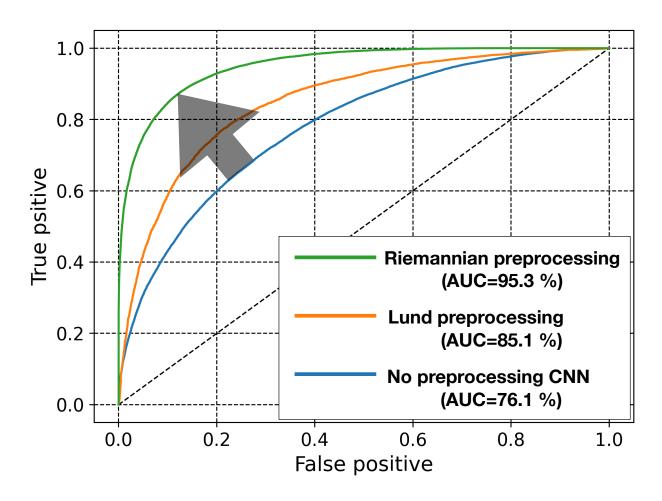






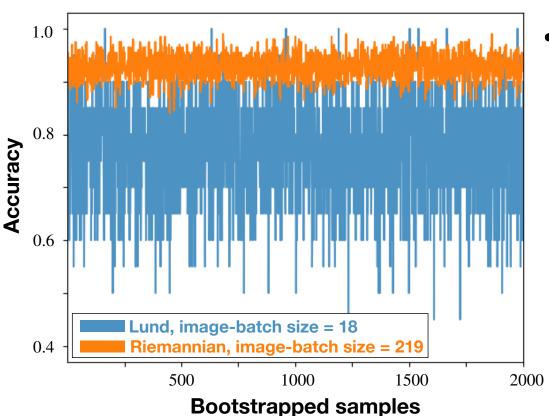
 Corruptions in North hemisphere are from ISR / MPI QCD activities.

Performance test



- With 100,000 MC data sample each for (1) whole p_T range and for (2) boosted p_T "Riemann" preprocessing has a outperformance.
- Lund preprocessing ("double-logarithmic plane") is from [arXiv:2105.03989] for a boosted Higgs (Data preprocessing with selected QCD features)

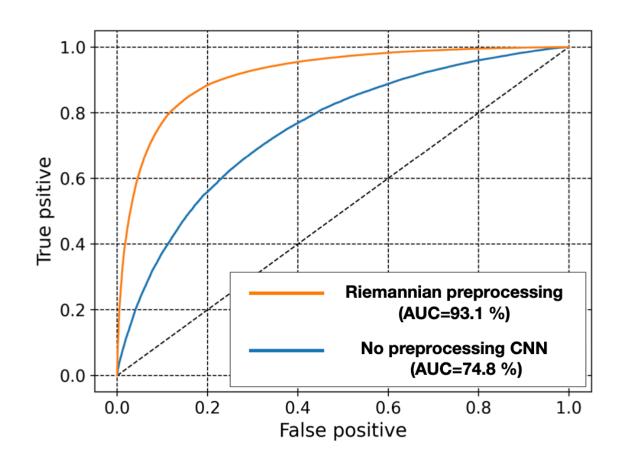
Applying to the LHC test



- Based on the ATLAS work (Measurement of WH/ZH in $H \rightarrow b\bar{b}$, 13TeV with 139fb⁻¹: arXiv:2007.02873)
 - Number of Higgs samples after selection cuts: 219
 - Number of Higgs samples in the boosted region ($p_T > 250 {\rm GeV}$) : 18

- With well-trained Neural Network, analysis only with High P_T region will suffer from "statistical fluctuation" in the real battle of the LHC.
- Thus, the method with wide range of $p_T(h)$ would be better

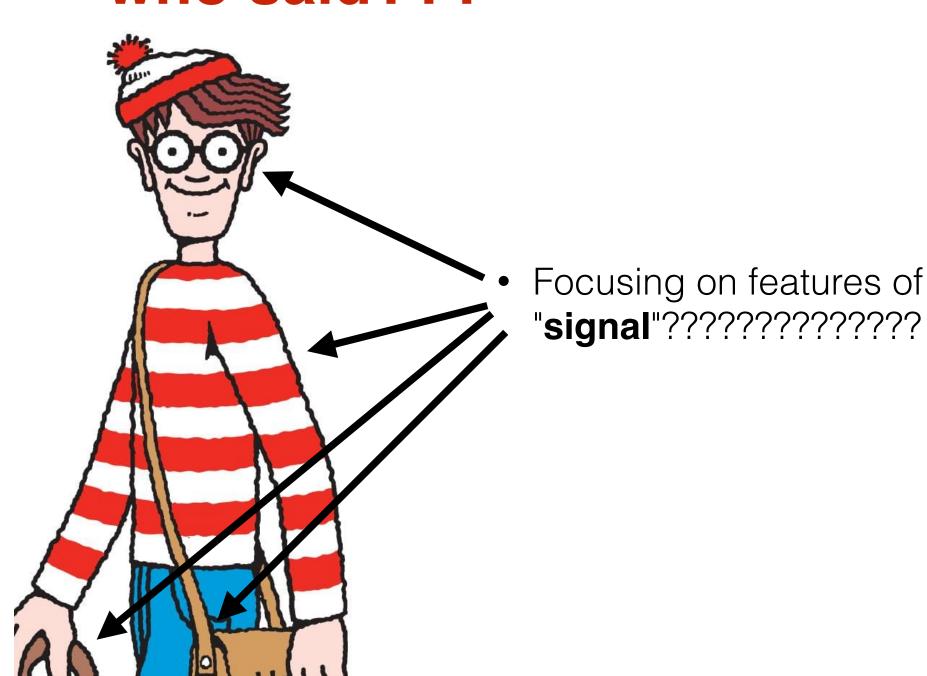
Reducing QCD backgrounds

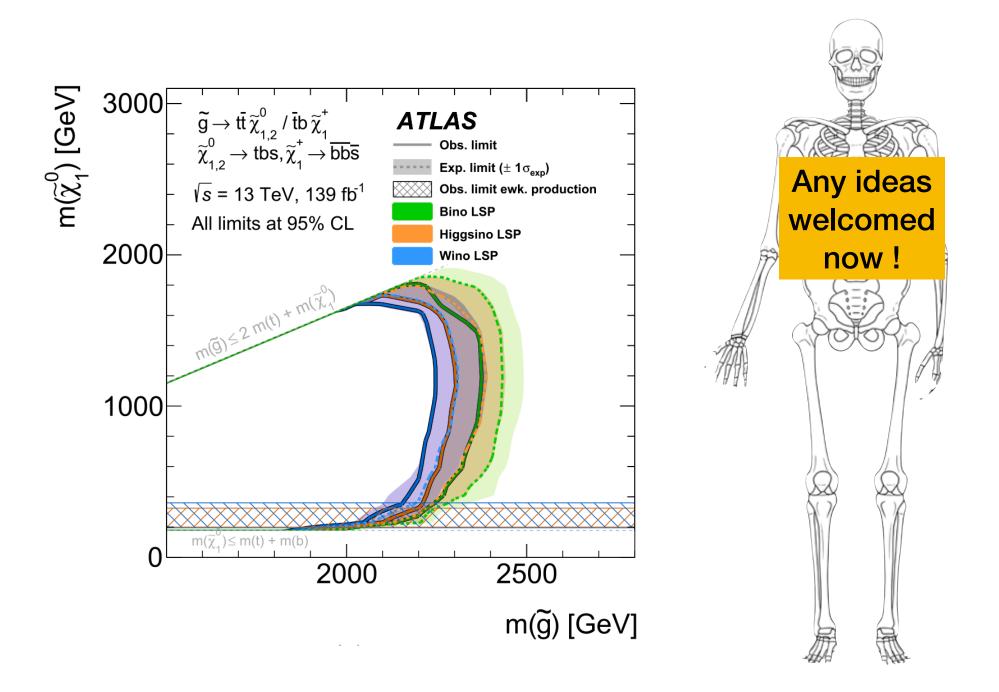


 Applying "color singlet ML tagger", we can achieve "factor 2" (CNN: 25%) enhancement compared to conventional cut-and-counting based only on kinematic features.

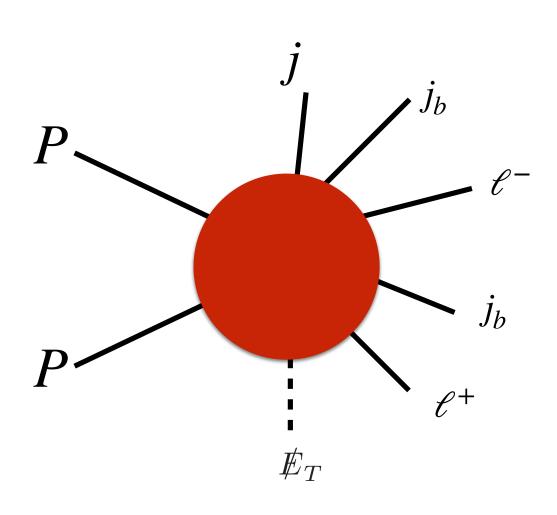
Untold story

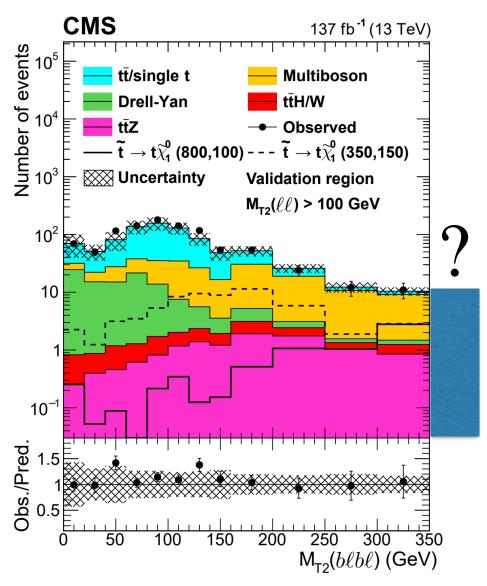
Q) Do we really expect "Wally" looks like this? who said???

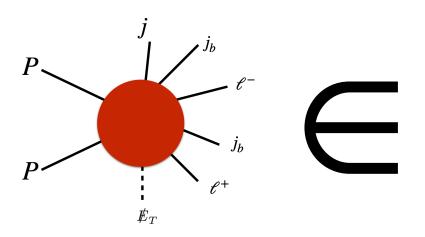


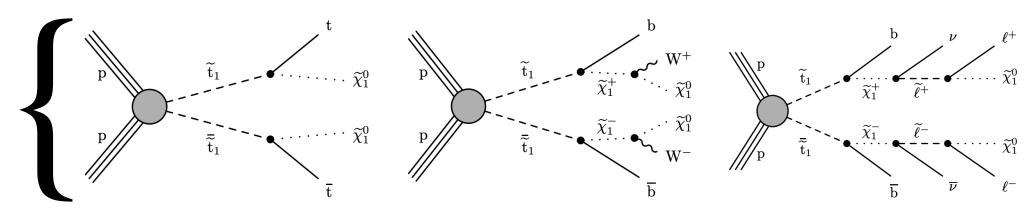


Example: anomaly

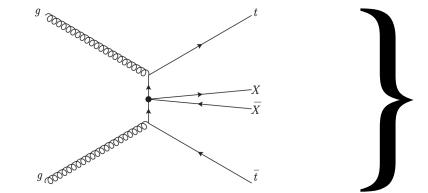








Sorry for my poor imagination, still SUSY....



Identifying Event-topology

- Once we "get" signals over "expected" backgrounds, (with, for example anomaly detection methods)
- If we can "identify" an event topology behind signal events
 - We can further increases signal efficiencies with various "supervised" Machine Learning methods
 - We can check the candidates for a model for this signatures, Very important, at least to give a novel prize :)
- Importantly, there are not so many studies on this!
 (as far as I know)

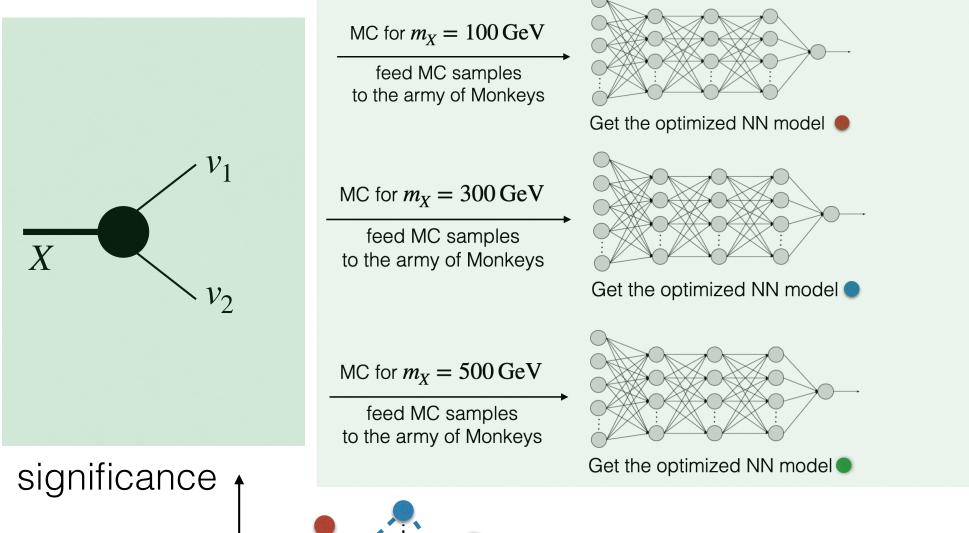
If yo are interested, please check our other works (Minho Kim, Jae-hyeon Park, Pyungwon Ko, MP, arXiv:2111.07806)

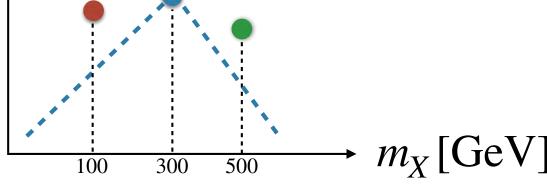
Conclusion

- We are interested in maximizing the discovery chance with Machine Learning
 - We want to squeeze outputs from the (future) colliders
- Utilizing various information, including kinematics, QCD information would be very helpful. ML can do this job nicely.
- Still we can design nicer networks or preprocessing method (Riemannian) based on our domain knowledge (physics)
 - More efficient to minimize the training data size, quick learning convergence, etc...

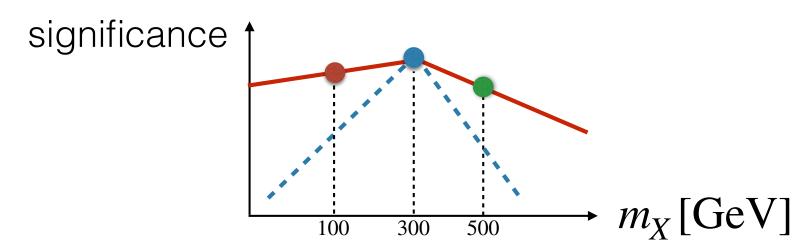
Details on Kinematic ML

Conventional supervised ML,

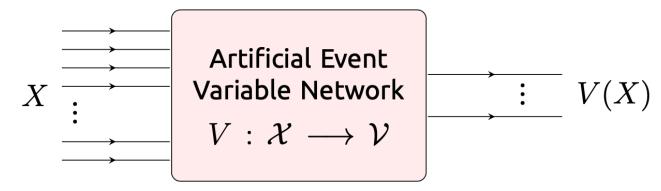




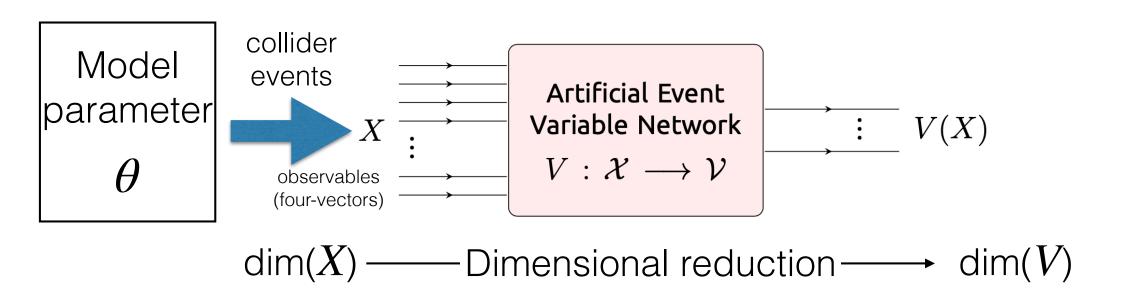
Our NN method provide



by synthesizing event variable with ML



- We want to make V to focus on the kinematics.
- We train the network so that V carries (focus) information on the phase space, independently on the underlying unknown parameter θ



- Some information would be lost due to dim(X) > dim(V)
 - Try to minimize the information loss
 - Efficiently retain the underlying parameters heta

$$I(V;\Theta) = \int dv \int d\theta \ p_{V,\Theta}(v,\theta) \ \ln \left[\frac{p_{V,\Theta}(v,\theta)}{p_V(v) \ p_{\Theta}(\theta)} \right]$$

• This is KL divergence between $p_{(V,\theta)}$ and $p_V \otimes p_{\theta}$

Train V so that $p_{(V,\theta)}$ and $p_V \otimes p_{\theta}$ are highly distinguishable

How to train V?

- Use two classes
 - 1. $p_{X|\theta}$: events X from θ
 - 2. $p_X \otimes p_\theta$: events X not from θ (totally uncorrelated)

