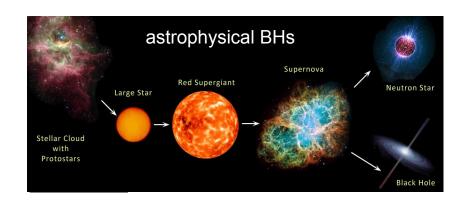
Primordial Black Holes from Scalar Fields and Their Novel Manifestations

Volodymyr Takhistov

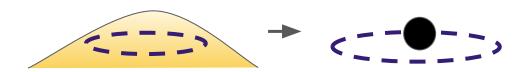
QUP & Theory Center, KEK & Kavli IPMU, U. Tokyo



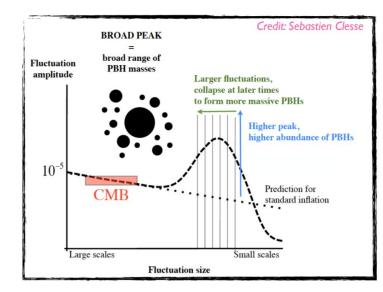
Primordial Black Holes (PBHs)

In early Universe, just roughly take scoop of ~ 50% overdensity to make BH

PBHs as dark matter


... a "Standard Model" candidate

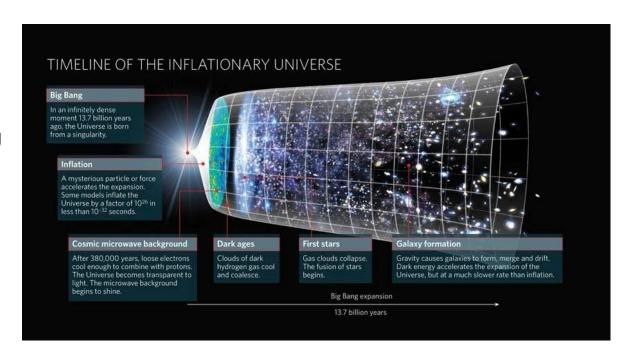
→ readily appear in theories of new physics


"Standard" PBH Formation

• Big perturbations ($\delta \sim$ 1) enter horizon \rightarrow collapse [Carr, Kawasaki, Sasaki, Riotto...many....]

$$M_H \approx \frac{c^3 t}{G} = 10^{15} \,\mathrm{g} \left(\frac{t}{10^{-23} \,\mathrm{s}}\right)$$

- Need to tune inflaton potential
 - → sensitive to restrictions on scalar fields
 - Example: "string swampland conjectures"
 [Kawasaki, VT, PRD, (2018) 1810.02547]

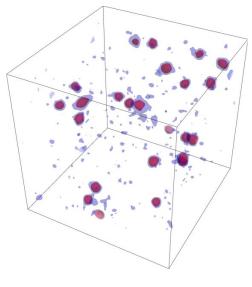

...alternatives with interesting features?

Scalar Fields Principal in Early Universe

- Scalars exist
 Soon celebrate 11th birthday
 of Higgs boson (July 2022)
- Inflaton drives rapid early expansion, resolving Big Bang problems

 Scalars expected ubiquitous from fundamental theory

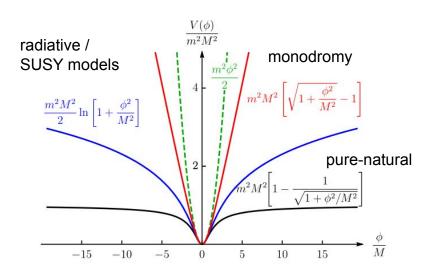
...what can they teach us about PBHs and vice versa?

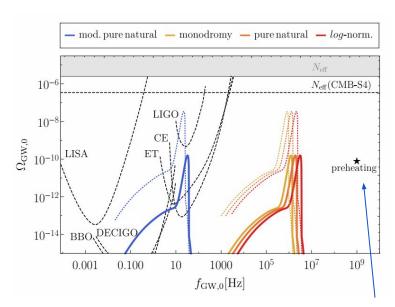

Marvelous Manifestations of Scalar Fields

In early Universe, attractively self-interacting scalar fields can fragment into solitonic "lumps"

Jeans fragmentation analogy (massive molecular Galactic Center clouds)

oscillon fragmentation (string moduli fields)

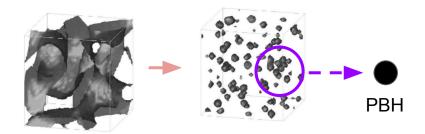



[Antusch+, 2017]

Marvelous Manifestations of Scalar Fields

In many theories inflaton can break to oscillons → decays result in dramatically enhanced GWs

→ new route to probe inflationary physics independent of CMB!

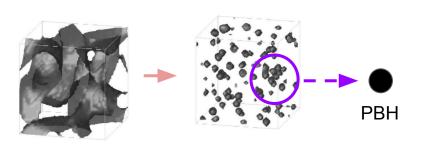


[Lozanov, VT, Phys.Rev.Lett., (2023) 2204.07152]

~ Old GW results

Distinct PBH Features Possible

scalar fragmentation

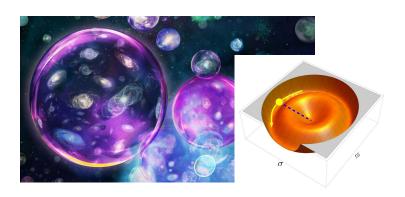

PBHs peaked in mass + big spin possible

inflaton oscillons

[Cotner, Kusenko, **VT**, *PRD*, (2018) 1801.03321; Cotner, Kusenko, Sasaki, **VT**, *JCAP*, (2019) 1907.10613]

Distinct PBH Features Possible

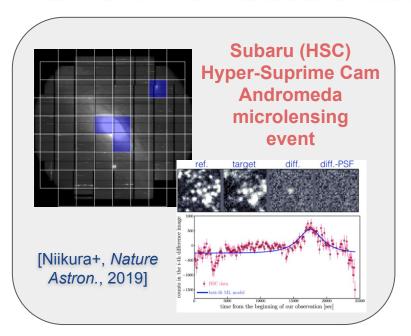
scalar fragmentation

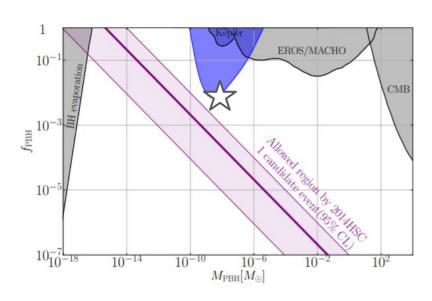


PBHs peaked in mass + big spin possible

inflaton oscillons

[Cotner, Kusenko, **VT**, *PRD*, (2018) 1801.03321; Cotner, Kusenko, Sasaki, **VT**, *JCAP*, (2019) 1907.10613]

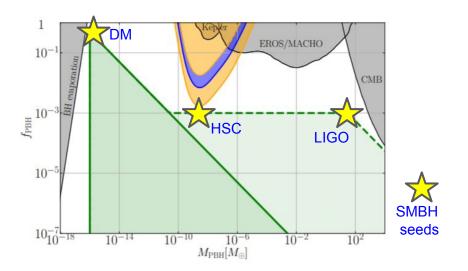

vacuum bubble "multiverse" in multi-field theories



PBHs broadly distributed in mass

see also [Deng, Vilenkin, Sasaki...] [Kusenko, Sasaki, Sugiyama, Takada, **VT**, Vitagliano, *Phys.Rev.Lett.*, (2020) 2001.09160]

PBH DM from Bubble Multiverse: Detected by HSC ?!



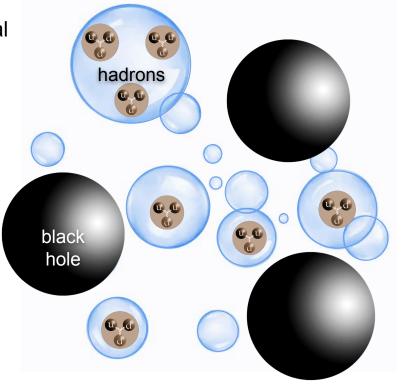
- PBH DM from bubble multiverse consistent with detected HSC event!
 - → tail of broad PBH distribution allows for indirect test of open DM window

[Kusenko, Sasaki, Sugiyama, Takada, VT, Vitagliano, Phys.Rev.Lett., (2020) 2001.09160]

PBH DM from Bubble Multiverse: Detected by HSC ?!

Generalized model explains many observables simultaneously (DM, LIGO, SMBH seeds...)

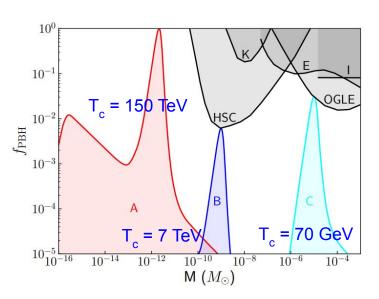
Will be <u>definitively</u> tested with upcoming HSC data

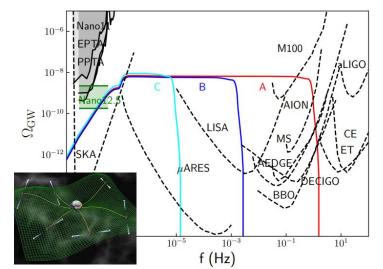

[Kusenko, Sasaki, Sugiyama, Takada, VT, Vitagliano, Phys.Rev.Lett., (2020) 2001.09160]

PBHs as Unique Probes of Fundamental Physics

 Scalars can also readily lead to new fundamental dynamics, such as high-T QCD phase transition [lpek, Tait, PRL, 2018]

$$\mathcal{L} \supset -\frac{1}{4} \left(\frac{1}{g_{s0}^2} + \frac{S}{M} \right) G_{\mu\nu}^a G_a^{\mu\nu} + \dots$$


- Extreme early Universe conditions set unique laboratory to test unexplored QCD regimes
- High-T transition enhances collapse
 - → PBH formation



[Lu, **VT**, Fuller, *Phys.Rev.Lett*, (2023) 2212.00156]

see talk by Philip Lu

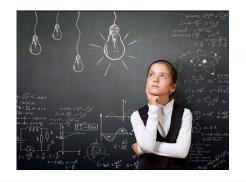
PBH Hints of Novel QCD Transition ?!

PBHs excellent proxies for exploring fundamental physics in unique ways

PBHs of High-T QCD transition <u>CAN be ALL DM</u> & GWs explain NANOGrav excess

→ distinct from SM QCD transition ~solar-mass PBHs, cannot be all DM

[Lu, **VT**, Fuller, *Phys.Rev.Lett*, (2023) 2212.00156]


see talk by Philip Lu

Summary

- PBHs ~ "Standard Model" dark matter, very different from particle dark matter
- Generically appear in many theories, especially with scalars, with intriguing features
- Manifestations could be already lurking in data and connect distinct areas of research! ...bubble multiverse? new QCD transition?

→ essential to confront new observations!

(many other exciting observables not covered today: neutron star explosions, gas heating, Hawking evaporation...)

... Dark Matter?