

Exploration of PBHs and ALPs through a novel decay model on cosmological scale

Tae-Geun Kim

Yonsei University

with Yongsoo Jho, Jongchul Park, Seongchan Park, Yeji Park

arXiv: 2212.11977

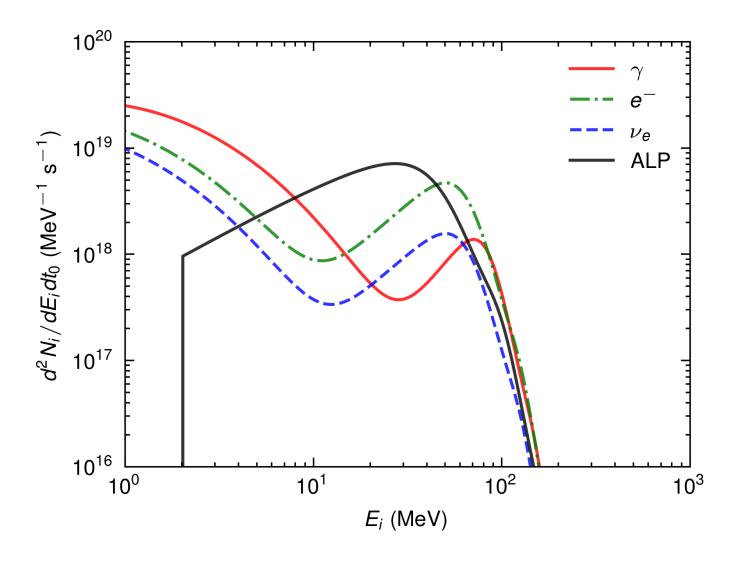
Primordial Black Hole

- Cosmologically produced (e.g., during the inflationary epoch)
- Considered as one of the viable candidates for dark matter
- Possess the ability to evaporate through a process known as *Hawking radiation*
- Hawking temperature of PBH

$$k_B T_{
m PBH} = rac{\hbar c^3}{8\pi G M_{
m PBH}} \sim 10.6 \left(rac{10^{15} {
m g}}{M_{
m PBH}}
ight) {
m MeV} \sim 10^{11} {
m ~K}$$

• The lifetime of PBH [Don N. Page, Phys. Rev. D 13, 198 (1976)]

$$au_{
m PBH} \sim 13.8 imes 10^9 {
m yr} igg(rac{M_{
m PBH}}{5 imes 10^{14} {
m g}}igg)^3$$


• Emission rates of particle i - This can be computed by BlackHawk

[Alexandre Arbey, Jérémy Auffinger, Eur. Phys. J. C 81 10, 910 (2010)]

$$rac{d^2N_i}{dEdt} = rac{g_i}{2\pi} rac{\Gamma(E,M_{
m PBH})}{e^{E/k_BT_{
m PBH}} - (-1)^{2s_i}}$$

PBH as a Particle Factory

Photons from PBH

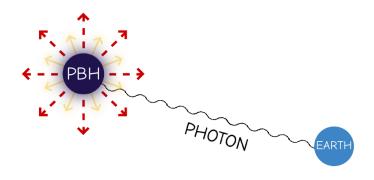


Fig.1 Photon from PBH

Our assumptions on PBH

- Monochromatic mass distribution
- Schwarzschild PBH
- Isotropically distributed

Differential photon flux from Extragalaxy

[B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Phys. Rev. D 81, 104019 (2010)]

$$rac{\mathrm{d}F_{\gamma_0}}{\mathrm{d}E_{\gamma_0}} = n_{\mathrm{PBH}}(t_0) \int_{t_{\mathrm{CMB}}}^{\min(au_{\mathrm{PBH}},t_0)} \mathrm{d}t \; (1+z(t)) \left. rac{\mathrm{d}^2 N_{\gamma}}{\mathrm{d}E \mathrm{d}t}
ight|_{E=(1+z(t))E_{\gamma_0}}$$

$$n_{
m PBH}(t_0) = rac{f_{
m PBH}
ho_{
m DM}}{M_{
m PBH}}, ~
ho_{
m DM} = 2.35 imes 10^{-30} {
m g} ~{
m cm}^{-3}, ~f_{
m PBH} = \Omega_{
m PBH}/\Omega_{
m DM}$$

Flux of photons from PBH

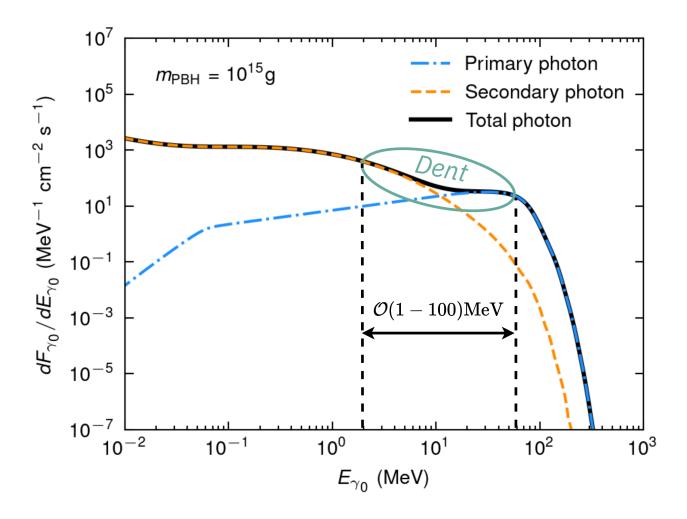
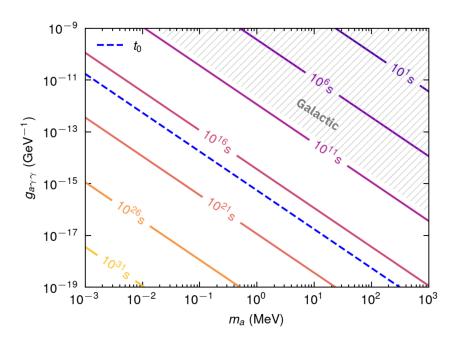


Fig.2 Redshifted differential flux of (primary + secondary) photon

Axion-Like Particles (ALPs)

- ALPs : Pseudo NG bosons of the spontaneously broken global U(1) symmetry
- ALPs studies in cosmology: inflation, dark matter, relaxion and etc.
 - [Katherine Freese, Joshua A. Frieman, and Angela V. Olinto-Phys. Rev. Lett. 65, 3233 (1990)]
 - [P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo, and A. Ringwald-JCAP06013 (2012)]
 - [P. W. Graham, D. E. Kaplan, and S. Rajendran-Phys. Rev. Lett. 115 no. 22, 221801 (2015)]
- Astrophysical sources of ALPs: SN, Sun, NS, PBH, and etc.

$$\mathcal{L}_{ ext{int}} = -rac{g_{a\gamma\gamma}}{4} a F_{\mu
u} ilde{F}^{\mu
u} ilde{\gamma}$$


Properties

- Decays to 2 photons
- Its mass and the coupling to photons are independent in general

Motivation for time-varying decay

$$ext{ALP's mean lifetime}: \gamma au_a = rac{64 \pi E_a}{g_a^2 m_a^4} \equiv rac{\gamma}{\Gamma_a}$$

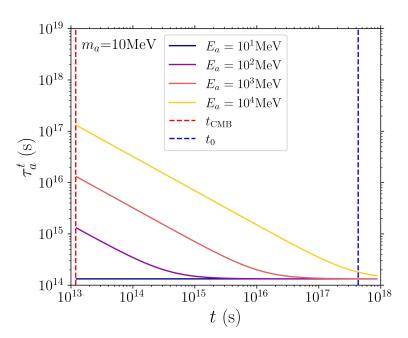


Fig. 3 Mean lifetime of ALPs in the rest frame

Fig.4 Mean lifetime of ALPs from CMB (Boosted + Redshifted)

$$\therefore ext{ ALP's mean lifetime}: au_a^t \equiv \gamma(t) au_a = rac{64\pi E_a(t)}{g_a^2 m_a^4} \equiv rac{1}{\Gamma_a^t}$$

Decay equation

• Time-varying decay equation

$$rac{\mathrm{d}N_a}{dt} = -\Gamma_a^t N_a \ \Rightarrow \ N_a(t) = N_a(t_e) \expigg(-\int_{t_e}^t \Gamma_a^{t';t_e} \ \mathrm{d}t'igg)$$

• Time-varying decay in terms of Survival analysis

[D. G. Kleinbaum (1996) Survival analysis: A self learning text. New York: Springer]

Survival analysis	Expression	Time-varying decay	Notation
Survival function	$S(t) = \mathbb{P}[X > t]$	Survival probability	$P_{ m surv}$
Hazard function	$h(t) = -rac{\mathrm{d}}{\mathrm{d}t}[\log S(t)]$	Decay rate	Γ^t_a
Failure density function	$\int_0^t f(u)du = 1 - S(t)$	Decay density function	$\mathcal{P}_{ ext{decay}}$

Decay number density

• Survival probability & Decay density function

$$egin{aligned} P_{ ext{surv}}(t;t_e,E_a) &= \expigg(-\int_{t_e}^t \Gamma_a^{t';t_e} \, \mathrm{d}t'igg) \ \mathcal{P}_{ ext{decay}}(t;t_e,E_a) &= P_{ ext{surv}}(t;t_e,E_a) imes \Gamma_a^{t;t_e} \end{aligned}$$

Differential number density for decaying ALPs

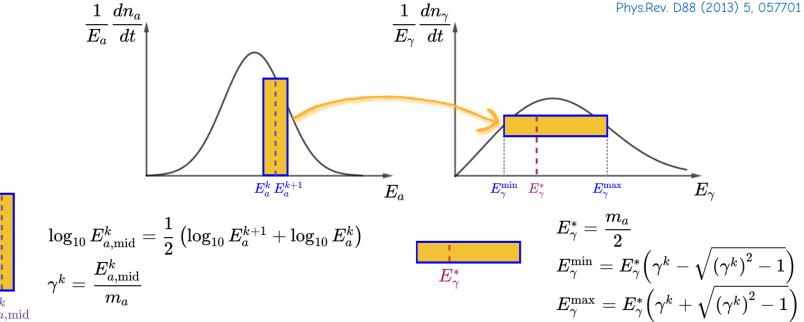
From
$$(t_e, E_a)$$
 to t :

$$\phi_a(t;t_e,E_a) \,=\, rac{\mathrm{d} n_a}{\mathrm{d} t_e} imes \mathcal{P}_{\mathrm{decay}}(t;t_e,E_a)$$

From
$$t_e$$
 to (t,\widetilde{E}_a) :

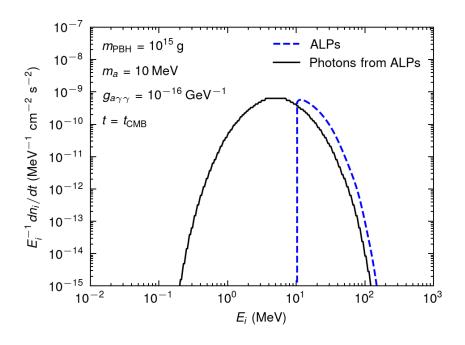
$$\phi_a(t,\widetilde{E}_a;t_e)=\phi(t;t_e,E_a)igg|_{E_a=\mathcal{R}_{t o t_e}^{-1}(\widetilde{E}_a)}$$

$$\therefore ext{ At } (t,E_a): \quad rac{\mathrm{d} n_a^{\mathrm{dec}}}{\mathrm{d} t} = \int_{t_e^{\mathrm{min}}}^t \left(rac{1+z(t)}{1+z(t_e)}
ight)^3 \phi_a(t,E_a;t_e) \mathrm{d} t_e$$



Boosted ALP decay to photons

- Using *Two body decay kinematics* to describe the decay of ALP to photon: $a o \gamma \gamma$
- ullet Lorentz boost $:E_{\gamma}=E_{\gamma}^{st}(\gamma\pm\sqrt{\gamma^2-1})$ where $E_{\gamma}^{st}=m_a/2$


[Schematic Figure For This Process]

 Kaustubh Agashe, Roberto Franceschini, and Doojin Kim Phys Rev. D88 (2013) 5, 05770

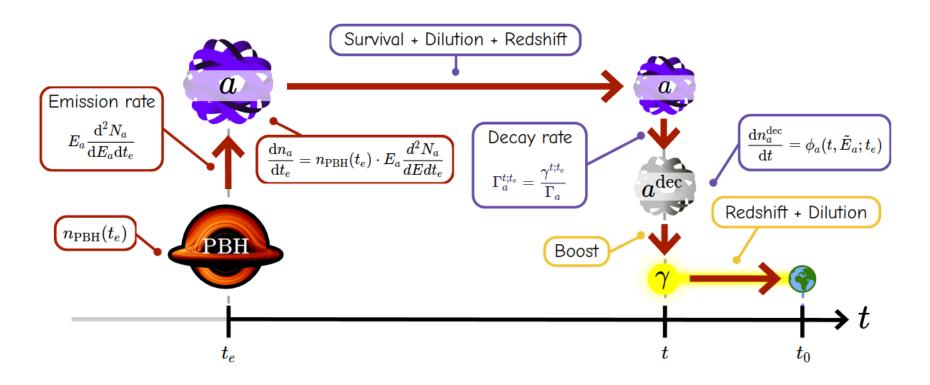
Boosted & Redshifted photon flux

• Boosted photon flux [K. Agashe, R. Franceschir

[K. Agashe, R. Franceschini, and D. Kim, Phys. Rev. D 88, 057701 (2013)]

$$\left\{ \left(E_a, \frac{1}{E_a} \frac{\mathrm{d} n_a^{\mathrm{dec}}}{\mathrm{d} t} \right) \right\} \stackrel{\mathrm{Boost}}{\longrightarrow} \left\{ \left(E_\gamma, \frac{1}{E_\gamma} \frac{\mathrm{d} n_\gamma}{\mathrm{d} t} \right) \right\}$$

• Integration of redshifted photon flux


[B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Phys. Rev. D 81, 104019 (2010)]

$$\left.rac{\mathrm{d}F_{\gamma_0}}{\mathrm{d}E_{\gamma_0}} = \int_{t_{\mathrm{CMB}}}^{t_0} rac{\mathrm{d}t}{\left(1+z(t)
ight)^3 E_{\gamma_0}} rac{\mathrm{d}n_{\gamma}}{\mathrm{d}t}
ight|_{E_{\gamma}=(1+z(t))E_{\gamma_0}}$$

Fig.5 Boosted photon spectrum

Summary of time-varying decay

Differential flux of photons

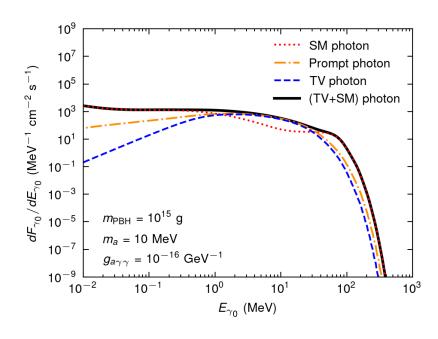


Fig.6 Differential flux for $g_a=10^{-16} {
m GeV}^{-1}$

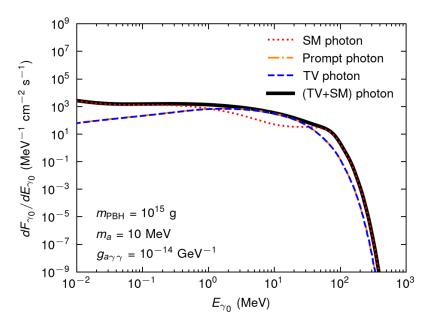
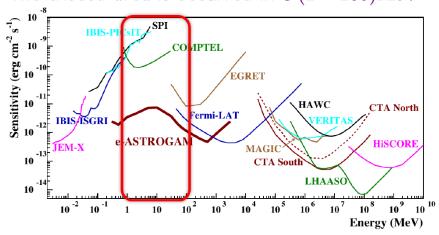


Fig.7 Differential flux for $g_a=10^{-14} {
m GeV}^{-1}$

ALPs: "The dent puller"

Pull (with ALP)

Dent Puller = ALPs



e-ASTROGAM

[Experimental Astronomy 44 (2017) 25-82]

- A gamma-ray mission and the planned launch date is 2029 by ESA
- Sensitive in 1 ~ 1000 MeV range
- 1-2 orders of magnitude improvement in sensitivity comparing to COMPTEL experiment

The exceed area is occurred in $\mathcal{O}(1-100)\mathrm{MeV}$

Gamma rays in the $\mathrm{MeV}-\mathrm{GeV}$ range

$E \ m (MeV)$	Galactic center Sensitivity $(\mathrm{ph}\ \mathrm{cm}^{-2}\ \mathrm{s}^{-1})$	Extragal. Sensitivity 3σ $({ m ph~cm}^{-2}~{ m s}^{-1}$
7.5 - 15	$1.3 imes10^{-5}$	$2.6 imes10^{-6}$
15 - 40	$2.4 imes10^{-6}$	$4.3 imes10^{-7}$
40 - 60	$8.0 imes10^{-7}$	$1.4 imes10^{-7}$
60 - 80	$4.5 imes10^{-7}$	$7.2 imes10^{-8}$
80 - 150	$2.7 imes10^{-7}$	$3.9 imes10^{-8}$
150 - 400	$7.8 imes10^{-8}$	$6.9 imes10^{-9}$
400 - 600	$3.8 imes10^{-8}$	$3.3 imes10^{-9}$
600 - 800	$2.5 imes10^{-8}$	$3.2 imes10^{-9}$
800 - 2000	$1.4 imes10^{-8}$	$3.1 imes10^{-9}$
2000 - 4000	$5.0 imes10^{-9}$	$2.8 imes10^{-9}$

e-ASTROGAM for PBH

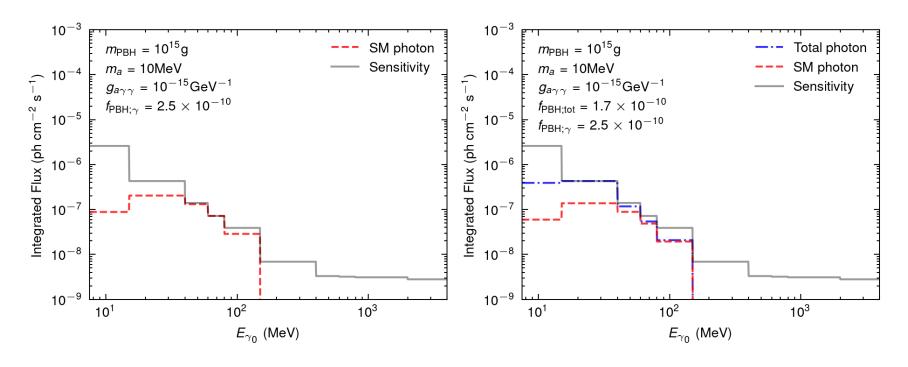


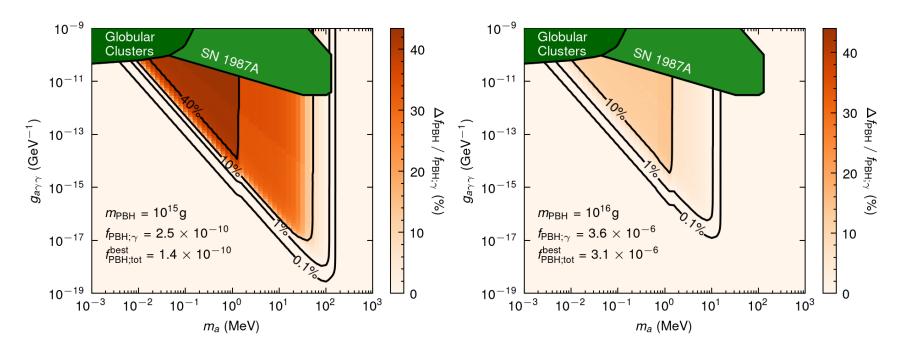
Fig.8 $f_{
m PBH}$ for SM photon only

Fig.9 $f_{
m PBH}$ for total photon

16 / 18

e-ASTROGAM for PBH

GC: M. J. Dolan, F. J. Hiskens, and R. R. Volkas, [arXiv:2207.03102] (2022) **SN1987A**: J. Jaeckel, P. C. Malta, and J. Redondo, Phys. Rev. D 98, 055032 (2018)



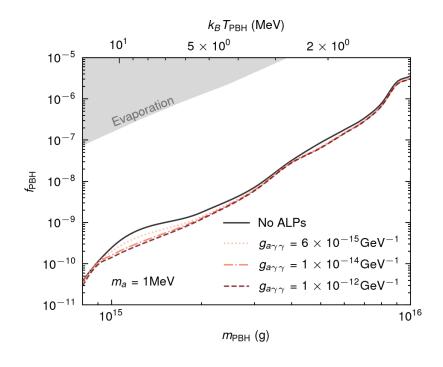

Fig.10 $\Delta f_{
m PBH}/f_{
m PBH;\gamma}$ ($m_{
m PBH}=10^{15}{
m g}$)

Fig.11 $\Delta f_{
m PBH}/f_{
m PBH;\gamma}$ ($m_{
m PBH}=10^{16}{
m g}$)

$$\Delta f_{
m PBH} \equiv |f_{
m PBH;tot} - f_{
m PBH;\gamma}|$$

Results & Summary

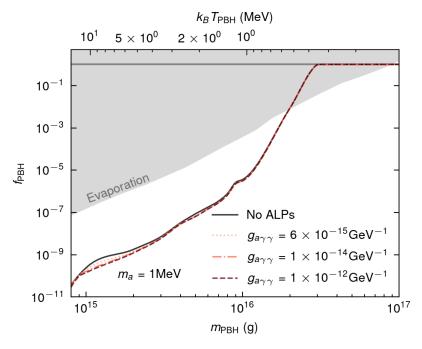


Fig.12 New constraint for PBHs ($m_a=1 {
m MeV}$)

Fig.13 New constraint for PBHs ($m_a=1 {
m MeV}$) (extend)

- II For particles with a very long lifetime, time-varying decay must be considered.
- 2 When examining ALPs decay, the boost effect on photons should be taken into account.
- By using PBHs as a source of ALPs, we can establish new constraints on PBHs.

18 / 18