

Positivity Bounds on Higgs-Portal Dark Matter

15, June, PPC2023 Dark Matter Session SeongSik Kim*¹, Hyun Min Lee¹, and Kimiko Yamashita² ¹Chung-Ang University, ²Ibaraki University arXiv:2302.02879, Accepted to JHEP

Summary of our Work

- New Physics exist! (i.e. Dark Matter...)
 Though we don't know its complete elements and description.
- We can write down 'effective theory' for New physics that valid up to some energy scale, instead of full theory.
- Effective theory is generally constrained by Positivity condition.
 This strongly restricts the validity of theory.
- We consider typical Higgs-portal scalar Dark Matter Model. And we combine experimental bound and positivity constraint.

Effective Theory for Higgs portal DM

Theory of $DM(\varphi)$ -Higgs(H) Interaction up to 8-Dimension

Dim-4 operators

$$\mathcal{L}_{\text{dim}-4} \supset -\frac{1}{6\Lambda^4} c_1 m_{\varphi}^4 \varphi^4 - \frac{4}{6\Lambda^4} c_2 m_H^4 |H|^4 - \frac{4}{6\Lambda^4} c_3 m_{\varphi}^2 m_H^2 \varphi^2 |H|^2$$

Dim-6 operators

$$\mathcal{L}_{\text{dim}-6} \supset -\frac{8}{6\Lambda^4} c_2' \lambda_H m_H^2 |H|^6 - \frac{4}{6\Lambda^4} c_3' \lambda_H m_{\varphi}^2 \varphi^2 |H|^4 \text{ (Non-derivative operators)}$$

$$+ \frac{1}{6\Lambda^4} d_1 m_{\varphi}^2 \varphi^2 (\partial_{\mu} \varphi)^2 + \frac{4}{6\Lambda^4} d_2 m_H^2 |H|^2 |D_{\mu} H|^2$$

$$+ \frac{2}{6\Lambda^4} d_3 m_{\varphi}^2 \varphi^2 |D_{\mu} H|^2 + \frac{2}{6\Lambda^4} d_4 m_H^2 |H|^2 (\partial_{\mu} \varphi)^2$$
(2-derivative operators)

Effective Theory for Higgs portal DM

Theory of $DM(\varphi)$ -Higgs(H) Interaction up to 8-Dimension

Dim-8 operators

$$\mathcal{L}_{\text{dim-8}} \supset -\frac{4}{6\Lambda^4} c_2'' \lambda_H |H|^8 \qquad \text{(Non-derivative operators)}$$

$$+ \frac{4}{6\Lambda^4} d_2' \lambda_H |H|^4 (\partial_\mu \varphi)^2 + \frac{2}{6\Lambda^4} d_4' \lambda_H |H|^4 |\partial_\mu H|^2 \quad \text{(2-derivative operators)}$$

$$\mathcal{L}_2 = \frac{C_{H^2 \varphi^2}^{(1)}}{\Lambda^4} O_{H^2 \varphi^2}^{(1)} + \frac{C_{H^2 \varphi^2}^{(2)}}{\Lambda^4} O_{H^2 \varphi^2}^{(2)} + \frac{C_{\Psi^4}^{(2)}}{\Lambda^4} O_{\Psi^4}^{(1)} + \frac{C_{H^4}^{(2)}}{\Lambda^4} O_{H^4}^{(2)} + \frac{C_{H^4}^{(3)}}{\Lambda^4} O_{H^4}^{(3)} + \frac{$$

Effective Theory for Higgs portal DM

Determining Coefficients

$$\mathcal{L}_{\text{dim-8}} \supset -\frac{4}{6\Lambda^4} \frac{c_2''}{c_2''} \lambda_H |H|^8 \qquad \text{(Non-derivative operators)}$$

$$+\frac{4}{6\Lambda^4} \frac{d_2'}{d_2'} \lambda_H |H|^4 (\partial_\mu \varphi)^2 + \frac{2}{6\Lambda^4} \frac{d_4'}{d_4'} \lambda_H |H|^4 |\partial_\mu H|^2 \qquad \text{(2-derivative operators)}$$

$$\mathcal{L}_2 = \frac{C_{H^2 \varphi^2}^{(1)}}{\Lambda^4} O_{H^2 \varphi^2}^{(1)} + \frac{C_{H^2 \varphi^2}^{(2)}}{\Lambda^4} O_{H^2 \varphi^2}^{(2)}$$

$$+\frac{C_{\varphi^4}}{\Lambda^4} O_{\varphi^4} + \frac{C_{H^4}^{(1)}}{\Lambda^4} O_{H^4}^{(1)} + \frac{C_{H^4}^{(2)}}{\Lambda^4} O_{H^4}^{(2)} + \frac{C_{H^4}^{(3)}}{\Lambda^4} O_{H^4}^{(3)}$$

$$(4-derivative operators)$$

Coefficients are determined by experiment. In theoretical sides, they determined by UV complete model

Positivity Bound

Not every UV complete models are allowed.

And we can evaluate validity of theory at the EFT level

$$\mathcal{L}_{2} = \frac{C_{H^{2}\varphi^{2}}^{(1)}}{\Lambda^{4}} O_{H^{2}\varphi^{2}}^{(1)} + \frac{C_{H^{2}\varphi^{2}}^{(2)}}{\Lambda^{4}} O_{H^{2}\varphi^{2}}^{(2)} + \frac{C_{H^{2}\varphi^{2}}^{(2)}}{\Lambda^{4}} O_{H^{4}}^{(1)} + \frac{C_{H^{4}}^{(2)}}{\Lambda^{4}} O_{H^{4}}^{(2)} + \frac{C_{H^{4}}^{(3)}}{\Lambda^{4}} O_{H^{4}}^{(3)}$$

$$\begin{aligned}
O_{H^{2}\varphi^{2}}^{(1)} &= (D_{\mu}H^{\dagger}D_{\nu}H)(\partial^{\mu}\varphi\partial^{\nu}\varphi) & O_{H^{2}\varphi^{2}}^{(2)} &= (D_{\mu}H^{\dagger}D^{\mu}H)(\partial_{\nu}\varphi\partial^{\nu}\varphi) \\
O_{\varphi^{4}} &= \partial_{\mu}\varphi\partial^{\mu}\varphi\partial_{\nu}\varphi\partial^{\nu}\varphi \\
O_{H^{4}}^{(1)} &= (D_{\mu}H^{\dagger}D_{\nu}H)(D^{\nu}H^{\dagger}D^{\mu}H) & O_{H^{4}}^{(2)} &= (D_{\mu}H^{\dagger}D_{\nu}H)(D^{\mu}H^{\dagger}D^{\nu}H) \\
O_{H^{4}}^{(3)} &= (D_{\mu}H^{\dagger}D^{\mu}H)(D_{\nu}H^{\dagger}D^{\nu}H)
\end{aligned}$$

Any Model that reduced to positivity-violating coefficient are dangerous

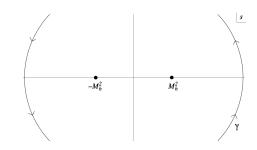
1. Positivity from Cross-section

Example) Forward Scattering Limit

Effective Lagrangian
$$\mathcal{L}=\partial^{\mu}\pi\partial_{\mu}\pi+rac{c_{3}}{\Lambda^{4}}(\partial_{\mu}\pi\partial^{\mu}\pi)^{2}+\ldots$$

Integral of forward scattering (t=0) amplitude for $\pi\pi\to\pi\pi$ process

$$0 = I = \frac{c_3}{\Lambda^4} + 2 \frac{\text{res}\mathcal{A}(s = M_h^2)}{(M_h^2)^3} = \oint_{\gamma} \frac{ds}{2\pi i} \frac{\mathcal{A}(s)}{s^3}$$



 $(M_h: Mass of heavy particle which completes UV theory)$

Optical theorem (from unitary) implies
$$\frac{c_3}{\Lambda^4} = \frac{2}{\pi} \int ds \frac{s\sigma(s)}{s^3} \rightarrow c_3 \geq 0$$

Ref : Nima Arkani-Hamed et al, arXiv:hep-th/0602178v2

Positive property of cross-section argue positive coefficient

2. Positivity from Superluminality

Example) 4-derivative operator

$$\mathcal{L} \supset \frac{1}{2} (\partial \varphi)^2 + \frac{c}{\Lambda^4} (\partial_\mu \varphi \partial^\mu \varphi)^2 \quad \to \quad \text{e.o.m} \quad \partial^2 \varphi + \frac{4c}{\Lambda^4} (\partial^\mu \varphi) (\partial^\nu \varphi) \partial_\mu \partial_\nu \varphi + \dots = 0$$

$$\quad \to \quad \text{Fourier Transform} \quad \left(k^2 - \frac{4c}{\Lambda^4} (C \cdot k)^2 + \dots \right) \varphi = 0 \; , \quad C^\mu \equiv \partial^\mu \varphi_0$$

Background Solution of ϕ

Physical states is only able to propagate vector k with ($k^2 \le 0$). Thus $c \ge 0$ satisfied.

(Disperse relation suggests
$$\omega^2 = v^2(k) |\vec{k}|^2$$
, $\frac{\omega^2}{|\vec{k}|^2} = v^2 \le 1$, $\frac{\omega^2 - |\vec{k}|^2}{|\vec{k}|^2} = \frac{k^2}{|\vec{k}|^2} \le 0$)

Ref: Nima Arkani-Hamed et al, arXiv:hep-th/0602178v2

Another perspective of positivity.

Different viewpoint, Same bound.

So Question:
How Positivity constrains
Dark Matter Physics?

We thus investigate Positivity bounds for Higgs-Portal Dark Matter Model. Combining with experimental constraints

Positivity Analysis of the model

Superpose State Analysis

Bound comes from Following Equations

$$|a\rangle = \sum_{i=1}^{5} u_{i} |i\rangle, |b\rangle = \sum_{i=1}^{5} v_{i} |i\rangle \qquad u_{i}v_{j}u_{k}^{*}v_{l}^{*}\frac{d^{2}}{ds^{2}}M(ij \to kl)(s, t = 0)\Big|_{s \to 0} \ge 0$$

$$|H\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} |1\rangle + i|2\rangle \\ |3\rangle + i|4\rangle \end{pmatrix} \qquad |\varphi(\mathsf{DM})\rangle = |5\rangle$$

Results

$$C_{H^4}^{(1)} + C_{H^4}^{(2)} \ge 0, \qquad C_{H^2\varphi^2}^{(1)} \ge 0,$$

$$C_{H^4}^{(1)} + C_{H^4}^{(2)} + C_{H^4}^{(3)} \ge 0, \qquad C_{\varphi^4} \ge 0,$$

$$C_{H^4}^{(2)} + C_{H^4}^{(2)} + C_{H^4}^{(3)} \ge 0, \qquad 4\sqrt{(C_{H^4}^{(1)} + C_{H^4}^{(2)} + C_{H^4}^{(3)})C_{\varphi^4}} \ge \left| C_{H^2\varphi^2}^{(1)} + 2C_{H^2\varphi^2}^{(2)} \right| - C_{H^2\varphi^2}^{(1)}.$$

Example - EFTheorize UV Completion

Extra Dimension model

Model Ref : arXiv:1306.4107v2

$$ds^{2} = w(z)^{2} \left(e^{-2r} (\eta_{\mu\nu} + G_{\mu\nu}) - (1 + 2r)^{2} dz^{2} \right)$$

z: 5th dimension / $G_{\mu\nu}$: Fluctuation of 4D component of 5D metric r: Radion. Fluctuation of Extra dimension size. This couples to Energy-momentum tensor

$$\mathcal{S}\supset\int d^dx\,\sqrt{-g}\mathcal{L}\supset\int d^dx\,\sqrt{-g}\,w^2(z)\,\left(2rT-G_{\mu\nu}T^{\mu\nu}\right)$$

 $T_{\mu
u}$: Energy-momentum tensor of fields, including Dark Matter and Higgs. / $T=T^{\mu}_{\ \mu}$

$$T_{\mu\nu}^{H} = (D_{\mu}H)^{\dagger}D_{\nu}H + (D_{\nu}H)^{\dagger}D_{\mu}H - g_{\mu\nu}[g^{\rho\sigma}(D_{\rho}H)^{\dagger}D_{\sigma}H] + g_{\mu\nu}(m_{H}^{2}|H|^{2} + \lambda_{H}|H|^{4}),$$

$$T^{\varphi}_{\mu\nu} = \partial_{\mu}\varphi \partial_{\nu}\varphi - \frac{1}{2}g_{\mu\nu}(g^{\rho\sigma}\partial_{\rho}\varphi \partial_{\sigma}\varphi) + \frac{1}{2}g_{\mu\nu}m_{\varphi}^{2}\varphi^{2}$$

In this example, SM Higgs and Dark section connected via graviton-like $G_{\mu\nu}$ and radion r

Example - EFTheorize UV Completion

$$\mathcal{S}\supset\int d^dx\,\sqrt{-g}\,\mathcal{L}\supset\int d^dx\,\sqrt{-g}\,w^2(z)\,\left(2rT-G_{\mu\nu}T^{\mu\nu}\right)$$
 Integrate out 5th dimension
$$\mathcal{L}_G=-\frac{c_H}{M}\,G^{\mu\nu}T^H_{\mu\nu}-\frac{c_\varphi}{M}\,G^{\mu\nu}T^\varphi_{\mu\nu} \qquad \qquad \mathcal{L}_r=\frac{c_H^r}{\sqrt{6M}}r\,T^H+\frac{c_\varphi^r}{\sqrt{6M}}r\,T^\varphi$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$
 Integrate out $G_{\mu\nu}$
$$\mathcal{L}_{G,\mathrm{eff}}=\frac{1}{4m_G^2M^2}\Big(2T_{\mu\nu}T^{\mu\nu}-\frac{2}{3}T^2\Big) \qquad \qquad \mathcal{L}_{r,\mathrm{eff}}=\frac{1}{12m_r^2M^2}T^2$$

$$T_{\mu\nu}=c_HT^H_{\mu\nu}+c_\varphi T^\varphi_{\mu\nu} \qquad T=c_HT^H+c_\varphi T^\varphi$$

Graviton-like Interaction

Radion-like Interaction

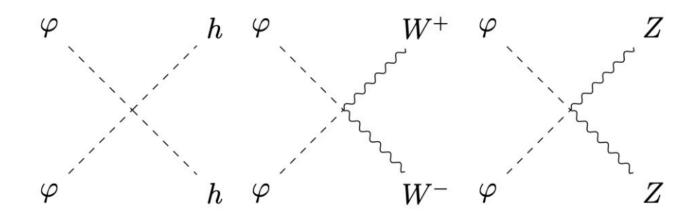
Positivity Analysis for the Example

i.e.) Effective Theory came from Graviton-like & Radion-like interaction Bounded by...

$$\begin{split} C_{H^4}^{(1)} + C_{H^4}^{(2)} &= \frac{2c_H^2\Lambda^4}{m_G^2M^2} \geq 0, \\ C_{H^4}^{(1)} + C_{H^4}^{(2)} + C_{H^4}^{(3)} &= \frac{4c_H^2\Lambda^4}{3m_G^2M^2} + \frac{(c_H^r)^2\Lambda^4}{3m_r^2M^2} \geq 0, \\ C_{H^4}^{(2)} &= \frac{c_H^2\Lambda^4}{m_G^2M^2} \geq 0, \\ C_{H^2\varphi^2}^{(1)} &= \frac{2c_Hc_\varphi\Lambda^4}{m_G^2M^2} \geq 0, \quad \text{for} \quad c_Hc_\varphi \geq 0, \\ C_{\varphi^4} &= \frac{c_\varphi^2\Lambda^4}{3m_G^2M^2} + \frac{(c_\varphi^r)^2\Lambda^4}{12m_r^2M^2} \geq 0, \\ 2\sqrt{(C_{H^4}^{(1)} + C_{H^4}^{(2)} + C_{H^4}^{(3)})C_{\varphi^4}} \geq -\left(C_{H^2\varphi^2}^{(1)} + C_{H^2\varphi^2}^{(2)}\right) = -\frac{4c_Hc_\varphi\Lambda^4}{3m_G^2M^2} - \frac{c_H^rc_\varphi^r\Lambda^4}{3m_r^2M^2}, \\ 2\sqrt{(C_{H^4}^{(1)} + C_{H^4}^{(2)} + C_{H^4}^{(3)})C_{\varphi^4}} \geq C_{H^2\varphi^2}^{(2)} = -\frac{2c_Hc_\varphi\Lambda^4}{3m_L^2M^2} + \frac{c_H^rc_\varphi^r\Lambda^4}{3m_L^2M^2}. \end{split}$$

DM Analysis: Relic Abundance

3 main DM Annihilation Channels



In principle, $\varphi \varphi \to f \bar{f}$ processes are allowed.

However, they are highly constrained by experimental bounds.

Universal Coupling: $c_3=c_3^\prime, d_4=d_4^\prime$ required to Avoid Direct Detection Bound

$$+4 rac{c_3}{c_3} m_{arphi}^2 m_H^2 arphi^2 |H|^2 + 4 rac{c_3'}{a_4} \lambda_H m_{arphi}^2 arphi^2 |H|^4 \Big) ^{-1} \ 2 rac{d_4}{d_4} m_H^2 |H|^2 (\partial_\mu arphi)^2 + 2 rac{d_4'}{a_4} \lambda_H |H|^4 (\partial_\mu arphi)^2 \ .$$

$$|\mathcal{M}_{\varphi\varphi\to f\bar{f}}|^2 = \frac{4m_f^2 m_h^4 m_\varphi^4 (m_\varphi^2 - m_f^2)}{3\Lambda^8 (m_h^2 - 4m_\varphi^2)^2} \cdot \left(2(c_3 - c_3') + d_4 - d_4'\right)^2$$

DM Analysis: Relic Abundance

Boltzmann Equations for DM relic

$$\dot{n}_{\varphi} + 3Hn_{\varphi} = -\langle \sigma v_{\rm rel} \rangle_{\rm eff} \left(n_{\varphi}^2 - (n_{\varphi}^{\rm eq})^2 \right)$$

$$\langle \sigma v_{\rm rel} \rangle_{\rm eff} = 2 \langle \sigma v_{\rm rel} \rangle_{\varphi \varphi \to hh} + 2 \langle \sigma v_{\rm rel} \rangle_{\varphi \varphi \to W^+W^-} + 2 \langle \sigma v_{\rm rel} \rangle_{\varphi \varphi \to ZZ} + 2 \langle \sigma v_{\rm rel} \rangle_{\varphi \varphi \to f\bar{f}},$$

$$\langle \sigma v_{\rm rel} \rangle_{\varphi \varphi \to ij} = \frac{|\mathcal{M}_{\varphi \varphi \to ij}|^2}{32\pi m_{\varphi}^2} \sqrt{1 - \frac{m_i^2}{m_{\varphi}^2}}$$

$$|\mathcal{M}_{\varphi\varphi\to f\bar{f}}|^2 = \frac{4m_f^2 m_h^4 m_\varphi^4 (m_\varphi^2 - m_f^2)}{3\Lambda^8 (m_h^2 - 4m_\varphi^2)^2} \cdot \left(2(c_3 - c_3') + d_4 - d_4'\right)^2$$

$$|\mathcal{M}_{\varphi\varphi\to ZZ}|^2 = \frac{1}{2}|\mathcal{M}_{\varphi\varphi\to W^+W^-}|^2(m_W\to m_Z,s_W\to s_Wc_W) \quad s_{_{\! \! W}},c_{_{\! \! \! W}} = \sin\theta_{_{\! \! \! W}},\cos\theta_{_{\! \! \! \! W}} \text{ , } \quad \theta_{_{\! \! \! \! W}} \text{ : Weinberg angle }$$

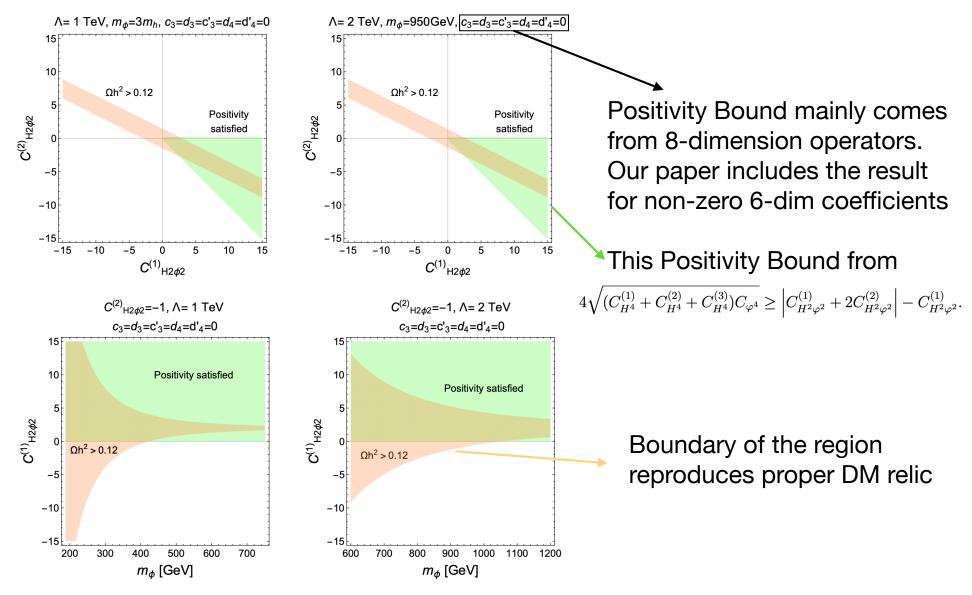
$$|\mathcal{M}_{\varphi\varphi\to W^+W^-}|^2 = \frac{2\pi^2\alpha^2 m_{\varphi}^4 v^4}{9\Lambda^8 m_W^4 s_W^4} \Big[9(C_{H^2\varphi^2}^{(1)})^2 (m_{\varphi}^2 - m_W^2)^2 - \frac{6C_{H^2\varphi^2}^{(1)}}{m_h^2 - 4m_{\varphi}^2} (m_{\varphi}^2 - m_W^2) (2m_{\varphi}^2 - m_W^2) \\ \times \Big\{ \Big(2(c_3 - c_3') + d_3 + d_4 - d_4' - 3C_{H^2\varphi^2}^{(2)} \Big) m_h^2 + 4\Big(- d_3 + 3C_{H^2\varphi^2}^{(2)} \Big) m_{\varphi}^2 \Big\} \\ + \frac{1}{(m_h^2 - 4m_{\varphi}^2)^2} \Big(4m_{\varphi}^4 - 4m_{\varphi}^2 m_W^2 + 3m_W^4) \\ \times \Big\{ \Big(2(c_3 - c_3') + d_3 + d_4 - d_4' - 3C_{H^2\varphi^2}^{(2)} \Big) m_h^2 + 4\Big(- d_3 + 3C_{H^2\varphi^2}^{(2)} \Big) m_{\varphi}^2 \Big\}^2 \Big],$$

$$\times \Big\{ \Big(2(c_3 - c_3') + d_3 + d_4 - d_4' - 3C_{H^2\varphi^2}^{(2)} \Big) m_h^2 + 4\Big(- d_3 + 3C_{H^2\varphi^2}^{(2)} \Big) m_{\varphi}^2 \Big\}^2 \Big],$$

$$+ 4\Big(- 2d_3 + 3C_{H^2\varphi^2}^{(1)} + 6C_{H^2\varphi^2}^{(2)} \Big) m_{\varphi}^4 \Big\}^2,$$

DM Analysis: Relic Abundance

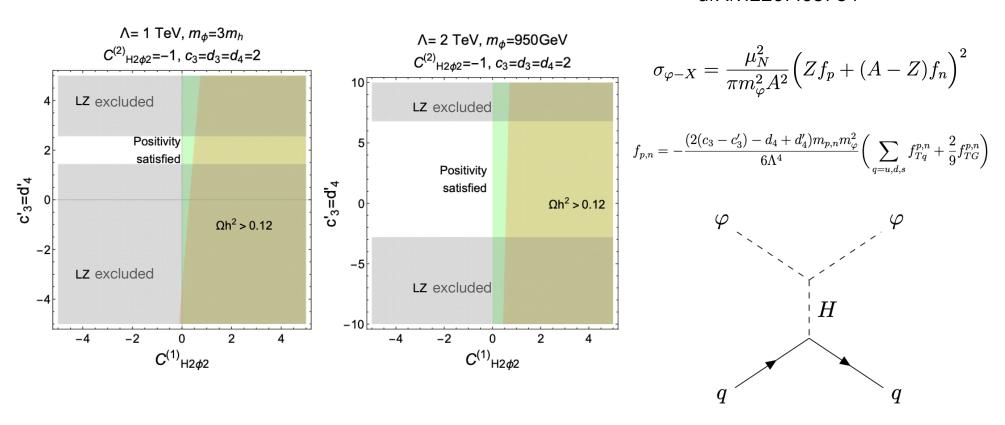
Analysis for simplest case: Turning off all 6-dimension operators



DM Analysis : Direct Detection

Bound from LUX-ZEPLIN Experiment

LZ: LUX-ZEPLIN Experiment arXiv:2207.03764

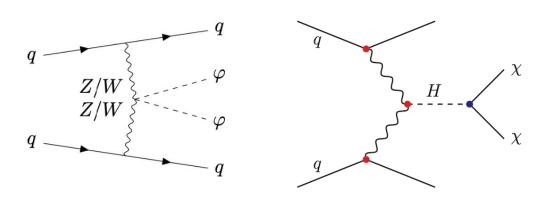


Bound are compatible with remaining parameter spaces!

Universal coupling : $c_3 = d_4 = d_4'$ assumed.

DM Analysis: Collider Searches

Diagram for LHC Detection



With Background Process Mainly from $pp \rightarrow \nu \bar{\nu} jj$

Bound from LHC data

Ref : CMS Collaboration

arXiv:1905.07445

No bound for
$$C_{H^4}^{(1)}$$
 yet $C_{H^4}^{(2)}/\Lambda^4 = [-2.7, 2.7]\,\mathrm{TeV}^{-4}$ $C_{H^4}^{(3)}/\Lambda^4 = [-3.4, 3.4]\,\mathrm{TeV}^{-4}$

$\sqrt{s} = 13 \text{ TeV LHC}, L_{\text{int}} = 139 \text{ fb}^{-1}$	$\sigma^{\mathrm{VBF}} \times B_{\mathrm{inv}} = 0.11 \; \mathrm{pb} \; (m_H = 1 \; \mathrm{TeV})$
$\Lambda = 1 \text{ TeV}, m_{\varphi} = 375 \text{ GeV}$	cross section from EFT operators
$(C_{H^2\varphi^2}^{(1)}, C_{H^2\varphi^2}^{(2)}) = (40, 40)$	0.28 pb
$(C_{H^2\varphi^2}^{(1)}, C_{H^2\varphi^2}^{(2)}) = (32, 32)$	0.11 pb
$(C_{H^2\varphi^2}^{(1)}, C_{H^2\varphi^2}^{(2)}) = (40, 0)$	0.012 pb
$(C_{H^2\varphi^2}^{(1)}, C_{H^2\varphi^2}^{(2)}) = (0, 40)$	0.097 pb

Conclusion (Returns)

- New Physics exist! (i.e. Dark Matter...)
 Though we don't know its complete elements and description.
- Still, we can write down 'effective theory' for New physics, that valid up to some energy scale, instead of full theory.
- Effective theory is generally constrained by Positivity condition.
 This strongly restricts the validity of theory.
- We consider Higgs-portal scalar Dark Matter Model. And we combine experimental bound and positivity constraint.

Extra Dimension Model

$$ds^{2} = w(z)^{2} \left(e^{-2r} (\eta_{\mu\nu} + G_{\mu\nu}) - (1 + 2r)^{2} dz^{2} \right)$$

Massless 5D Metric fluctuation h_{MN} : from $ds^2 = (\eta_{MN} + h_{MN}) dx^M dx^N$

 h_{MN} can be decomposed to $h_{\mu\nu}$, $h_{\mu5}$, and h_{55} . h_{55} correspond to the radion

Model Ref : arXiv:13064107v2

r: Radion, Trace part of extra dimension metric

- Represents the size of compact dimension
- Couples to 4D Energy-momentum tensor

$$w(z)^2 e^{-2r}$$
: Warp factor

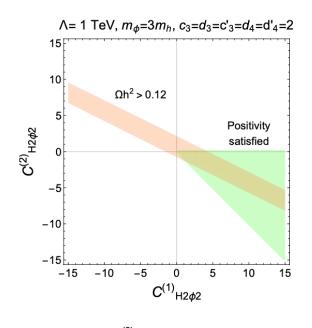
Similar to scale factor of Flat FRW metric, only filled with vacuum Energy

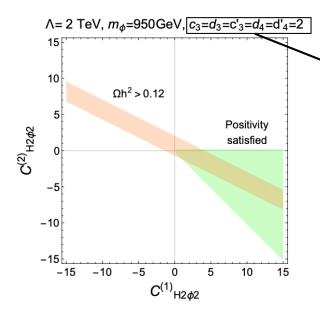
Coefficient for Dim-8 operators

$$\mathcal{L}_{\text{Higgs-portal}} = \mathcal{L}_{1} + \mathcal{L}_{2}$$

$$\mathcal{L}_{1} = -\frac{1}{6\Lambda^{4}} \left(c_{1} m_{\varphi}^{4} \varphi^{4} + 4 c_{2} m_{H}^{4} |H|^{4} + 8 c_{2}^{\prime} \lambda_{H} m_{H}^{2} |H|^{6} + 4 c_{2}^{"} \lambda_{H}^{2} |H|^{8} \right) \qquad \mathcal{L}_{2} = \frac{C_{H^{2} \varphi^{2}}^{(1)}}{\Lambda^{4}} O_{H^{2} \varphi^{2}}^{(1)} + \frac{C_{H^{2} \varphi^{2}}^{(2)}}{\Lambda^{4}} O_{H^{2} \varphi^{2}}^{(2)} + \frac{C_{H^{2} \varphi^{2}}^{(2)}}{\Lambda^{4}} O_{H^{2} \varphi^{2}}^{(2)} + \frac{C_{H^{2} \varphi^{2}}^{(2)}}{\Lambda^{4}} O_{H^{2} \varphi^{2}}^{(2)} + \frac{C_{H^{2} \varphi^{2}}^{(3)}}{\Lambda^{4}} O_{H^{2} \varphi^{2}}^{(2)} + \frac{C_{H^{2} \varphi^{2}}^{(3)}}{\Lambda^{4}} O_{H^{2} \varphi^{2}}^{(3)} + \frac{C_{H^{2} \varphi^{2}}^{(3)}}{\Lambda^{4}} O_{H^{2} \varphi^{2}}^{(4)} + \frac{C_{H^{2} \varphi^{2}}^{(4)}}{\Lambda^{4}} O_{H^{2}$$

$$\begin{split} \frac{C_{\varphi^4}}{\Lambda^4} &= \frac{c_{\varphi}^2}{3m_G^2M^2} + \frac{(c_{\varphi}^r)^2}{12m_r^2M^2}, \\ \frac{C_{H^4}^{(1)}}{\Lambda^4} &= \frac{C_{H^4}^{(2)}}{\Lambda^4} = \frac{c_H^2}{m_G^2M^2}, \quad \frac{C_{H^4}^{(3)}}{\Lambda^4} = -\frac{2c_H^2}{3m_G^2M^2} + \frac{(c_H^r)^2}{3m_r^2M^2}, \qquad \frac{C_{H^2\varphi^2}^{(1)}}{\Lambda^4} = \frac{2c_Hc_{\varphi}}{m_G^2M^2}, \quad \frac{C_{H^2\varphi^2}^{(2)}}{\Lambda^4} = -\frac{2c_Hc_{\varphi}}{3m_G^2M^2} + \frac{c_H^rc_{\varphi}^r}{3m_r^2M^2}, \\ \frac{c_1}{\Lambda^4} &= \frac{d_1}{\Lambda^4} = \frac{c_{\varphi}^2}{m_G^2M^2} - \frac{2(c_{\varphi}^r)^2}{m_r^2M^2}, \qquad \qquad \frac{c_H^{(2)}}{3m_r^2M^2} = -\frac{3}{2}\frac{C_{H^2\varphi^2}^{(1)}}{\Lambda^4} - 6\frac{C_{H^2\varphi^2}^{(2)}}{\Lambda^4}, \\ \frac{c_2^{(\prime,\prime\prime\prime)}}{\Lambda^4} &= \frac{d_2^{(\prime)}}{\Lambda^4} = \frac{c_H^2}{m_G^2M^2} - \frac{2(c_H^r)^2}{m_r^2M^2} = -3\frac{C_{H^4}^{(1)}}{\Lambda^4} - 6\frac{C_{H^4}^{(3)}}{\Lambda^4}. \end{split}$$

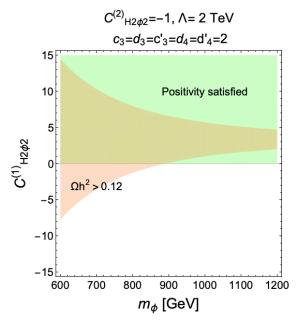




Of course we may turn on 6dimension operators. This changes relic abundance.

Positivity may affected if UV completion relates coefficients of 6-dim operators and 8-dim operators.





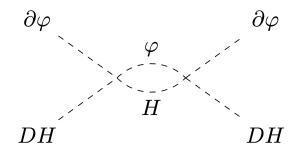
Loop Contribution - How dim-6 operator correct dim-8 coefficient

Example: dim-8 operator of

$$\mathcal{L}_{\text{dim}-8} = \frac{C_{H^2\varphi^2}^{(1)}}{\Lambda^4} (D_{\mu}H)^{\dagger} (D_{\nu}H) \partial^{\mu}\varphi \partial^{\nu}\varphi + \frac{C_{H^2\varphi^2}^{(2)}}{\Lambda^4} (D_{\mu}H)^{\dagger} (D^{\mu}H) \partial_{\nu}\varphi \partial^{\nu}\varphi.$$

Additional contribution from these dim-6

$$\mathcal{L}_{\mathrm{dim}-6} = rac{1}{3\Lambda^4} \Big(\tilde{d}_3 arphi^2 |D_\mu H|^2 + \tilde{d}_4 |H|^2 (\partial_\mu arphi)^2 \Big)$$



Improved coefficient

$$\hat{C}_{H^{2}\varphi^{2}}^{(1)} = C_{H^{2}\varphi^{2}}^{(1)} + \frac{1}{9(4\pi)^{2}\Lambda^{4}} \left(\frac{26}{9} (\tilde{d}_{3}^{2} + \tilde{d}_{4}^{2}) + \frac{40}{9} \tilde{d}_{3} \tilde{d}_{4} \right) \qquad \hat{C}_{H^{2}\varphi^{2}}^{(2)} = C_{H^{2}\varphi^{2}}^{(2)} - \frac{1}{9(4\pi)^{2}\Lambda^{4}} \frac{5}{9} (\tilde{d}_{3} + \tilde{d}_{4})^{2} + \frac{1}{9(4\pi)^{2}\Lambda^{4}} \frac{4}{3} (\tilde{d}_{3} + \tilde{d}_{4})^{2} \ln \frac{\mu^{2}}{|s|}, \qquad \qquad -\frac{1}{9(4\pi)^{2}\Lambda^{4}} \frac{1}{3} (\tilde{d}_{3} + \tilde{d}_{4})^{2} \ln \frac{\mu^{2}}{|s|}.$$

We obtain minor contribution from dim-6 1-loop correction