Constraints on cosmic-ray boosted dark matter from the XENONnT experiment: An analysis based on energy dependent crosssection

Atanu Guha

in collaboration with Prof. Jong-Chul Park

Chungnam National University

atanu@cnu.ac.kr

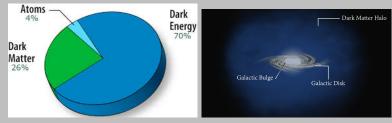
June 13, 2023

Overview

- 1 Present Understanding About the structure of the Universe
- 2 Dark Matter Detection Strategies
- 3 Limitation of Direct detection experiments
- 4 Cosmic-ray Boosted Dark Matter

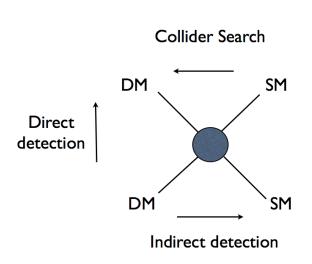
Present Understanding

• Structure formation of the universe: Luminous matter (\sim 4%) is not sufficient, non-luminous matter (dubbed as dark matter \sim 26%) is required (Cannoni M., 2016, Eur. Phys. J. C, 76, 137).



- They are dark as they can't absorb, emit, reflect light! They does not interact with the electromagnetic force like SM particles.
- Their interaction with the SM particles is very weak whereas they are highly massive (WIMPs).
- Primary evidences are anomaly in galaxy rotation curve, gravitational lensing and bullet cluster.

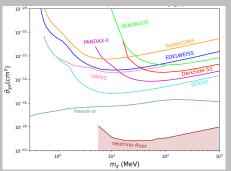
Detection Strategies

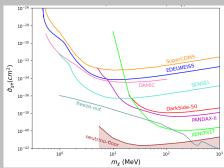


Direct detection experiments

Experiments : XENON, SENSEI, DarkSide

Basic working principle : To measure the recoil energy of electron/nucleus assuming that the DM particles scatter off the target.





Light mediator
Courtesy: Dark matter limit plotter v5.18

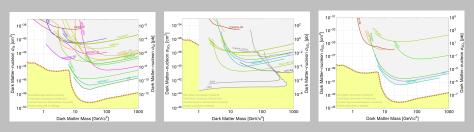
Heavy mediator

Limitation of Direct detection experiments

Direct Detection experiments lose sensitivity for low mass DM.

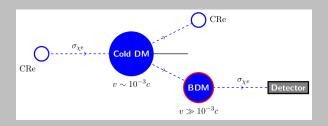
- ullet Below DM mass of \sim 0.3 GeV for DM-nucleon cross-section.
- ullet Below DM mass of \sim 0.3 MeV for DM-electron crosssection

Very light DM particles cannot produce enough recoil to be detected.



Courtesy: Dark matter limit plotter v5.18

Cosmic-ray Boosted Dark Matter



The energy transfer to the cold DM by the CR particle:

$$T_{\chi} = T_{\chi}^{max} \left(\frac{1 - \cos \theta}{2}\right)$$

$$T_{\chi}^{max} = \frac{\left(T_{i}\right)^{2} + 2T_{i}m_{i}}{T_{i} + \left(m_{i} + m_{\chi}\right)^{2} / \left(2m_{\chi}\right)}$$

 θ is the scattering angle at the centre of momentum frame.

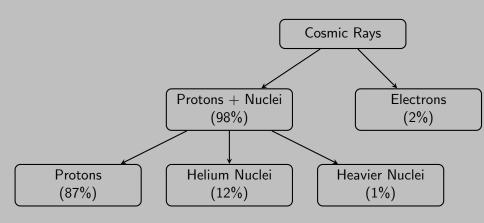
Cosmic-ray Boosted Dark Matter

$$T_i^{min} = \left(rac{T_\chi}{2} - m_i
ight) \left[1 \pm \sqrt{1 + rac{2T_\chi}{m_\chi} rac{\left(m_i + m_\chi
ight)^2}{\left(2m_i - T_\chi
ight)^2}}
ight]$$

$$\left(\frac{d\Phi_{\chi}}{dT_{\chi}}\right)_{i} = D_{eff} \times \frac{\rho_{\chi}^{\text{local}}}{m_{\chi}} \int_{T_{i}^{min}}^{\infty} dT_{i} \frac{d\Phi_{i}}{dT_{i}} \frac{1}{T_{\chi}^{max}(T_{i})}$$

 $D_{\it eff}=$ Effective distance out to which we take into account CRs as the source of a possible high-velocity tail in the DM velocity distribution $ho_\chi, m_\chi=$ Density and mass of DM particles $T_i=$ Kinetic energy of the CR particle i

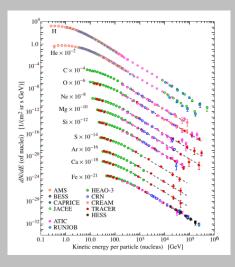
Components of Cosmic Ray

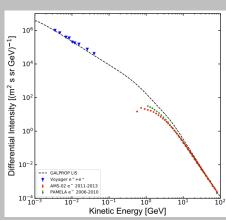


Longair, M. S., "High Energy Astrophysics", Cambridge University Press (2011).

Cosmic Rays, Particle Data Group, PDG-2022.

Flux of CR electron, proton and nuclei





Phys. Rev. D 98, 030001 (2018)

Astrophys. J. 854, 94 (2018)

Models for our analysis

Secluded dark sector (Dark photon):

$$\mathcal{L} = \mathcal{L}_{SM} + \bar{\chi} \left(i \partial \!\!\!/ - m_{\chi} \right) \chi - g_{\chi} \bar{\chi} \gamma_{\mu} \chi \hat{A'}^{\mu}$$

$$+ \frac{1}{2} m_{\hat{A'}}^2 \hat{A'}_{\mu} \hat{A'}^{\mu} - \frac{1}{4} \hat{A'}_{\mu\nu} \hat{A'}^{\mu\nu} - \frac{\sin \varepsilon}{2} \hat{B}_{\mu\nu} \hat{A'}^{\mu\nu}$$

• $U(1)_{B-L}$:

$$\mathcal{L}_{B-L}\supset g_{B-L}\left[-ar{l}\gamma^{\mu}A_{\mu}^{'}l-ar{
u}_{R}\gamma^{\mu}A_{\mu}^{'}
u_{R}+rac{1}{3}ar{q}\gamma^{\mu}A_{\mu}^{'}q
ight]-g_{\chi}ar{\chi}\gamma_{\mu}\chi\hat{A'}^{\mu}$$

• $L_e - L_\mu$:

$$\mathcal{L}_{\mathsf{L}_{\mathsf{e}}-\mathsf{L}_{\mu}} \supset \mathsf{g}_{\mathsf{L}} \left[\bar{\mathsf{I}}_{\mathsf{e}} \gamma^{\mu} \mathsf{A}_{\mu}' \mathsf{I}_{\mathsf{e}} - \bar{\mathsf{I}}_{\mu} \gamma^{\mu} \mathsf{A}_{\mu}' \mathsf{I}_{\mu} \right] - \mathsf{g}_{\chi} \bar{\chi} \gamma_{\mu} \chi \hat{\mathsf{A}'}^{\mu}$$

Dark Photon Model

$$\mathcal{L} = \mathcal{L}_{SM} + \bar{\chi} \left(i \partial \!\!\!/ - m_{\chi} \right) \chi - g_{\chi} \bar{\chi} \gamma_{\mu} \chi \hat{A'}^{\mu}$$

$$+ \frac{1}{2} m_{\hat{A'}}^2 \hat{A'}_{\mu} \hat{A'}^{\mu} - \frac{1}{4} \hat{A'}_{\mu\nu} \hat{A'}^{\mu\nu} - \frac{\sin \varepsilon}{2} \hat{B}_{\mu\nu} \hat{A'}^{\mu\nu}$$

We use the transformations

$$\begin{split} \hat{B} &= c_{\hat{W}} A - \left(t_{\varepsilon} s_{\xi} + s_{\hat{W}} c_{\xi} \right) Z + \left(s_{\hat{W}} s_{\xi} - t_{\varepsilon} c_{\xi} \right) A' \\ \hat{W}_{3} &= s_{\hat{W}} A + c_{\hat{W}} c_{\xi} Z - c_{\hat{W}} s_{\xi} A' \\ \hat{A}' &= \frac{s_{\xi}}{c_{\varepsilon}} Z + \frac{c_{\xi}}{c_{\varepsilon}} A' \quad ; \quad \tan 2\xi = -\frac{m_{\hat{Z}}^{2} s_{\hat{W}} \sin 2\varepsilon}{m_{\hat{A}'}^{2} - m_{\hat{Z}}^{2} \left(c_{\varepsilon}^{2} - s_{\varepsilon}^{2} s_{\hat{W}}^{2} \right)} \end{split}$$

to diagonalize away the kinetic mixing term

$$\mathcal{L} \supset A'_{\mu} \left[g_{fL}^{A'} \bar{f} \gamma^{\mu} P_{L} f + g_{fR}^{A'} \bar{f} \gamma^{\mu} P_{R} f + g_{\chi}^{A'} \bar{\chi} \gamma^{\mu} \chi \right]$$

$$+ Z_{\mu} \left[g_{fL}^{Z} \bar{f} \gamma^{\mu} P_{L} f + g_{fR}^{Z} \bar{f} \gamma^{\mu} P_{R} f + g_{\chi}^{Z} \bar{\chi} \gamma^{\mu} \chi \right]$$

Flux of Boosted Dark Matter

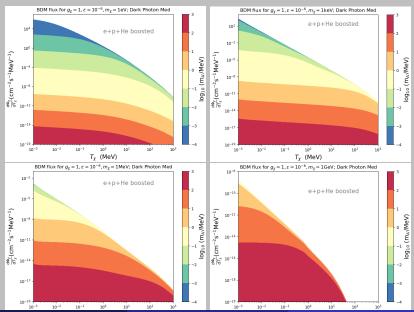
$$\frac{d\Phi_{\chi}}{dT_{\chi}} = D_{eff} \times \frac{\rho_{\chi}^{\text{local}}}{m_{\chi}} \left[\int_{T_{e}^{min}}^{\infty} dT_{e} \frac{d\Phi_{e}}{dT_{e}} \frac{d\sigma_{\chi e}}{dT_{\chi}} + \int_{T_{p}^{min}}^{\infty} dT_{p} \frac{d\Phi_{p}}{dT_{p}} \frac{d\sigma_{\chi p}}{dT_{\chi}} G_{p}^{2}(2m_{\chi}T_{\chi}) + \int_{T_{He}^{min}}^{\infty} dT_{He} \frac{d\Phi_{He}}{dT_{He}} \frac{d\sigma_{\chi He}}{dT_{\chi}} G_{He}^{2}(2m_{\chi}T_{\chi}) \right]$$

$$\frac{d\sigma_{\chi i}}{dT_{\chi}} = g_{i\chi}^{A'^{2}} \frac{2m_{\chi} (m_{i} + T_{i})^{2} - T_{\chi} \left\{ (m_{i} + m_{\chi})^{2} + 2m_{\chi} T_{i} \right\} + m_{\chi} T_{\chi}^{2}}{8\pi \left(2m_{i} T_{i} + T_{i}^{2} \right) \left(2m_{\chi} T_{\chi} + m_{A'}^{2} \right)^{2}}$$

$$i=e,p,He;$$
 $G_i\left(q^2\right)=\left(1+rac{q^2}{\Lambda_i^2}
ight)^{-2}
ightarrow ext{nucleon electromagnetic form factor}$

where, $\Lambda_p = 770 \text{ MeV}$, $\Lambda_{He} = 410 \text{ MeV}$, $g_{i\chi}^{A'} = g_i^{A'} g_{\chi}^{A'}$

Flux of Boosted Dark Matter



Rate equation

Predicted differential rate at the detector

$$\frac{dR}{dE_R} = \aleph \int_{T_\chi^{min}(E_R)}^{\infty} dT_\chi \sum_{i=e,p,He} \left(\frac{d\Phi_\chi}{dT_\chi}\right)_i \frac{d\sigma_{\chi e}}{dE_R}$$

with

$$\frac{d\sigma_{\chi i}}{dE_{R}} = g_{e\chi}^{A'^{2}} \frac{2m_{e} \left(m_{\chi} + T_{\chi}\right)^{2} - E_{R} \left\{ \left(m_{e} + m_{\chi}\right)^{2} + 2m_{e} T_{\chi} \right\} + m_{e} E_{R}^{2}}{8\pi \left(2m_{\chi} T_{\chi} + T_{\chi}^{2}\right) \left(2m_{e} E_{R} + m_{A'}^{2}\right)^{2}}$$

• Recoil spectrum for XENON1T is obtained by taking $\aleph = Z_{Xe}/m_{Xe}$, where Z_{Xe} is atomic number of Xenon and m_{Xe} is the mass of a single Xenon atom.

Exclusion Limit

To find the exclusion region, we perform a χ^2 analysis

$$\chi^2 = \sum_i \frac{(O_i - E_i)^2}{E_i + (\sigma_i^2)_{\text{data}}}$$
 (1)

$$\Delta \chi^2 = \chi^2 (BDM + B_0) - \chi^2 (B_0 \text{ only})$$
 (2)

- O_i are the observed number of events
- *E_i* are the expected number of events
- \bullet $(\sigma_i)_{\mathrm{data}}$ is uncertainity in the measured data

(For the $(BDM + B_0)$ case, to calculate the E_i values, we sum the BDM signal and the background B_0 for each energy bin.)

Exclusion Limit on the kinetic mixing parameter

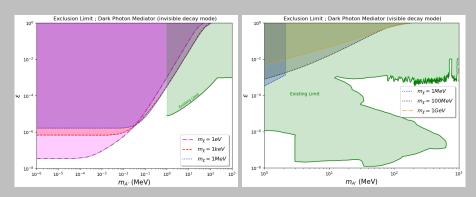


Figure: Shaded regions are excluded at 95% confidence level for $g_{\chi}=1$, in the ε vs $m_{A'}$ plane, for the invisible decay scenario (Left) and for the visible decay scenario (Right).

Exclusion Limit on the kinetic mixing parameter

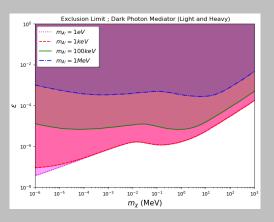


Figure: Shaded regions are excluded at 95% confidence level for $g_\chi=1$, in the ε vs m_χ plane, both for the light and the heavy mediator scenario. For $m_{A'}=1$ GeV, there is no valid kinetic mixing parameter ($\varepsilon \leq 1$) which can produce enough recoil at the detector.

Exclusion Limit on the couplings

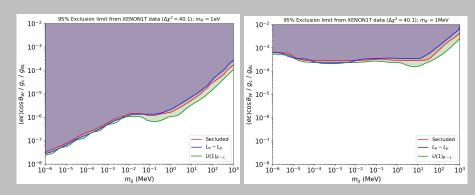


Figure: Shaded regions are excluded at 95% confidence level for $g_\chi=1$, in the coupling vs m_χ plane, for light mediator (Left) and heavy mediator scenario (Right).

Exclusion Limit on the DM-electron crosssection

Conventionally normalized form of DM-electron scattering crossection :

$$\begin{aligned} \left| \overline{\mathcal{M}_{free}} \right|^2 &= \left| \overline{\mathcal{M}_{free}(\alpha m_e)} \right|^2 \times \left| F_{DM}(q) \right|^2 \\ \bar{\sigma}_{\chi e} &= \frac{\mu_{\chi e}^2 \left| \overline{\mathcal{M}_{free}(\alpha m_e)} \right|^2}{16\pi m_{\chi}^2 m_e^2} \end{aligned}$$

For our case, the form factor at the detector

$$\left|F_{DM}(q=\sqrt{2m_{\rm e}E_R})\right|^2 = \frac{(\alpha^2m_{\rm e}^2+m_{A'}^2)^2}{(2m_{\rm e}E_R+m_{A'}^2)^2} \times \frac{2m_{\rm e}(m_\chi+T_\chi)^2 - E_R\left[(m_\chi+m_{\rm e})^2 + 2m_{\rm e}T_\chi\right] + m_{\rm e}E_R^2}{2m_{\rm e}m_\chi^2}$$

In the non-relativistic limit $E_R,\,T_\chi\ll m_e$

$$\left|F_{DM}(q)\right|^2 = \frac{(\alpha^2 m_e^2 + m_{A'}^2)^2}{(q^2 + m_{A'}^2)^2}$$

For heavy-mediator limit $\left|F_{DM}(q)\right|=1$ For light-mediator limit $\left|F_{DM}(q)\right|\sim \frac{1}{q^2}$

Exclusion Limit on the DM-electron crosssection

With these definitions and $g_{i\chi}^{A'}=earepsilon\cos heta_W$ / g_L / g_{B-L} for $g_\chi=1$

$$\begin{split} \overline{\left|\mathcal{M}_{free}(\alpha m_{e})\right|^{2}} &= \frac{16 \ g_{e\chi}^{A'^{2}} \ m_{e}^{2} m_{\chi}^{2}}{(\alpha^{2} m_{e}^{2} + m_{A'}^{2})^{2}} \\ \bar{\sigma}_{\chi e} &= \frac{g_{e\chi}^{A'^{2}} \ \mu_{\chi e}^{2}}{\pi (\alpha^{2} m_{e}^{2} + m_{A'}^{2})^{2}} \\ \Longrightarrow \bar{\sigma}_{\chi e} &= \begin{cases} \frac{g_{e\chi}^{A'^{2}} \ \mu_{\chi e}^{2}}{\pi (\alpha^{2} m_{e}^{2})^{2}} & \text{for light mediator,} \\ \frac{g_{e\chi}^{A'^{2}} \ \mu_{\chi e}^{2}}{\pi (m_{A'}^{2})^{2}} & \text{for heavy mediator.} \end{cases}$$

Using these relations we translate our exclusion limit on the kinetic mixing parameter to the crosssection.

Exclusion Limit on the DM-electron crosssection

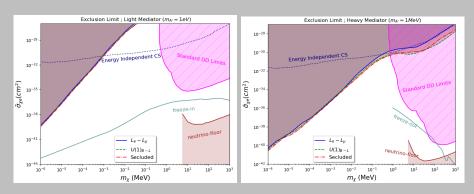
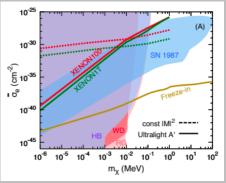


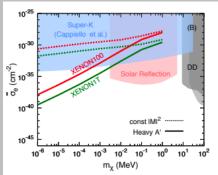
Figure: Shaded regions are excluded at 95% confidence level for $g_{\chi}=1$, in the $\sigma_{\chi e}$ vs m_{χ} plane, for light mediator (Left) and for heavy mediator scenario (Right).

Conclusions

- For low mass dark matter, exclusion limits becomes stronger if we invoke energy dependence of the crosssection by considering exact model of interaction between DM and SM particles.
- Cosmic ray boosted dark matter could be an alternative to probe low mass dark matter compared to the cold dark matter searches in standard direct detection experiments.

Existing Bound





Cao et al, Chin. Phys. C 45, 045002 (2021), arXiv:2006.12767 [hep-ph].

Flux of CR electron, proton and nuclei

$$\frac{d\Phi_e}{dT_e}(T_e) = \begin{cases} \frac{1.799 \times 10^{44} \ T_e^{-12.061}}{1 + 2.762 \times 10^{36} \ T_e^{-9.269} + 3.853 \times 10^{40} \ T_e^{-10.697}} & \text{if } T_e < 6880 \ \text{MeV} \\ \\ 3.259 \times 10^{10} \ T_e^{-3.505} + 3.204 \times 10^5 \ T_e^{-2.620} & \text{if } T_e \geqslant 6880 \ \text{MeV} \end{cases}$$

where the unit of $\frac{d\Phi_e}{dT_e}(T_e)$ is given in $(\mathrm{m}^2~\mathrm{s~sr~MeV})^{-1}$ and the kinetic energy (T_e) of the CR electrons is in MeV.

Astrophys. J. 854, 94 (2018), arXiv:1801.04059 [astro-ph.HE].

Flux of CR electron, proton and nuclei

$$\frac{dI}{dR} \times R^{2.7} = \begin{cases} \sum_{i=0}^{5} a_i R^i, & \text{if } R \leqslant 1 \text{ GV} \\ b + \frac{c}{R} + \frac{d_1}{d_2 + R} + \frac{e_1}{e_2 + R} + \frac{f_1}{f_2 + R} + gR, & \text{if } R > 1 \text{ GV} \end{cases}$$

with the following parameter set

	a ₀	a ₁	a ₂	a ₃	a ₄	a ₅
р	94.1	-831	0	16700	-10200	0
He	1.14	0	-118	578	0	-87

	Ь	С	d_1	d ₂	e_1	e_2	f_1	f ₂	g
р	10800	8590	-4230000	3190	274000	17.4	-39400	0.464	0
He	3120	-5530	3370	1.29	134000	88.5	-1170000	861	0.03

Cosmic ray proton and Helium flux is then obtain by the following relations

$$\frac{d\Phi_p}{dT_p}(T_p) = 4\pi \frac{dR}{dT_p} \frac{dI}{dR}$$
$$\frac{d\Phi_{He}}{dT_{He}}(T_{He}) = 4\pi \frac{dR}{dT_{He}} \frac{dI}{dR}$$

Astrophys. J. 840, 115 (2017), arXiv:1704.06337 [astro-ph.HE].

Dark Photon Model

Relevant couplings are: (JHEP 1102:100,2011)

$$\begin{split} \mathbf{g}_{\mathrm{fl}}^{A'} &= -\frac{e}{c_W s_W} c_\xi \left\{ T_3 \left[s_W t_\varepsilon - t_\xi + \frac{1}{2} \omega \left(t_\xi + \frac{s_W t_W^2 t_\varepsilon}{1 - t_W^2} \right) \right] \right. \\ &+ \left. Q \left[s_W^2 t_\xi - s_W t_\varepsilon + \frac{1}{2} t_W^2 \omega \left(\frac{t_\xi - s_W t_\varepsilon}{1 - t_W^2} \right) \right] \right\} \\ \mathbf{g}_{\mathrm{fl}}^{A'} &= -\frac{e}{c_W s_W} c_\xi Q \left[s_W^2 t_\xi - s_W t_\varepsilon + \frac{1}{2} t_W^2 \omega \left(\frac{t_\xi - s_W t_\varepsilon}{1 - t_W^2} \right) \right] \\ \mathbf{g}_{\mathrm{fl}}^{A'} &= -g_X \frac{c_\xi}{c_\varepsilon} : g_X^Z = -g_X \frac{s_\xi}{c_\varepsilon} \\ \mathbf{g}_{\mathrm{fl}}^{Z} &= -\frac{e}{c_W s_W} c_\xi \left\{ T_3 \left[1 + \frac{\omega}{2} \right] - Q \left[s_W^2 + \omega \left(\frac{2 - t_W^2}{2 \left(1 - t_W^2 \right)} \right) \right] \right\} \\ \mathbf{g}_{\mathrm{fl}}^{Z} &= \frac{e}{c_W s_W} c_\xi Q \left[s_W^2 + \omega \left(\frac{2 - t_W^2}{2 \left(1 - t_W^2 \right)} \right) \right] \end{split}$$

with $\omega = s_W t_{\varepsilon} t_{\varepsilon}$ and t_{ε} can be found by

$$1+s_{\hat{W}}t_{\xi}t_{arepsilon}=rac{c_{\hat{W}}^2s_{\hat{W}}^2}{c_{W}^2s_{W}^2}; \quad
ho=rac{s_{W}^2}{s_{\hat{\Omega}}^2}; \quad
ho-1=4_{-4}^{+8} imes10^{-4}$$

Atanu Guha in collaboration with Prof. Jong