Contribution ID: 84

Type: not specified

Non-adiabatic evolution of a dark sector in the presence of $U(1)_{L_{\mu}-L_{\tau}}$ gauge symmetry

Thursday, 15 June 2023 17:10 (20 minutes)

In a secluded dark sector scenario, the connection between the visible and the dark sector can be established through a portal coupling and its presence opens up the possibility of non-adiabatic evolution of the dark sector. Here, we have considered a $U(1)_{L_{\mu}-L_{\tau}} \otimes U(1)_X$ extension of the standard model (SM) to study the evolution of a decoupled dark sector in a radiation-dominated Universe. Depending on the values of the portal coupling (ϵ), dark sector gauge coupling (g_X), the mass of the dark matter (m_{χ}), and the mass of the dark vector boson ($m_{Z'}$), we study the temperature evolution of the dark sector as well as the various non-equilibrium stages of the dark sector in detail. Furthermore, we have also investigated the constraints on the model parameters from various laboratory and astrophysical searches. We have found that for $m_{Z'} < 100 \text{MeV}$, parameter space for the non-adiabatic evolution of the dark sector is significantly constrained from the observations of beam dump experiments, stellar cooling etc. The bounds from direct detection, and self-interaction of dark matter (SIDM) for the mass ratio $r \equiv m_{\chi}/m_{Z'} = 10^{-3}$ are consistent with the relic density satisfied region and these bounds will be more relaxed for larger values of r. However the constraints from the measurement of diffuse γ -ray background flux and cosmic microwave background (CMB) anisotropy are strongest for $r = 10^{-1}$ and for smaller values of r, they are not significant.

Secondary category for the parallel session (optional)

Dark Matter Physics

Primary authors: Ms TAPADAR, Ananya (Indian Association for the Cultivation of Science); GANGULY, Sougata (Chungnam National University); Prof. ROY, Sourov (Indian Association for the Cultivation of Science)

Presenter: GANGULY, Sougata (Chungnam National University)

Session Classification: Parallel: Dark Matter 6

Track Classification: Parallel Sessions: Dark Matter Physics